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Stochastic Model of Autocrine and Paracrine Signals in Cell
Culture Assays
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ABSTRACT Autocrine signaling systems are commonly studied under cell culture conditions. In a typical cell culture assay,
a layer of liquid medium covers a random two-dimensional dispersion of cells, which secrete ligands. In a growing number of
experiments, it is important to characterize the spatial range of autocrine and paracrine cell communication. Currently, the
spatial distribution of diffusing signals can be analyzed only indirectly, from their effects on the intracellular signaling or
physiological responses of autocrine cells. To directly characterize the spatial range of secreted ligands, we propose
a stochastic model for autocrine cell cultures and analyze it using a combination of analytical and computational tools. The two
main results derived within the framework of this model are 1), an expression for the fraction of autocrine trajectories, i.e., the
probability for a ligand to be trapped by the same cell from which it has been secreted; and 2), an expression for the spatial
distribution of trapping points of paracrine trajectories. We test these analytical results by stochastic simulations with efficient
Brownian dynamics code and apply our model to analyze the spatial operation of autocrine epidermal growth factor receptor

systems.

INTRODUCTION

We propose and analyze a stochastic model for autocrine
signals in cell culture assays. The two main results of this
article are an expression for the autocrine fraction of ligand
trajectories, i.e., the probability for a ligand to be captured
by the same cell from which it has been secreted; and an
expression for the spatial distribution of the trapping points
of escaping ligands. These expressions are generalized to
account for the effects of ligand-receptor dissociation and
receptor-mediated endocytosis. Our approach is based on
a combination of computational and analytical tools. First,
we develop an efficient Brownian dynamics algorithm for
generating the trajectories of secreted ligands. Second, we
homogenize the boundary condition on the trap-covered
surface that models the cell-covered dish. This homogeni-
zation significantly simplifies further analysis of autocrine
loops in cell culture assays. Our analytical results capture the
dependence of the spatial operation of autocrine loops on
parameters of the cell and those of the cell culture assay.
Autocrine signaling accompanies all stages of embryonic
development and is important for tissue homeostasis (Sporn
and Roberts, 1992; Freeman and Gurdon, 2002). Amplified
autocrine signaling is one of the hallmarks of cancer (Sporn
and Todaro, 1980; Rozengurt, 1999; Hanahan and Wein-
berg, 2000; Graeber and Eisenberg, 2001). Understanding
the operation of autocrine systems is important for harness-
ing them in applications such as tissue engineering or
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targeting the components of autocrine loops in diseases. In
vivo, autocrine loops are under control of tissue architecture,
cell density, and developmental state of the cell. Although it
is next to impossible to control all of these variables in vitro,
experiments with cultured cells can be used to ask a number
of fundamental questions about the operation of autocrine
systems.

A number of recent articles addressed the question of
the spatial operation of autocrine loops. Depending on the
application, it is important to estimate the fraction of the
ligands recaptured by the cell and/or the spatial distribution
of trapping points for escaping ligands. The biophysical
framework relating these properties to the parameters of the
autocrine loop, such as receptor affinity and expression level,
and the parameters of the assay, such as cell density and
medium height, may guide data analysis and planning of
future experiments. The existing approaches to autocrine
systems are based on the compartmental models (Forsten and
Lauffenburger, 1992, 1994; Oehrtman et al., 1998; DeWitt
et al., 2001) or on the single-cell or confluent monolayer
approximations (Shvartsman et al., 2001, 2002). The com-
partmental models contain a large number of adjustable
parameters, whereas the applicability of the single-cell/
confluent monolayer approximations is difficult to evaluate.
Here, we go beyond these approximations and develop
a stochastic model that is applicable over a wide range of cell
densities, medium heights, and molecular/cellular parame-
ters of autocrine systems.

By studying the migration of human mammary epithelial
cells equipped with autocrine epidermal growth factor
receptor (EGFR) loops and plated at low cell density, Wiley,
Lauffenburger and colleagues concluded that autocrine loops
could operate already at the level of a single cell (Wiley et al.,
1998; Dong et al., 1999; Maheshwari et al., 2001). This
conclusion was supported by experiments measuring the



rates of ligand release into the medium and its control by the
number of cell surface receptors (Lauffenburger et al., 1998;
Oehrtman et al., 1998; DeWitt et al., 2001, 2002). These
studies naturally lead to the question about the relationship
between the efficiency of ligand recapture and parameters of
autocrine loops.

The escaping fraction of autocrine ligands can mediate
homo- and heterotypic cell-cell interactions. Studying this
mode of intercellular signaling, Luttrell and colleagues have
prepared co-cultures of autocrine ‘‘donor’ and ‘‘acceptor”
cells (Pierce et al., 2001; Ahmed et al., 2003). Autocrine
donors could be induced to secrete the ligand (heparin-
binding epidermal growth factor) that activated receptors on
the donor or acceptor cells. Heterotypic cell-cell interactions
could be detected only when the cells where co-cultured
at high density. In another area, an increasing number of
experiments suggest that secreted growth factors and
cytokines contribute to the radiation bystander effect,
a phenomenon whereby radiation affects the cells that were
not in direct contact with radiation (Barcellos-Hoff and
Brooks, 2001; Folkard et al., 2001; Mothersill and Seymour,
2001; Dainiak, 2002). These studies naturally lead to the
question about the spatial range of autocrine signals in cell
culture assays, which is the main focus of our analysis in this
article.

MODEL

In this section we introduce a stochastic model of autocrine
signals in a cell culture assay, Fig. 1, A and B. We consider
a random two-dimensional dispersion of cells that secrete
ligands uniformly over the cell surface. The secreted ligands
diffuse in the medium layer of thickness #; the diffusion
coefficient of the ligand is denoted by D, . Ligands can bind
to receptors that are uniformly distributed over the cell
surface. The cells are modeled by disks of radius 7., Fig.
1 B. The interaction of diffusing ligands with the receptor-
covered cell surface is modeled by imposing a radiation
boundary condition on the cell surface. This means that the
probability density function for the coordinate of a diffusing
ligand, p(x,y,z,f), on the cell surface satisfies

Dap(x7y7z7t)

Oz :KP(%)’,ZZOJ)- (1)

z=0
The rate constant, k, is related to the total number of
receptors on the cell surface, Ry, and ligand-receptor
binding rate constant, k.,, by the relation k = konRioral/
(m‘ce“zN ), Where N, is the Avogadro’s number (Lauffen-
burger and Linderman, 1993). A ligand-receptor complex
can either dissociate or be internalized by the cell. Both
dissociation and internalization are first-order processes
characterized by the rate constants kg and k., respectively.
We trace the “‘fate’” of a ligand that is released at a random
point on the cell surface. Specifically, we derive the
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FIGURE 1 (A) Schematic representation of a cell culture assay: a random
dispersion of cells is covered by a layer of liquid medium of thickness 4.
Autocrine and paracrine trajectories: secreted ligand can be captured by the
cell surface receptors on the ligand producing cell or its neighbors. (B) Cells
are modeled by randomly distributed disklike traps of radius req. A
reflecting boundary condition is placed at z = h. The boundary condition at
z = 0 is partially absorbing on the trap surface and reflecting otherwise.

probability for the ligand to be recaptured by the initial cell,
i.e., the fraction of autocrine trajectories. We also find the
spatial distribution of the trapping points for the trajectories
escaping from the ligand-producing cell; such trajectories
are termed paracrine. Finally, we derive an expression for
the fraction of the ligand internalized by the initial cell and
the spatial distribution of internalization points for ligands
internalized outside of the ““parent’ cell. All of these results
are derived as a function of measurable parameters of the cell
and parameters of the assay. To illustrate our results, we
apply them to the autocrine EGFR system (Oehrtman et al.,
1998; Dong et al., 1999; DeWitt et al, 2001, 2002;
Maheshwari et al., 2001; Wiley et al., 2003).

ALGORITHM

The size of a single cell is several microns, whereas the
height of the medium used in a typical cell culture
experiment is several millimeters. This wide separation of
length scales, together with the random boundary condition
on the trap-covered plane, makes the deterministic numerical
methods (e.g., finite elements or finite differences) imprac-
tical. We have developed a Brownian dynamics algorithm
that efficiently generates the trajectories of ligands in this
problem with wide separation of length scales.

Our algorithm combines two techniques from Brownian
dynamics simulations of diffusion-limited reactions. Next to
the trap-covered surface we use the exact one-dimensional
propagator for the partially absorbing boundary condition
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(Lamm and Schulten, 1981, 1983; Edelstein and Agmon,
1997). Far from the trap-covered plane, we use the first-
passage-time technique (Siegel and Langer, 1986; Torquato
and Kim, 1989; Zheng and Chiew, 1989). By construction,
the algorithm has an adaptive timestep: in the first-passage-
time branch of the algorithm, the timestep is chosen based
on the distance to the lower (frap-covered) and the upper
(reflective) boundary. Next to the trap-covered surface, the
timestep is dictated by the lateral distance to the nearest trap or
the trap size (to ensure the validity of using a one-dimensional
propagator for the vertical displacement). The details of the
algorithm implementation can be found in the Appendix.

A sample trajectory, shown in Fig. 2, demonstrates the
adaptive timestep strategy: the large timesteps away from
the trap-covered surface and smaller timesteps next to this
surface. After validating the algorithm by comparing its
results to the analytical and (deterministic) numerical solu-
tions of a number of problems in simple geometries, we have
used it to analyze the statistical properties of autocrine and
paracrine trajectories. All the computational results are based
on averaging over 20 configurations of 200 randomly placed
traps and 10° trajectories for each configuration.

RESULTS
Autocrine trajectories

Our Brownian dynamics simulations indicate that the
autocrine fraction essentially does not depend on the medium
layer height and the trap density. The height was varied from
2 to 3 mm, and the trap density was varied from 1% to 40%
of the surface coverage. Dimensional analysis indicates that
the dependence on the ligand diffusivity, trap size, and the
binding rate constant is reduced to the dependence on a single
dimensionless group, the Damkohler number, defined as Da

z (cm)
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= renkDr. The Damkohler-dependence of the fraction
of autocrine trajectories, P,,, is shown in Fig. 3. This
dependence is well described by

Da

Po=Datajm @

The expression in Eq. 2 can be obtained using one of
the results from Zwanzig and Szabo (1991). This formula
is a generalization of a well-known result for partially
absorbing spherical traps (Collins and Kimball, 1949), to
the case of a partially absorbing disk on the otherwise
reflecting plane. As was shown by Collins and Kimball, the
trapping probability for a particle that starts at the surface of
a partially absorbing sphere of radius R is given by the ratio
ki(k + k), where k = 4Rk, and ks, = 47RD is the
Smoluchowski rate constant. To get the result in Eq. 2, we
use this ratio with k = 7re’k and ksm replaced by the
expression for the steady-state rate constant for a perfectly
absorbing disk of radius r. on the otherwise reflecting
plane: kdisk = 4rceHDL (HIH, 1975)

To rationalize independence of P,, from the medium layer
thickness, #, and the cell surface density, n, one has to
compare the average span of autocrine trajectories with 4 and
characteristic length associated with trapping of paracrine
trajectories. The span of the autocrine trajectory is defined as
the maximal excursion of a secreted ligand before its
recapture by a cell surface receptor (Shvartsman et al., 2001,
2002). Using dimensional arguments one can see that the
average autocrine excursion length is ~Dj /k. In our case,
D1 /k < 0.1 mm; this is an order-of-magnitude smaller than
h, which varies from 2 to 3 mm. To estimate the
characteristic length associated with the trapping of the
paracrine trajectories, one needs to know the spatial density
of the trapping points. We have analyzed this density in
Berezhkovskii et al. (2003) and have shown that all moments

FIGURE 2 An adaptive timestep Brownian dynamics
algorithm uses the first-passage-time method far from the
trap-covered plane and samples from the exact one-
dimensional propagators close to the lower boundary. See
Appendix for the detailed description of the algorithm.
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FIGURE 3 Analysis of autocrine trajectories. The autocrine fraction
depends on a single dimensionless group that combines the size of the trap,
ligand diffusivity, and the rate constant on the trap surface: Da = k7'co;/Dy.
The results of simulations are shown by symbols; the solid curve is given by
P.. = Da/(Da + 4/m) (see text for details). Parameters of the simulations are
Feett = 10 um, ko = 10 M~ min™", o = 0.1, 0.2, 0.4, and R,y = 10* —
5% 10°,

of the trapping distance diverge as the medium layer
thickness tends to infinity. For the case under study, the
medium height is large enough and the average trapping
length is much greater than D;/k. Thus, for the relevant
range of biophysical parameters, the characteristic length Dy /
k is much smaller than both the medium height and the
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average trapping distance. This is why P, is independent of
both & and the cell surface density.

Paracrine trajectories

In the case under study, the average trapping length is much
greater than the average distance between the cells on the
surface, given by n~ 2. As a consequence, the inhomoge-
neous boundary condition on the cell-covered plane can
be replaced by the homogeneous one with a trapping rate
constant, k.¢. This rate constant depends on the parameters
reen and k of the cell, the fraction of the surface occupied by
the traps, o0 = m’cenzn, as well as the diffusion constant. For
Kefr, We use the expression

KO - KO
| + wKkre /4D, 1+ mDa/4’

Keff = 3
which can be obtained from one of the results derived by
Zwanzig and Szabo (1991). This is a generalization of the
formula for the case when disks are perfectly absorbing
(Berg and Purcell, 1977). Indeed, as k — < the effective rate
constant reduces to 4D; o/(7rr..), Which is a well-known
Berg-Purcell result. Our Brownian dynamics simulations
show that this boundary condition is very accurate for
Damkohler numbers =1, and over the entire range of
medium heights and cell densities considered in this article.
At higher cell densities (o > 0.4), one can still find
a homogenized rate constant, but this constant depends on o
nonlinearly.

By homogenizing the boundary condition, we replace the
initial problem of ligand diffusion above a reflecting plane
randomly covered by partially absorbing disks with a much
simpler problem, Fig. 4 A. In the homogenized problem,

(A)
0.4

(B)
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[

FIGURE 4 (A) Schematic representation of
the homogenization procedure used to analyze
, the paracrine trajectories. The trap-covered
plane is approximated by the partially absorb-
ing boundary condition. The surface reaction
rate constant depends on the trap density and
parameters of the trap, Eq. 3. (B) Comparison
of the probability density functions and cumu-
lative distribution functions found in simula-
tions of the homogenized and original

100 problems, shown by red and black curves,

respectively. Parameters of the simulations are
Da=1.77 and o = 0.1, 0.2, and 0.4 (bottom to
top).

i
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a disk with the initial trapping rate constant «, from which
the ligand starts, is located on a uniformly absorbing plane
characterized by the effective trapping rate constant, Kegr
(Fig. 4 A). Fig. 4 B shows good agreement between the
probability densities, g(r), and the cumulative distribution
functions of the trapping points, G(r) = [, g(r')dr’, found
by simulations of the original and homogenized problems.
There are small differences between the two curves for the
probability density at 1 < r / reyy < 2, where the
homogenization of the boundary condition is not justified.

The homogenization of the boundary condition signifi-
cantly simplifies the numerical analysis of the problem, since
it effectively averages the boundary condition outside of
the disk, from which the ligand starts, over the trap config-
urations. In addition, the homogenization enables an an-
alytical treatment of the spatial distribution of the trapping
points of the paracrine trajectories. As a consequence of the
large average trapping length, one can neglect the disk radius
and assume that all trajectories start from the origin. This
greatly simplifies the analysis. We have derived an infinite
series expression for this distribution at arbitrary values of
Kerr and /1 in Berezhkovskii et al. (2003). At large medium
heights (A — ), the expressions for the density of the
trapping points, p(r), is given by

2Kt Jw X2
) = Ko(x)dx, 4
P ="o ), (kea?/DL)” + o(x)d @

where Ky(x) is the modified Bessel function (Abramowitz
and Stegun, 1964). The corresponding cumulative distribu-
tion function is

T 2 00 . .
P(r) = J p(rhdr’ = 7_TJ0 arctan (;ff’>xKo(x)dx. ®)

LX

We show that this expression works well when hk.g /Dy = 3
in Berezhkovskii et al. (2003).

The integrals in Eqgs. 4 and 5 have to be computed
numerically. We have found that the dependence in Eq. 5 is
well-approximated by a simple formula,

-
T r+1X 1D ke

P(r) ©)

This approximate formula predicts the exact r-dependence
with a relative error <5%.

The effect of ligand dissociation and endocytosis

A recaptured autocrine ligand can either dissociate from the
cell or be internalized by it. Internalization terminates the
trajectory of the secreted ligand. The probability of in-
ternalization is given by the ratio v = k./(koss + ko). The
probability that the ligand is not only recaptured but is also
internalized by the cell, is given by the sum of the prob-

abilities of internalization during the sequential recapture
events as

. * ; vP vDa
Pm — Pau 1 — Pau L au _ )
w =V ;0[( V)Pu] l-P,+vP, 4/m+vDa

(N
Notice that this result can be directly obtained from the
expression for the autocrine fraction, given in Eq. 2, with the
Damkohler reduced by the factor v. Similarly, the probability
density and cumulative distribution of the internalization
distances are given by the same expressions as those in Egs.
4-6, in which kg is replaced by vk.g For example, the
analog of Eq. 6 is

P"(r) ~ d )

T r+1X 1D vk

lllustrative example

One of the best-studied autocrine systems is that of the
EGFR and its ligands (Wiley et al., 2003). The molecular and
cellular parameters of this system have been reliably
measured. The forward binding rate constant, k,,, is ~108
M! minfl, and both the dissociation and endocytosis rate
constants, ko and ke, are in the 0.1-0.3 min~" range. With
the typical receptor expression level Ry of 10°-10°
receptors/cell, and the cell radius of ~10 wm, the rate
constant k in the radiation boundary condition in Eq. 1 is
between 0.1 and 10 wm/s. The typical medium height is 2-3
mm and the diffusivity of a ligand is 107® cm?®/s. In this
section, we apply our results to this system.

For the entire range of cell surface receptor densities in
this system, Dy /k < h. Therefore, we are in the regime where
the statistical properties of secreted trajectories will not
depend on the height of the medium and cell density. The
Damkohler numbers (Da = kr. /Dy ) corresponding to these
values of k lie between Da ~ 0.01 for 10* receptors/cell and
Da = 1 for 10° receptors/cell. Using these values to calculate
the probability of autocrine capture by Eq. 2, we get P,, =~
0.01 for 10* receptors and P,, ~ 0.5 for 10° receptors. Thus,
1% and 50% of ligand trajectories will be recaptured by the
cell in these two cases. Recent experiments by De Witt and
co-workers were done with engineered fibroblasts that
expressed ~10% EGF receptors per cell (DeWitt et al.
2001, 2002). According to our analysis, the fraction of
autocrine trajectories is ~1%. Based on this estimate, we
conclude that this experiment was operating in a strongly
paracrine regime, i.e. most of the trajectories were ‘‘lost” by
the cell.

To characterize paracrine trajectories, we first calculate the
effective rate constant by Eq. 3 and then use it in Eq. 6. For
example, for 10° receptors, k = 1 um/s, Da ~ 0.1, and ke ~
0.9 X o [wm/s]. Substituting these relations into Eq. 6, we
get P(r) = r/(r + 120/0), where r is in microns. The
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dependence P(r) is shown in Fig. 5 for 0 = 0.1, 0.2, and 0.4.
From this expression we see that 90% of the paracrine
trajectories are captured at the radial distances <1200/0 wm,
which is equivalent to 60/c of cell diameters. For the
coverages of 0.1, 0.2, and 0.4, this estimate leads to 600, 300,
and 150 cell diameters. This characterizes the ‘‘plume’’ due
to ligand secretion from an autocrine cell with 10° receptors.
Thus, the spatial range of paracrine signals in a typical cell
culture assay is much larger than the size of a single cell. This
is an immediate consequence of the fact that the cells are
covered by a thick layer of liquid (hkep/Dy. = 1). On the other
hand, in tissues, e.g., in developing epithelial layers, ik /Dy
< 1, and the spatial range of a diffusible signal can be just
a couple of cell diameters (Berezhkovskii et al., 2003). Thus,
the extrapolation of the estimates of the ranges of secreted
signals from cell culture experiments to tissues must be done
with extreme care.

CONCLUSIONS

We have developed a biophysical framework for the analy-
sis of autocrine loops in cell culture assays. Within the
framework of our model, we have expressed the autocrine
fraction and the spatial distribution of paracrine trajectories
as the functions of parameters of the cell and parameters of
the assay. Our approach is based on the Brownian dynamics
simulations and the homogenization of the boundary con-
dition for the trap-covered surface. For the relevant ranges
of biophysical parameters, the autocrine fraction of trajecto-
ries is a function of a single dimensionless group that depends

0.9
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FIGURE 5 Spatial distribution of trapping points computed for the
parameters corresponding to the autocrine EGFR system is 7.y = 10 um,
kon = 10*M ™" min~", Rips = 10%, and & = 0.1, 0.2, and 0.4.
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on the parameters of a single trap and ligand diffusivity
(Eq. 2). The statistical properties of paracrine trajectories can
be found by solving the problem where the heterogeneous
boundary condition on the trap-covered plane is replaced by
the homogeneous partially absorbing boundary condition
that depends on parameters of a single trap and the trap-den-
sity (Eq. 3).

The ratio Dj/k.s defines a dynamic length scale for
the analysis of the distances traveled by paracrine ligands.
In the relevant regime, the dynamic length scale is less than
the height of the extracellular medium and greatly exceeds
the size of a single trap. In this case, the distribution functions
for the distances traveled to the first capture event can be
found analytically (Egs. 4—6). Thus, both the autocrine fraction
and the distribution function for the distance to the first cap-
ture are given by analytical expressions. These results were
used to analyze the effect of ligand dissociation and recep-
tor-mediated endocytosis (Eqs. 7 and 8). We have tested these
results by Brownian dynamics simulations and demonstrated
their straightforward application to the autocrine EGFR
system.

Our adaptive timestep Brownian dynamics algorithm can
be straightforwardly extended to the case of traps with more
complex shapes. We also expect that the homogenized
boundary conditions will be useful in analyzing other cell-
culture setups (co-cultured cells, three-dimensional cells, and
organ cultures). Finally, in this article we have focused on
the fate of a single ligand released from the surface of an
autocrine cell. In the future, we are planning to characterize
autocrine ligand concentrations in cell culture assays. This
can be accomplished by incorporating the homogenized
boundary condition described in this article into the con-
ventional models of receptor dynamics.

APPENDIX

In the algorithm, we distinguish between the bulk of the ‘““medium” and
a “boundary layer” extending a distance 6 away from the trap-covered
surface. The choice for 8 is dictated by running time considerations; we
found that a near optimal performance is achieved by using & = 0.0017 .
When the particle is outside this boundary layer, its next position is chosen
to be uniformly distributed on the surface of a sphere that is centered on the
current position of a particle and has a radius R = min(zo, & — z), where zy is
the current position of the particle. The mean time to reach this hypothetical
spherical boundary for the first time is

T = R’/6D;.. (A1)

Inside the boundary layer, trajectories are generated using exact one-
dimensional propagators. The timestep is fixed and each of the coordinates
is sampled separately according to the relevant distributions. In the lateral
directions, the particle is advanced according to the Gaussian distribution

pe(Ax, Ar) = (47D A1) Pexp(—Ax* /AD Ar).

In the vertical direction, different propagators are employed depending on
whether the particle is above the reflecting or partially absorbing part

(A2)
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boundary. The two propagators are given by Lamm and Schulten (1981,
1983) as

pr(z,Ar) = (47D Ar) " {exp[—(z — zy)* /4D, A1)

+exp[—(z + 20)* /4D, Al] }, (A3)

palz, A1) = pr(z, At) — (k/Dy)exp[—(z + z)* /4D Al
X erfex((z + zo + 2kAt) /A/4DLAt].

Sampling from the propagator pa (z,Af7) is performed using the rejection
method.

Inside the boundary layer and above the trap (or within two trap diameters
from it), the timestep corresponds to mean-square displacement 100X
smaller than r°!" of

(A4)

At = (00170’ /2Dy (A5)

Above the reflective part of the surface, the timestep is chosen according to

A1 = (0.1deqeq)’ /2Dy, (A6)

where dpeqrest 1S the distance to the nearest trap.
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