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Coarse-grained normal mode analysis in structural biology

Ivet Bahar and AJ Rader

The realization that experimentally observed functional motions
of proteins can be predicted by coarse-grained normal mode
analysis has renewed interest in applications to structural
biology. Notable applications include the prediction of
biologically relevant motions of proteins and supramolecular
structures driven by their structure-encoded collective
dynamics; the refinement of low-resolution structures,
including those determined by cryo-electron microscopy; and
the identification of conserved dynamic patterns and
mechanically key regions within protein families. Additionally,
hybrid methods that couple atomic simulations with
deformations derived from coarse-grained normal mode
analysis are able to sample collective motions beyond the
range of conventional molecular dynamics simulations. Such
applications have provided great insight into the underlying
principles linking protein structures to their dynamics and their
dynamics to their functions.
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Introduction

Recent advances in sequencing and structural genomics
indicate that the canonical sequence-to-structure-to-
function paradigm is insufficient for understanding and
controlling the mechanisms of biomolecular interactions
and functions. Because molecular structures are dynamic
rather than static, information regarding their dynamics is
required to establish the link between structure and
function. Normal mode analysis (NMA) has re-emerged
in recent years as a powerful method for elucidating the
structure-encoded dynamics of biomolecules. NMA has
been applied to proteins since the early 1980s [1,2].
However, its usefulness in structural biology has been
exploited only recently, after the observation that the
collective motions predicted by NMA for folded struc-

tures are highly robust and bear functional significance
[3,4,5°°]. Although the actual motions of macromolecules
in solution are very complex, involving transitions among
innumerable conformations, the success of NMA hinges
upon the fact that motions near native state conditions are
much simpler and more robust. Structural changes are
dominated by the inter-residue contact topology of the
folded state, implying that the most probable deforma-
tions are those requiring the smallest energy ascent in the
multidimensional energy landscape.

It is plausible that the motions NMA predicts are func-
tional if one considers that each protein functions only if it
is folded into its equilibrium/native structure and that
each equilibrium structure encodes a unique equilibrium
dynamics. Furthermore, NMA yields a unique analytical
solution of the modes of motion accessible at equilibrium
(near a global energy minimum). Thus, the equilibrium
dynamics predicted by NMA, and the structure-encoded
collective motions in general, ought to be functional,
based on the premise that each protein has evolved to
optimally achieve its biological function.

This review centers on the use of coarse-grained NMA
methods to refine experimental data and predict biolo-
gical functional features from macromolecular structures.
The merits of several related methods are discussed, as
well as recent successes in identifying the intrinsic
motions of proteins and future prospects. Special atten-
tion is given to applications in which these models are
used to predict motions, dynamics, and critical residues
for function or folding,.

EN models and coarse-grained NMA

Building upon the ability of NMA to predict the most
probable cooperative motions of biomolecular structures,
much of the increased utilization of NMA in recent years
has resulted from the introduction of computationally
simpler elastic network (EN) models. These EN models
replace detailed atomic potentials with uniform harmonic
potentials between interacting atom or residue pairs [6—
8]. These and subsequent studies have demonstrated that
the large-scale collective motions predicted by NMA are
insensitive to both the model and the details of the force-
fields used, provided that the topology of inter-residue
contacts in the native structure is accurately modeled [6—
11]. Given the computational efficiency of coarse-grained
NMA, a convenient methodology has been to map the
protein structure onto its EN model, perform a coarse-
grained NMA using an EN model of suitable resolution to
generate ‘alternative’ structures sampled during equili-
brium fluctuations, and use the NMA-generated ‘alter-
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native’ forms to characterize the natural dynamics or
reconstruct structures at their atomic-level representa-
tion. This three-step procedure and associated applica-
tions are summarized in Figure 1. Below, we briefly
describe the tasks indicated in the figure and discuss
the various applications to structural biology.

Mapping the structure onto reduced models that
maintain contact topology

The most common model adopted in coarse-grained
NMA involves a single site per residue representation,
in which the sites are identified by the Ca atoms and
connected by uniform springs. The dynamics of such an
interconnected bead-and-spring model can be described
by the Gaussian network model (GNM) or an EN model
using potentials of the form:
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for the GNM and the EN model, respectively. Here, y is
the uniform spring constant, R?j and R;; are the original
and instantaneous distance vectors between residues 7
and 7, R?j and R;; are the corresponding magnitudes; the
summation is performed over the pairs of residues/nodes
filtered through the function f(R?j), which selects the
interacting pairs. f(R?j) is either the Heaviside function
based on an interaction cut-off distance of R, [f(R?i) =—1
ifR?j < R. and zero otherwise] [10,11] or an exponentially
decaying function of distance [9].

Lower resolution models have been adopted in order to
examine larger biomolecular assemblies, whereby groups
of residues are clustered into unified sites [12,13] or rigid
blocks (such as the rotations and translations of blocks
[RTB] and block normal mode [BNM] methods) [14,15].
Related methods effectively quantize the shape of the
structure without directly identifying specific residues or
groups of residues [16,17]. A reduction in the number of
nodes by one order of magnitude increases the computa-
tion speed by three orders of magnitude, as NMA com-
puting time scales with N°. Notably, the global motions
computed by such coarse-grained NMA maintain their
fundamental characteristics and can be related to func-
tional mechanisms [13].

Performing NMA with EN models: functional
deformations and critical sites

NMA depends upon the eigenvalue decomposition of the
Hessian matrix — a 3V x 3N matrix composed of the
second derivatives of the potential (V) with respect to
residue fluctuations. Thus, for an EN model potential
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(Equation 2), one obtains 3N-6 normal mode vectors
describing anisotropic deformations. In the case of the
GNM, the Hessian is replaced by the N x N Kirchhoff
matrix (I'), which describes the inter-residue contact
topology, such that N-1 isotropic modes are obtained.
The B-factors computed by the GNM yield good agree-
ment with X-ray crystallographic data [18] and NMR
order parameters [19]. However, the mechanisms of
deformations cannot be characterized unless a 3N-dimen-
sional Hessian is used in NMA.

An exciting contribution of NMA to structural biology is
its ability to provide insight into large-scale and long-time
conformational motions of proteins, which tend to be
inaccessible to standard molecular dynamics (MD) tech-
niques. Recent applications to very large supramolecular
assemblies include the ribosome [20,21] and viral capsids
[22,23]. In general, a few of the low-frequency modes ()
predicted by NMA exhibit a large degree of overlap:
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with the vector describing the displacement between two
known conformations (Ar) [11]. Overlap values exceeding
80% suggest that the structures (open and closed) have an
intrinsic tendency to reconfigure along a small set of
low-frequency modes, even if the fully evolved confor-
mational change might involve passage over a conforma-
tional energy barrier. Recently, it has been shown that
only minimal information about the target structure is
required to drive one structure into the other through a
linear combination of low-frequency normal modes [24].

The usefulness of NMA becomes particularly significant
when combined with experimental data. Notable appli-
cations that provide insights into functional mechanisms
include the study of muscle myosin ATPase regulation
[25] and flexibility [26,27°], the modulation of protein
flexibility during the RNA polymerase cycle [28] and the
elucidation of the ribosomal machinery [20,21].

Although these coarse-grained Ca-based NMA methods
lack any sequence specificity, there is increasing evidence
of their ability to identify functional and structural roles of
individual residues. Many studies have identified resi-
dues that impart inherent stability and are critical for
folding [29-31], as well as residues that form binding ‘hot
spots’ [32], catalytic residues [33°] and deformable resi-
dues [34].

Applications to structural biology: use in predicting
structure and dynamics

Flexible docking

A major application of NMA is the identification of
potential conformational changes (e.g. of enzymes upon
ligand binding) [11,35]. In particular, it has been shown
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Overview of various methodologies and applications to the GroEL-GroES complex of EN models. The EN model (b) requires an initial input
structure, typically an atomic-resolution structure such as in (a), colored according to secondary structure elements. As noted in the text,

a lower-resolution structure, such as a cryo-EM map (c), can also be used as input for constructing an EN model. In order to process
supramolecular assemblies, further coarse graining (d) is adopted. A low-resolution EN model in which only every 20" residue is used to
define the nodes is shown. Once the EN model is constructed, various motions are calculable by NMA, ranging from the level of the entire
molecule to domains and individual residues. (e) The global motions computed for the GroEL-GroES complex (PDB code 1gru) [68], revealing a
counter-rotation of the GroES-bound (trans) ring with respect to the lower (cis) ring (as shown by the magenta arrows). The structure has been
colored by increasing mobility from blue to red, showing that the mobility increases with increasing distance from the interface between the
cis-trans rings and from the cylindrical axis of symmetry. (f) The motions of the individual subunits, each composed of three domains (apical,
red; intermediate, green; equatorial, blue), obtained from analysis of the EN model. The top diagram shows the ATP-bound form of a subunit

in the trans ring and the lowest diagram is its unliganded counterpart in the cis ring. Applying the deformations from the first (slowest) mode
calculated by NMA to the trans ring monomer produces the middle structure, demonstrating the intrinsic (structure-encoded) ability of the
subunit to reconfigure into the closed form assumed in the cis ring. This is consistent with successive interchange of the subunit conformations
between the two forms upon binding of the cap to either ring and cap dissociation during the chaperonin cycle. From these calculations, (g)
databases of global motions have been constructed, and (h) several important additional applications of these motions and deformations have

been indicated.

that over half of 3800 known protein motions (inferred
from different conformations of the same protein) can be
approximated by perturbing the original structures along
the direction of their two lowest-frequency normal modes

[36]. Such results suggest that protein structures may
have evolved to accommodate or facilitate biologically
functional conformational changes. Among the alterna-
tive mechanisms of motion accessible near the folded
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state, those along the smoothest ascent directions are the
most readily explored. The biological functions will then
be more readily achieved, provided that the associated
motions coincide with those smoothest ascent directions
(i.e. those along the lowest-energy modes). The fact that
the observed changes coincide with those predicted by
the slowest NMA modes should not be a coincidence, but
a design principle favored by nature. Building on the
notion that NMA can be used to identify potential
motions induced by binding, a computationally tractable
way to generate a set of docking targets has been pro-
posed [35].

Cryo-EM structure modeling

Recently, there have been several applications of NMA to
low-resolution cryo-electron microscopy (cryo-EM) struc-
ture modeling. Such experimental data are naturally low
resolution, being reconstructed by averaging over multi-
ple images of many molecules from several different
angles. Additionally, the imaged molecules often undergo
structural changes together with vibrations, making it
very difficult to extract high-resolution structural infor-
mation. Several groups [16,17,37°] have constructed EN
models of pseudo-atomic representations for a given cryo-
EM map and calculated the resulting distortions due to
normal modes as an aid in the refinement of the raw cryo-
EM data to produce higher resolution structural informa-
tion. Alternatively, a procedure for the flexible docking of
atomic or residue-level structures into cryo-EM maps has
been suggested, using the NMA mode shapes calculated
for either the pseudo-atomic EN models or homology-
based structures [37°,38°,39,40°°].

Domain identification

Because elastic networks quickly identify coupled
motions, it is possible to partition a protein into various
domains [9]. Recently, this idea of decomposing proteins
into domains based on their structural topology has been
automated [41], and applied to identifying domains that
have been recombined or swapped during evolution [42].

Steering MD simulations and exploring non-equilibrium
dynamics

As discussed above, the low-frequency modes from NMA
are able to capture the co//ective dynamics of proteins. This
fact has recently been applied to steer MD simulations
along these dominant modes of motion using hybrid
methods that combine MD and harmonic modes
[43°°,44,45]. Specifically, a hybrid MD/NMA simulation
protocol has been implemented, whereby motions along
the direction of the slowest few modes are coupled to a
temperature bath and thus amplified to study the unfold-
ing and large-scale domain motions of peptides and
proteins [43°°,44]. The inverse of this approach, namely
that the normal modes of a protein can be extracted from
an applied driving force in an MD simulation [46], has
also recently been shown.
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Drawing on similar insight, it has been suggested that one
can minimize steric clashes and interpolate between two
conformations of a protein using the modes from an EN
model [47] to characterize this transition. Because the
harmonic approximation of NMA remains valid only near
the equilibrium structure, an alternative method for escap-
ing the local minima surrounding the native state involves
the iterative calculation of successive EN models deformed
along one or several low-frequency modes [48]. This
method allows ‘cracking’ or partial unfolding of the under-
lying EN structure, suggesting that such unfolding or ‘pro-
teinquakes’ may be coupled to collective motions [49,50°].

High-throughput examination of families of proteins

Fold families, such as globins [51], and protein super-
families [52°°] in general have been compared using
NMA-based methods to identify common and distinctive
structural and dynamic features. For the test case of
proteases, salient dynamic features derived from GNM
calculations, combined with data-mining methods in an
unsupervised learning technique, have been shown to
identify the highly conserved catalytic triad [53]. More
recently, the minima in the slowest modes (global hinge
centers) have been shown to be co-localized near catalytic
residues in a representative set of enzymes [33°]. These
results indicate that a great deal of information about
functional residues can be extracted from the comparative
coarse-grained NMA of protein family members.

How are NMA predictions verified by experiments?
Inherent to many of these computational predictions is
assignment of correlated or collective motions. Several
experimental techniques, including hydrogen-deuterium
(H/D) exchange, FRET probes and labeled NMR, have
the capacity to verify such predictions by identifying pairs
of residues that experience coupled motions. Key resi-
dues predicted to act as functional hinges or ligand-
binding sites [33°], or critical to folding [29,30] are tested
by site-directed mutagenesis (e.g. correlated mutations),
H/D exchange data and other biochemical (e.g. cross-
linking) experiments. The free energy changes associated
with H/D exchange of individual amino acids measured
near native state conditions for a series of proteins have
been correlated, for example, with the entropic costs
predicted by the GNM [54]; the experimentally observed
structural changes of enzymes between their open and
closed forms have been shown, in several applications, to
correlate with the low-frequency motions predicted by
coarse-grained NMA [11,19,33°,55]. As mentioned above,
NMA results are particularly useful in providing insights
into molecular mechanisms of biological function when
interpreted in conjunction with experimental data
[21,25,26,27°,28-32,33°].

Databases and servers of molecular motion
The logical extension of family analysis is the compilation
and maintenance of web-accessible databases housing
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NMA-based calculations for all available protein struc-
tures. Several such databases have been constructed,
including /(GNM [56], ProMode [57], EINémo [58],
WEBnm [59] and MolMovDB [60], which allow the user
to browse precalculated data and/or submit structures for
NMA.

Conclusions and perspectives

The past five years have seen a renewed interest in NMA-
inspired methods because they provide a biologically
relevant and unique analytical solution of the equilibrium
dynamics of biomolecules. The successes of NMA indi-
cate that three-dimensional structures contain the requi-
site information to determine functional motions. The
most collective, or global, modes of motion predicted by
NMA are insensitive to the details of models and energy
parameters, and instead depend on the topology of
inter-residue contacts at equilibrium; this justifies the
widespread use of the more efficient coarse-grained
EN models described here. Such approaches are now
being used, in conjunction with experimental studies, to
unravel the supramolecular dynamics and long timescale
motions of large structures that are otherwise inaccessible
via conventional simulations.

These studies lead to emerging paradigms for a dual role
for key structural elements in both chemical and mechan-
ical activities of enzymes [33°,61], or in both folding and
signaling properties of membrane proteins [30,62]. More
recently, applications to membrane proteins have pro-
vided insights into their gating mechanisms [63,64]. The
major future directions of this type of computational
research and also the anticipated impact on structural
biology lie in the elucidation of the functional dynamics
of quaternary structures or supramolecular assemblies, as
already suggested by the applications to the ribosome,
viral capsids and motor proteins [20-23,25,26,27°,28].
Also, the development of hierarchical coarse-graining
algorithms that reduce the complexity of the systems
while maintaining their functional features will become
increasingly important [65].

The utility of coarse-grained NMA partially stems from
the use of EN models for analyzing structure-encoded
dynamics. An important area of future research is deci-
phering the networks of communication in biomolecular
systems and, in particular, understanding the allosteric
mechanisms of signal transduction [66°°]. EN-based
models, combined with NMA and machine learning
algorithms, appear to be promising tools for quantifying
allosteric effects [65,67].
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