
Spring, 2014 CIT 596

Theory of Computation

Pumping Lemma for CFG notes

The pumping lemma for context free languages is similar to the one for regular languages
in that it is used typically to prove something is not context free.

Just like the proofs of a language being not regular, the usage of the pumping lemma for
proving something to be non context free involves the following

• Consider any arbitrary p.

• Pick a string in the language that is longer than p. Note that this means the string
you pick has to be dependent on p in some manner.

• Now split the chosen string in 5 parts. uvxyz = s. The constraints are v and y cannot
both be empty and |vxy| ≤ p. Note that you have consider all possible splits and in
almost all questions/problems this will involve breaking this down into a few different
cases.

• Pump the string either up or down. Pumping up means considering strings uv2xy2z
then uv3xy3z and so on. Pumping down means considering the string uxz. If any of
those ‘pumped’ strings is not in the language we are done.

To make this clear, let us consider the examples in the book and try and reason about
them in detail.

1. P = {aibici|i ≥ 0}
Assume the language is context free. Then there must be some pumping length p.
Now we must choose some string that is in the language and longer than p. In this
case, the appropriate choice seems to be apbpcp. Let us see how we apply the pumping
lemma to this string.

We have to consider all possible ways of splitting and divide them up into cases. The
following are the cases

(a) v and y both contain only type of symbol. Without loss of generality (because
the other cases will be similar), consider v = bk, where 0 < k ≤ p. Then uv2xy2z
will have p as but more than p bs and therefore cannot be in the language.

As said before, the other cases of v and y containing the same symbol work the
same way.

1

(b) v and y have a combination of 2 symbols. Again, without loss of generality
(the other cases can be reasoned about in a similar manner) let us say v is akbl

and y is bmcn. Then when we consider uv2xy2z we get a string of the form
ap−kakblakblxbmcnbmcncp−n which is not in the form of strings that are in the
language since it does not have a block of as followed by a block of bs followed by
a block of cs.

Therefore regardless of which way we split the string into u, v, x, y, z, there is
no way we can ensure that every pumped string continues to lie in the language.
This completes the proof that the language P is not context free.

2. Q = {aibjck|0 ≤ i ≤ j ≤ k}.
Again consider any p and we need to figure out a string that we might be unable to
pump. Once again the obvious choice is apbpcp.

Again, we have to consider every possible way in which this string can be split into 5
parts while adhering to the constraints |vy| > 0 and |vxy| ≤ p.

(a) As before if v and y contain a mix of symbols then pumping up will result in a
string that does not have the same pattern.

To clarify, consider for instance the case when v has some bs and some c. Or
more formally v = bkcl. Then when pumping up once (uv2xy2z), we will get a
block of bs followed by a block of cs followed by another block of bs, of the form
apbkclbkclxyyz.

(b) Now consider the cases when v and y contain the same symbols. There are a fair
number of subcases here which we will analyze one by one

• v and y contain only as. Then pumping up, s1 = uv2xy2z will increase the
number of as while keeping the number of bs and cs the same. Therefore the
string s1 is not in Q.

• v contains only as, y contains only bs. Consider then uv2xy2z. Since both v
and y are not allowed to the empty string at the same time, either the number
of as or the number of bs will be more than p while the number of cs will stay
the same. So again, when pumping up we get a string that is not in Q.

• v and y contains only bs. Again, pumping up and considering the string
uv2xy2z. This string contains more bs than the original string while still
having the same number of as and cs. This pumped string therefore cannot
be in the language Q.

• v and y contain only cs. This case is interesting since pumping up will increase
the number of cs, which does not cause any issues since all strings that have
more cs than as and bs is still in the language Q.
Then we try pumping down. Consider what happens to the string uxz. Since
we cannot have both v and y be the empty string, this results in a reduction in

2

the number of cs which maintaining the same number of as and bs. Therefore
the pumped down string cannot be in Q.
So for this case pumping down works.

• v contains only bs and y contains only cs. Again, pumping down is the method
to use because this would mean you reduce either the number of bs or cs while
maintaining the number of as intact.

• v is the empty string and y contains only cs. Once again pumping down will
work since it results in a reduction of the number of cs while maintaining the
same number of as and bs.

• v contains only as and y is the empty string. uv2xy2z will have more as than
bs and hence cannot be in the language Q.

• Can we have v be only as and y be only cs? That would be impossible because
|vxy| ≤ p can never be satisfied in that case since the block of bs is of length
p. So we do not need to consider that case.

That exhausts all possible cases of splitting the string apbpcp. We did not manage
to successfully pump the string regardless of how we tried our splitting. Therefore
this language is not context free.

Note that we did this example a little differently from the way it is done in Sipser’s
book. If you can think of the cases by dividing them into three cases based on
which letter is not appearing, then read the book’s explanation. We just wanted
to show you how to approach this problem even more directly.

(c) D = {ww|w ∈ {0, 1}∗}

3

