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Emerging methods for multiscale simulation

of biomolecular systems
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Three multiscale computational methodologies for biomolecular systems are described: the
force-matching method for developing coarse-grained models directly from atomistic

simulations; the quasi-particle approach of simulating field theory representations at the
mesoscopic scale; and the multiscale-coupling method for direct information transfer between
mesoscopic and atomistic scales on the fly. The statistical mechanical background for each

of the methods is described in a comprehensive manner in order to highlight their theoretical
foundations. Examples of various applications of these methods to model different biophysical
processes are given. Combining with atomistic-level MD simulations, these three methods

compose a powerful tool for bridging and spanning the multiple spatial and temporal domains
that are present in many biological assemblies. Future directions of the methodology
developments are also discussed.

1. Introduction

The functionalities of complicated biological assemblies

such as cell membranes, chromosomal DNA, and

protein complexes, contain processes that occur at

multiple length- and time-scales. Describing how various

properties at these different scales are coupled is thus

critical in order to understand the molecular mechan-

isms that ultimately sustain the life of a cell. Molecular

modelling and simulation has become an indispensable

tool to study biological systems [1–16]; however,

integrating theoretical approaches and physical models

at different scales (ranging from atomistic to almost

macroscopic spatial/temporal domains) remains a

fundamental challenge [7–21].
In order to overcome the multiscale challenge men-

tioned above, an intermediate coarse-grained (CG)

scale, in which fewer details than the actual number of

atoms are used to represent the molecules in a system,

can be very useful, if not necessary, in order to bridge

information across different scales [10, 14, 16, 21–29].

Although the morphology and resolution at the CG

scale can be modulated for different systems and

problems, the possibly arbitrary nature of the exact

choice of CG description, along with the lack of

theoretical underpinning for developing CG models

has made the interpretation and reproducibility of CG

scale simulations difficult.
However, it is possible to formally derive a statistical

mechanics for coarse-graining, and such a derivation for

the multiscale force-matching method is presented here.

The multiscale coarse-graining (MS-CG) method based

on the force-matching (FM) [1, 26] approach system-

atically utilizes the force data obtained from atomistic

molecular dynamics (MD) simulations to develop CG

force-fields. The MS-CG method has been successfully

applied to CG scale simulations of different bio- and

nano-systems. [1–3, 26–29]
As an alternative to the ‘bottom-up’ FM approach to

developing reduced models directly from the atomistic

scale, a more ‘top-down’ field theory based approach

can extend the spatial/temporal domains that are

required to fully model many complex bioassemblies

[17–21]. In a field theory formulation, order parameters

describing the fields that are involved in a process are

first defined, and the response of order parameters

to external excitations such as thermal fluctuations

is then described by a phenomenological mesoscopic

Hamiltonian [30, 31]. The material properties that act

as key parameters in the mesoscopic Hamiltonian

can be directly computed from atomistic scale simula-

tions using non-equilibrium molecular dynamics*Corresponding author. Email: voth@chem.utah.edu
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(NEMD) [32], thus allowing the information transfer
across different scales. This field theory approach is
particularly useful for self-assembled structures com-
posed of distinct length-scales such as cell membranes
and chromosomal DNA. Computational methodologies
that can be used to model biological systems based on
field theories with complicated geometries and composi-
tions are also described in this work and used to model
different biophysical properties of lipid bilayers.
Of course, one obvious drawback to an essentially

continuum-level field theory picture is the complete lack
of atomistic details. As such, it is not possible to, for
example, examine the atomistic response of a biolog-
ical assembly (e.g. a membrane-bound protein) to
mesoscopic-level phenomena (e.g. mesoscopic stress
fields). However, we have recently shown that it is
possible to effectively ‘embed’ an atomistic-level system
into a field theory-based model [19, 20, 33].
This scheme is denoted multiscale coupling (MSC) and
has been applied to both pure bilayers [19] as well as
bilayers with membrane-bound proteins [20, 33]. MSC
couples the effects of mesoscopic perturbations such as
plane stress fields into synthetic and spatially distributed
fields at the MD level via the equations of motion at the
atomistic scale. The MSC method will also be described
in this paper. Results for the coupling of a membrane-
bound influenza A virus M2 proton channel at the
atomistic scale to the mesoscopic undulations of
the surrounding lipid bilayer will be given to illustrate
the application of this method.
In the following sections, each of the three methods

mentioned above will be described in a comprehensive
manner with the results of implementation/application
reported. Finally, concluding remarks are drawn.

2. The development of CG models from atomistic

simulations: the multiscale coarse-graining approach

‘Coarse-graining’ (CG) is a procedure for reducing the
number of degrees of freedom that are used to represent
a system. For example, in an all-atom model, the CG
procedure begins by grouping several atoms together
via a mapping expressed as:

~R� ¼
XN
i¼1

c�i~ri, with
XN
i¼1

c�i ¼ 1 for each �: ð1Þ

In equation (1), c�is are the coefficients used for
determining the positions of CG sites from the coordi-
nates of atoms. The summation index i is the atom index
for anN atom system, and � is the index for anM site CG
representation of the same system. After a mapping as in

equation (1) is defined, the configurational Helmoltz free

energy, Að ~RÞ, of the system can be partitioned according

to the CG site coordinates:

expð��Að ~RÞÞ ¼
1

VM

Z
dq expð��Uð ~R, ~qÞÞ ð2Þ

so that the thermodynamic Helmoltz free energy A is

given by:

expð��AÞ ¼
1

VM

Z
d ~R expð��Að ~RÞÞ: ð3Þ

In equations (2) and (3), the boldfaced letter ~R denotes

a 3M-dimensional vector recording the positions of

all CG sites, ~q denotes the remaining 3(N�M) internal

coordinates in addition to the M ~R� (position of a CG

site �) that are needed to fully describe an atomistic

configuration ~r of dimension 3N, Uð ~R, qÞ, or Uð ~r Þ, is the
atomistic potential energy, V is the volume, �¼ 1/kBT,

and Að ~RÞ is the configuration free energy of the

atomistic system as a function of CG site coordinates

and is defined as the exact CG effective potential energy

that a CG force field should ideally reproduce. Although

Að ~RÞ is directly related to Uð ~r Þ as indicated in

equation (2), the very large number of degrees of

freedom makes the direct determination of Að ~RÞ
extremely difficult in practice.

On the other hand, it can be shown that the effective

forces on the CG sites due to derivatives of Að ~RÞ can

be related to the ensemble averages of the forces on

the CG sites due to Uð ~r Þ (see Note at the end of this

paper):

~FCG
� ð ~RÞ ¼ �

@Að ~RÞ

@ ~R�

ð4Þ

Equation (4) is the key equality for the MS-CG

approach. The RHS of equation (4) can be directly

computed from an atomistic MD simulation, and a CG

force field can then be obtained by matching the forces

on CG sites. This matching is done by first defining an

residual function, <2, as the following:

<2 ¼
1

3M

XM
�¼1

D
~FCG
� ð ~RÞ� ~F�ð ~r Þ

� �2
ð5Þ

where ~FCG
� ð ~RÞ is the force on a CG site � given ~R

determined by a CG force field, and ~F�ð ~r Þ ¼
P

i2�
~fið ~r Þ

is the force on � due to Uð ~r Þ. By applying the

variational principle, the force field that minimizes <2

is determined.
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Although the exact CG potential can be obtained via
equation (5), the high dimensionalities that are involved
in this problem preclude its practical use. Usually, the
following assumptions are almost always assumed in
a CG force field:

1. The local interaction approximation:

~FCG
�� � ~FCG

�� ð
~R�, ~R�Þ and ð6Þ

2. the radial force approximation:

~FCG
�� ð

~R�, ~R�Þ ¼ FCG
�� ðR��Þû��: ð7Þ

Equation (6) suggests that the interactions between
two CG particles depend only on the position of these
two particles but not on those of other sites. Even
though local interaction is usually assumed in Uð ~r Þ,
the configuration integrals in equation (2) or (4) can
introduce non-local correlations. Equation (6) is the
local interaction approximation for pair-wise interac-
tions, and the generalization to many-body interactions
is straightforward. Equation (7) ignores the potential
orientational dependence that may be caused by
reducing the number of degrees of freedom, and may
be considered to be the major source of deviation in the
behaviour of a CG model from that of the underlying
atomistic model. With both the local interaction and
central force approximations, the dimensionality in a
CG force field can be greatly reduced to the point where
it can be efficiently implemented in a simulation
methodology.
The FM approach of developing CG models starts

from an atomistic-level MD simulation of the system.
FM then utilizes the forces and coordinates from the
MD trajectory to determine the force field that
minimizes equation (5). Since a sum of squares form is
used in equation (5), applying a variational principle
results in a least squares problem. By representing the
CG force field in a tabulated form, the least square
problem becomes linear (i.e. a linear least square
problem results). Moreover, using tabulated force
coefficients not only avoids the iterations that would
be required for solving a nonlinear least square problem,
it is also not required to assume any specific functional
form for the CG force field. In this way, the emergent
form of site–site interactions at a CG scale can be
captured directly from the atomistic scale. Therefore,
given a set of assumptions such as equations (6) and (7),
using the FM approach combined with a tabulated form
of force coefficients is a general and systematic way to
propagate the information obtained at the atomistic
scale to a CG scale.

As an example, if an atomistic model of liquid water

is coarse-grained into a one site per water model with the

centre of mass of the water being the position of the

CG site, the emergent site–site interactions of such a CG

model in the liquid phase cannot be found a priori;

however, FM can be used to resolve the emergent

behaviour of site–site interactions from an atomistic

MD simulation. For the case where the TIP3P all-atom

water model is used to describe the interactions among

125 water molecules in a cubic box of 15.2 Å under

periodic boundary conditions with full electrostatics,

the emergent site–site interactions for an one-site CG

water model (see figure 1) is shown in figure 2. It can be

seen that the pair interactions between CG water is not

a simple functional form and cannot be represented

by a small set of inverse power potentials that are

Figure 2. Pair wise force between one-site CG water
molecules in the unit of kcal/mol/Å as a function site–site
distance in the unit of Å. The CG pair wise force is determined
by the force-matching approach and an atomistic MD
simulation of liquid water based on the TIP3P model.

Figure 1. Atomistic and CG representations of liquid water;
125 water molecules under periodic boundary conditions
are shown. The left panel is the all-atom representation,
and the right panel is a CG representation with one CG site
corresponding to each water molecule.
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typically used in atomistic force fields. Again, by using

a multiscale method such as FM, the information

at the atomistic scale can be propagated into the CG

scale. More details of the numerical implementations

and applications of FM can be found elsewhere

[1–3, 26–29, 34].

3. The development of computational methodologies

for modeling and simulation at mesoscopic scale

The CG scale models that were discussed in the previous

section are generally reduced representations of a

molecular entity, but the general characteristics such as

shape, length, and size, etc., of a molecule are still

preserved. However, as the degree of a coarse-grained

mapping such as equation (1) becomes larger and the

resulting molecular details become blurred, ‘fields’,

such as density, strain, pressure, and velocity become

the variables that characterize a system. Continuum

mechanics are usually employed in this case to describe

the dynamics associated with field theories at the

mesoscopic scale. For example, the Helfrich free

energy functional [30, 31] describes the undulation

of an elastic membrane by using continuous strain

and bending fields. Except for extremely simplified

scenarios, the formal field theory representation of a

complicated biological system is generally too compli-

cated to allow for analytical solutions. The development

of flexible computational methods that can be used

analyse complicated biological systems at a mesoscopic

scale is thus extremely valuable. Moreover, since the

emergent properties of biological processes at a meso-

scopic scale originate from the underlying atomistic

scale as previously discussed, the ability to bridge

information between atomistic and mesoscopic scales

is also required.
The challenges of mesoscopic scale simulations

of biological systems have led to the development of

a particle-based methodology [8, 18, 35, 36], originating

from the fields of non-equilibrium molecular dynamics

(NEMD) [32], Smooth Particle Applied Mechanics

(SPAM) [37–40] and Smoothed Particle Hydrodyamics

(SPH) [41, 42]. The approach is to take the complex

continuum field theory representations of biological

membranes and other assemblies and formally re-cast

them into new ‘quasi-particle’ representations [35]. The

resulting dynamics of the system is then transformed

into a form similar to that employed in NEMD [32].

This approach can easily incorporate multiple highly

inhomogeneous components into the scheme

(e.g. transmembrane proteins embedded in the bilayer),

and the non-local hydrodynamics [43, 44] can also be

automatically included via an explicit mesoscopic

solvent.
Developing a robust multiscale mesoscopic mem-

brane/solvent simulation methodology that is ultimately

capable of coupling to atomistic-level models has also

been an ongoing project [18, 19, 33, 36, 45, 46]. The

mesoscopic component of this multiscale simulation

methodology consists of two interacting parts: an elastic

membrane and a viscous solvent. The mesoscopic

membrane model is denoted EM2 [21] and it is a

discretized solution to the Helfrich Hamiltonian for

a membrane [30, 35]. This is expressed as

FH ¼

Z
dA

kc
2
½2H � 2 þ

Z
dA

�h

2
½2"� 2 ð8Þ

where dA is an area element, kc is the bending modulus,

H is the mean curvature, h is the membrane thickness,

� is the bulk modulus, and 2" is the plane strain.
The term ‘discretized’ refers to the fact that the EM2

membrane consists of free energy ‘quasi-particles’

that interact in such a way that the behaviour of the

governing field theory model is recovered above a

critical discretization length-scale. The EM2 quasi-

particle interactions employ parameterizations that are

based on properties calculated at the atomistic scale

(i.e. the bending modulus, kc, bulk modulus, �) [33, 36,
45, 47] as well as structural information (density and

thickness). The discretization of a continuum-level field

theory model into an interacting set of quasi-particles

can remove the restrictions due to the boundary

conditions, and thus forms a general scheme for treating

complex geometries (i.e. vesicles [35, 36] domain

formation (with Cahn–Hilliard or Landau–Ginzburg

dynamics) [48] and explicit hydrodynamic effects [48]).
The remaining component of the mesoscopic model

is an explicit mesoscopic solvent denoted BLOBs, and

again this is composed of a new set of interacting quasi-

particles that are characterized by very strong random/

drag forces whose magnitude/character can also be

found from atomistic-level MD simulations of small

fluid droplets. More details concerning the quasi-

particle mesoscopic simulation methodology can be

found elsewhere [35, 45, 48].
When the elastic mesoscopic EM2 membrane is

brought into contact with the explicit mesoscopic

BLOBs solvent, the critical hydrodynamic dampening

behaviour of a bilayer in a viscous solvent is recov-

ered [35]. In fact, the observed undulation dynamics of

the EM2 membrane in the BLOBs solvent agree with

hydrodynamic theory, and it was also found that the

shear viscosity of the BLOBs solvent plays a key role

in the membrane undulation dynamics.
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The EM2/BLOBs mesoscopic model, by virtue of

its quasi-particle decomposition, can be employed to

examine large length-scale and long time-scale phenom-

ena that would be difficult to resolve by tackling the

underlying continuum-level equation directly, such as

the structures and dynamics of lipid bilayers in confined

geometries (e.g. smectic membranes [31, 49] bilayers

against surfaces [31, 50–52] and close bilayer pairs

[31, 53–55]). For example, in the case of two bilayers

separated by a small distance d, an entropic repulsion

that scales like 1/d2 has been predicted theoretically

[31, 54] and has also been observed experimentally by

reflection interference contrast microscopy [56]. An

undulation coupling between the two membranes,

including the narrow channel of solvent separating

them [31, 53], starts to appear as the separation d

decreases.
In figure 3, the free energy scaling for two EM2

membranes with explicit mesoscopic solvent is shown;

the 1/d2 scaling as the membranes are brought closer

is indeed apparent. What is interesting is to examine a

snapshot of the two EM2 membranes. In figure 4,

simulation snapshots at a separation of 3 nm (top image)

and 1.5 nm (bottom image) show a distinct lack of

spatial correlation between the two membranes. In other

words, the two membranes do not elect to adopt a

‘lasagna-like’ structure, but rather exist in a state of

dampened undulations. The origin of the entropic

repulsion is in fact the dampened undulation magnitudes

of one membrane due to the other. The free energy

difference, �F, can be compactly expressed as [21, 48]

�F ¼ NqkBT ln
keffc

kc
ð9Þ

where Nq is the number of wavevectors sampled and

keffc is the measured effective bending modulus due

to the dampened undulation magnitudes.
The EM2 approach can be further extended to

examine lipid domain formation by superimposing a

Landau model for phase coexistence on the EM2

membrane and then employing Cahn–Hilliard (CH) or

Landau–Ginzburg (LG) dynamics to resolve the domain

dynamics. In keeping with the free-energy quasi-particle

discretization of the problem, the composition dynamics

component of the methodology are further decomposed

via Smooth Particle Applied Mechanics (SPAM) into

another set of interacting composition quasi-particles. In

this case, the SPAM particles move about the surface of

the EM2 membrane; they contain a host of ‘particle

properties’, for example, the local composition of the

EM2 membrane, � as well as local composition-

dependent material properties. The SPAM approach

removes any reliance on boundary conditions, and

allows the system at the mesoscale to explore complex

geometries and to respond to a variety of deformations/

perturbations that could occur in the real system.
In the case of domain formations arising from ternary

mixtures of lipids in Giant Unilamellar Vesicles (GUV),

a Landau model capable of describing phase separations

can be expressed as [35, 46, 57, 58]

FT½�,H� ¼ FH þ

Z
dA

�2

2
r�j j2þVð�Þ þ��H2

� �
ð10Þ

Figure 4. Simulation snapshot of the EM2/BLOBs system
for two different values of the separation. The upper panel has
d¼ 3 nm while the lower panel has d¼ 1.5 nm.

Figure 3. Free energy change, �F, as a function of the
separation, d, for two EM2 membranes. The dashed line gives
the 1/d2 fit to the data.
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where � gives the non-local strength of the gradient of �
the composition, V(�) is a double-well potential,

and � is the coupling strength between the curvature

and composition [35, 46, 57, 58]. In this case, the entire

membrane and composition dynamics can be formu-

lated with SPAM. The resulting expressions appear

complicated, but are easily implemented within a pair-

wise additive algorithm similar to that employed in MD

simulations. In this discretized form, equation (10) takes

on the form of

FT½�, H��N ¼
XN
j¼1

�2

2
r�j

�� ��2þVð�jÞ þ��jH
2
j

� �
ð11Þ

where �N is a surface area number density, and the

summation goes over all N SPAM quasiparticles.
In figure 5, the change in domain structure due to

an external deformation on a 20 mm GUV is shown.

The two domains are shown in black and green
(where the green domain favors regions of higher
curvature due to its smaller bending modulus, kc); the
GUV is shown in exactly the same orientation in both
panels, but in figure 5(a) an external ‘dint’ is imposed
(i.e. mirroring a micromanipulation experiment) while
in figure 5(b) the GUV is unperturbed. The dint in
figure 5(a) is shown by the yellow ring of high curvature,
and it is observed that the domain favouring higher
curvature regions (the green domain) encompasses the
external dint. Furthermore, the domain structure far
away from the dint is also altered; it is not just a
localized event.

By superimposing composition dynamics over the
deformation dynamics of a bilayer, another component
in the overall multiscale simulation methodology is
created. When composition-dependent material proper-
ties are allowed to modulate the governing interactions
of the EM2 membrane, a feedback scenario can be
constructed, and complex multicomponent systems can
thus be modelled. When combined with specially
selected atomistic-level ‘windows’ via a multiscale-
coupling (MSC) scheme that will be described in the
next section, the atomistic-level response to a meso-
scopic phenomenon such as the ‘dint’ described above
can be captured and fed back to the atomistic scale,
thus completing the process of bridging these two scales.

4. Coupling between atomistic and mesoscopic scales

In the previous two sections, methods for systematically
developing models at CG and mesoscopic scales were
presented. At both scales, different ways of extracting
atomistic scale information can be devised, such as the
FM approach to define the force field of a CG model
and NEMD to obtain the material properties for a field
theory formulation at the mesoscopic scale. After a
reduced model is developed, simulations can then be
performed to explore the system at larger length-scales
and longer time-scales. However, due to the fewer
number of parameters in a reduced representation, the
detailed behaviour of a complicated molecular system
cannot be fully captured at CG or mesoscopic scales
(e.g. the example of strain-dependent material property
of a GUV mentioned earlier). Therefore, the capability
of coupling CG and/or mesoscopic scales to the under-
lying atomistic scale directly is highly desirable for
modelling certain biological processes, especially when
large-scale structural motions are involved.

Such direct coupling between atomistic and meso-
scopic scales can be achieved by embedding an
atomistically detailed ‘window’ or ‘patch’ in the meso-
scopic model. This multiscale methodology has recently

Figure 5. Composition dynamics for a GUV using SPAM.
The externally imposed dint is shown in the upper panel.
The color coding is explained in the text.
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been developed and is denoted as Multiscale Coupling
(MSC) [19, 33]. With MSC, a detailed atomistic-level
model is ‘embedded’ into a field theory-based meso-
scopic model of the same system [19, 33, 35, 36, 45,
46, 48]. The approach allows a specific region of interest
to retain a full degree of atomistic-level resolution, while
the details at very long spatial dimensions are smoothed
into a continuum representation. However, the coupling
has to be implemented carefully; when done properly
[33], the coupling can be shown to be formally exact.
Earlier attempts of coupling different scales involve
adding ‘buffer regions’ that try to alleviate the disconti-
nuities caused by mixing models at different scales
[59–61]; as a result, important interactions such as long-
range electrostatics for biological systems are difficult
to incorporate by this kind of coupling.
The above difficulty can be avoided by MSC. One

of the novel aspects of MSC is that the atomistically
detailed system is never explicitly embedded in the
mesoscopic model. Rather, it remains bound within the
periodic boundaries in the atomistic MD simulation.
This approach alleviates difficulties associated with
long-range electrostatics, as well as lipid diffusion.
The explicit mixing of different scales is avoided because
the coupling to mesoscopic fields can be translated
into spatially distributed fields in the equations of
motion at the atomistic scale. Propagating the effective
fields back and forth thus achieves the bridging between
the two different scales.
The MSC approach can allow membrane-bound

proteins, for example, to sample long wavelength
mesoscopic stress modes originating from both
long wavelength membrane undulations as well as
membrane-solvent couplings. For example, in the case
of a membrane-bound influenza A virus M2 proton
channel in the open state [62] embedded in a dimyr-
istoylphosphatidylcholine (DMPC) bilayer, small, but
distinct, variations in the structure of the two His37

residues can be observed as a result of the mesoscopic-
level perturbations [20]. Figure 6 shows the M2 proton
channel embedded in the bilayer; the location of the
His37 residues is shown in figure 6(b). Under MSC, the
protein is subjected to very slowly varying plane stress
fields as generated from the surrounding EM2/BLOBs
mesoscopic environment. These stress fields are then
propagated down to an ensemble of MD simulations
that follow the slowly varying mesoscopic plane stress
field. The result, over the course of 4 ns, is that the local
structure of the M2 protein is slightly altered and the
density near the His37 residue is slightly reduced due to
the effects of mesoscopic stresses. In figure 6(c), it can be
seen that the orientation of the His37 residues is altered;
the His37 residue next to the protonated one is pushed
into the channel wall slightly. This effect was observed

in all members of the atomistic-level ensemble. On the

other hand, without coupling to the mesoscopic EM2

membrane this effect was not observed, as seen in the

result of an isolated constant pressure MD simulation

of the M2 channel, figure 6(d), where all four residues

are directed towards the channel pore.
The above result indicates that certain variations in

the protein structure can be traced back to the external

mesoscopic stress fields. This observation suggests

that membrane-bound proteins are not only affected

by phenomena occurring at close range (i.e. lipid–

protein interactions) but also by phenomena occurring

at very long range (i.e. long wavelength membrane

undulations).

5. Concluding remarks

The interplay of phenomena at multiple length- and

time-scales makes a systematic and detailed study of

complicated biological systems extremely difficult. In

this article, three categories of multiscale computational

methodologies that aim to overcome this multiscale

challenge are introduced. It is shown that these methods

can be developed rigorously based on the principles of

equilibrium and non-equilibrium statistical mechanics.

With a multiscale method such as force-matching (FM),

atomistic scale information can be systematically pro-

pagated to the CG scale so that the emergent mesoscopic

behaviour can be captured. Alternatively, material

properties of bioassemblies can also be computed

directly at the atomistic scale based on the NEMD

formulation and then used in a field theory representa-

tion of the system at the mesoscopic scale. The multi-

scale coupling (MSC) between atomistic and mesoscopic

scales through effective fields, rather than having

multiple different models present simultaneously,

avoids the difficulties caused by boundary condition

discontinuities. In this way, the molecular properties

responsible for certain functionalities and activities of

interest can be elucidated. Future research directions

in overcoming the multiscale challenge include investi-

gating the transferability of CG force fields, analysing

the effects of different assumptions such as equation (6)

and (7) on the quality of a CG model, examining the

time-scales corresponding to CG simulations, establish-

ing a connection between the field theory representation

and CG models, and developing general methods for

exchanging information at different scales in a simula-

tion designed to overcome the multiple time-scale issue.

With such ongoing advancement of computational

methodologies and computer power, multiscale model-

ling and simulation is expected to play an increasingly
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more important role in the fields of molecular biology,
biophysics, and systems biology.
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details.
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