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The realization that experimentally observed functional motions

of proteins can be predicted by coarse-grained normal mode

analysis has renewed interest in applications to structural

biology. Notable applications include the prediction of

biologically relevant motions of proteins and supramolecular

structures driven by their structure-encoded collective

dynamics; the refinement of low-resolution structures,

including those determined by cryo-electron microscopy; and

the identification of conserved dynamic patterns and

mechanically key regions within protein families. Additionally,

hybrid methods that couple atomic simulations with

deformations derived from coarse-grained normal mode

analysis are able to sample collective motions beyond the

range of conventional molecular dynamics simulations. Such

applications have provided great insight into the underlying

principles linking protein structures to their dynamics and their

dynamics to their functions.
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Introduction
Recent advances in sequencing and structural genomics

indicate that the canonical sequence-to-structure-to-

function paradigm is insufficient for understanding and

controlling the mechanisms of biomolecular interactions

and functions. Because molecular structures are dynamic

rather than static, information regarding their dynamics is

required to establish the link between structure and

function. Normal mode analysis (NMA) has re-emerged

in recent years as a powerful method for elucidating the

structure-encoded dynamics of biomolecules. NMA has

been applied to proteins since the early 1980s [1,2].

However, its usefulness in structural biology has been

exploited only recently, after the observation that the

collective motions predicted by NMA for folded struc-
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tures are highly robust and bear functional significance

[3,4,5��]. Although the actual motions of macromolecules

in solution are very complex, involving transitions among

innumerable conformations, the success of NMA hinges

upon the fact that motions near native state conditions are

much simpler and more robust. Structural changes are

dominated by the inter-residue contact topology of the

folded state, implying that the most probable deforma-

tions are those requiring the smallest energy ascent in the

multidimensional energy landscape.

It is plausible that the motions NMA predicts are func-

tional if one considers that each protein functions only if it

is folded into its equilibrium/native structure and that

each equilibrium structure encodes a unique equilibrium

dynamics. Furthermore, NMA yields a unique analytical

solution of the modes of motion accessible at equilibrium

(near a global energy minimum). Thus, the equilibrium

dynamics predicted by NMA, and the structure-encoded

collective motions in general, ought to be functional,

based on the premise that each protein has evolved to

optimally achieve its biological function.

This review centers on the use of coarse-grained NMA

methods to refine experimental data and predict biolo-

gical functional features from macromolecular structures.

The merits of several related methods are discussed, as

well as recent successes in identifying the intrinsic

motions of proteins and future prospects. Special atten-

tion is given to applications in which these models are

used to predict motions, dynamics, and critical residues

for function or folding.

EN models and coarse-grained NMA
Building upon the ability of NMA to predict the most

probable cooperative motions of biomolecular structures,

much of the increased utilization of NMA in recent years

has resulted from the introduction of computationally

simpler elastic network (EN) models. These EN models

replace detailed atomic potentials with uniform harmonic

potentials between interacting atom or residue pairs [6–

8]. These and subsequent studies have demonstrated that

the large-scale collective motions predicted by NMA are

insensitive to both the model and the details of the force-

fields used, provided that the topology of inter-residue

contacts in the native structure is accurately modeled [6–

11]. Given the computational efficiency of coarse-grained

NMA, a convenient methodology has been to map the

protein structure onto its EN model, perform a coarse-

grainedNMA using an ENmodel of suitable resolution to

generate ‘alternative’ structures sampled during equili-

brium fluctuations, and use the NMA-generated ‘alter-
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native’ forms to characterize the natural dynamics or

reconstruct structures at their atomic-level representa-

tion. This three-step procedure and associated applica-

tions are summarized in Figure 1. Below, we briefly

describe the tasks indicated in the figure and discuss

the various applications to structural biology.

Mapping the structure onto reduced models that

maintain contact topology

The most common model adopted in coarse-grained

NMA involves a single site per residue representation,

in which the sites are identified by the Ca atoms and

connected by uniform springs. The dynamics of such an

interconnected bead-and-spring model can be described

by the Gaussian network model (GNM) or an EN model

using potentials of the form:

V ¼ g
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for the GNM and the EN model, respectively. Here, g is

the uniform spring constant, R0
i j and Rij are the original

and instantaneous distance vectors between residues i
and j, R0

i j and Rij are the corresponding magnitudes; the

summation is performed over the pairs of residues/nodes

filtered through the function f(R0
i j), which selects the

interacting pairs. f(R0
i j) is either the Heaviside function

based on an interaction cut-off distance of Rc [ f(R
0
i j) = �1

if R0
i j � Rc and zero otherwise] [10,11] or an exponentially

decaying function of distance [9].

Lower resolution models have been adopted in order to

examine larger biomolecular assemblies, whereby groups

of residues are clustered into unified sites [12,13] or rigid

blocks (such as the rotations and translations of blocks

[RTB] and block normal mode [BNM] methods) [14,15].

Related methods effectively quantize the shape of the

structure without directly identifying specific residues or

groups of residues [16,17]. A reduction in the number of

nodes by one order of magnitude increases the computa-

tion speed by three orders of magnitude, as NMA com-

puting time scales with N3. Notably, the global motions

computed by such coarse-grained NMA maintain their

fundamental characteristics and can be related to func-

tional mechanisms [13].

Performing NMA with EN models: functional

deformations and critical sites

NMA depends upon the eigenvalue decomposition of the

Hessian matrix — a 3N � 3N matrix composed of the

second derivatives of the potential (V ) with respect to

residue fluctuations. Thus, for an EN model potential
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(Equation 2), one obtains 3N–6 normal mode vectors

describing anisotropic deformations. In the case of the

GNM, the Hessian is replaced by the N � N Kirchhoff

matrix (G), which describes the inter-residue contact

topology, such that N–1 isotropic modes are obtained.

The B-factors computed by the GNM yield good agree-

ment with X-ray crystallographic data [18] and NMR

order parameters [19]. However, the mechanisms of

deformations cannot be characterized unless a 3N-dimen-

sional Hessian is used in NMA.

An exciting contribution of NMA to structural biology is

its ability to provide insight into large-scale and long-time

conformational motions of proteins, which tend to be

inaccessible to standard molecular dynamics (MD) tech-

niques. Recent applications to very large supramolecular

assemblies include the ribosome [20,21] and viral capsids

[22,23]. In general, a few of the low-frequency modes (uj)
predicted by NMA exhibit a large degree of overlap:

I j ¼
jU j � DrjP3N

i u2i j

��� ���1=2 P3N
i Dr2i

��� ���1=2 (3)

with the vector describing the displacement between two

known conformations (Dr) [11]. Overlap values exceeding

80% suggest that the structures (open and closed) have an

intrinsic tendency to reconfigure along a small set of

low-frequency modes, even if the fully evolved confor-

mational change might involve passage over a conforma-

tional energy barrier. Recently, it has been shown that

only minimal information about the target structure is

required to drive one structure into the other through a

linear combination of low-frequency normal modes [24].

The usefulness of NMA becomes particularly significant

when combined with experimental data. Notable appli-

cations that provide insights into functional mechanisms

include the study of muscle myosin ATPase regulation

[25] and flexibility [26,27�], the modulation of protein

flexibility during the RNA polymerase cycle [28] and the

elucidation of the ribosomal machinery [20,21].

Although these coarse-grained Ca-based NMA methods

lack any sequence specificity, there is increasing evidence

of their ability to identify functional and structural roles of

individual residues. Many studies have identified resi-

dues that impart inherent stability and are critical for

folding [29–31], as well as residues that form binding ‘hot

spots’ [32], catalytic residues [33�] and deformable resi-

dues [34].

Applications to structural biology: use in predicting

structure and dynamics

Flexible docking

A major application of NMA is the identification of

potential conformational changes (e.g. of enzymes upon

ligand binding) [11,35]. In particular, it has been shown
Current Opinion in Structural Biology 2005, 15:586–592
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Figure 1

Overview of various methodologies and applications to the GroEL–GroES complex of EN models. The EN model (b) requires an initial input

structure, typically an atomic-resolution structure such as in (a), colored according to secondary structure elements. As noted in the text,

a lower-resolution structure, such as a cryo-EM map (c), can also be used as input for constructing an EN model. In order to process

supramolecular assemblies, further coarse graining (d) is adopted. A low-resolution EN model in which only every 20th residue is used to

define the nodes is shown. Once the EN model is constructed, various motions are calculable by NMA, ranging from the level of the entire

molecule to domains and individual residues. (e) The global motions computed for the GroEL–GroES complex (PDB code 1gru) [68], revealing a

counter-rotation of the GroES-bound (trans) ring with respect to the lower (cis) ring (as shown by the magenta arrows). The structure has been

colored by increasing mobility from blue to red, showing that the mobility increases with increasing distance from the interface between the

cis–trans rings and from the cylindrical axis of symmetry. (f) The motions of the individual subunits, each composed of three domains (apical,

red; intermediate, green; equatorial, blue), obtained from analysis of the EN model. The top diagram shows the ATP-bound form of a subunit

in the trans ring and the lowest diagram is its unliganded counterpart in the cis ring. Applying the deformations from the first (slowest) mode

calculated by NMA to the trans ring monomer produces the middle structure, demonstrating the intrinsic (structure-encoded) ability of the

subunit to reconfigure into the closed form assumed in the cis ring. This is consistent with successive interchange of the subunit conformations

between the two forms upon binding of the cap to either ring and cap dissociation during the chaperonin cycle. From these calculations, (g)

databases of global motions have been constructed, and (h) several important additional applications of these motions and deformations have

been indicated.
that over half of 3800 known protein motions (inferred

from different conformations of the same protein) can be

approximated by perturbing the original structures along

the direction of their two lowest-frequency normal modes
Current Opinion in Structural Biology 2005, 15:586–592
[36]. Such results suggest that protein structures may

have evolved to accommodate or facilitate biologically

functional conformational changes. Among the alterna-

tive mechanisms of motion accessible near the folded
www.sciencedirect.com
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state, those along the smoothest ascent directions are the

most readily explored. The biological functions will then

be more readily achieved, provided that the associated

motions coincide with those smoothest ascent directions

(i.e. those along the lowest-energy modes). The fact that

the observed changes coincide with those predicted by

the slowest NMAmodes should not be a coincidence, but

a design principle favored by nature. Building on the

notion that NMA can be used to identify potential

motions induced by binding, a computationally tractable

way to generate a set of docking targets has been pro-

posed [35].

Cryo-EM structure modeling

Recently, there have been several applications of NMA to

low-resolution cryo-electron microscopy (cryo-EM) struc-

ture modeling. Such experimental data are naturally low

resolution, being reconstructed by averaging over multi-

ple images of many molecules from several different

angles. Additionally, the imaged molecules often undergo

structural changes together with vibrations, making it

very difficult to extract high-resolution structural infor-

mation. Several groups [16,17,37�] have constructed EN

models of pseudo-atomic representations for a given cryo-

EM map and calculated the resulting distortions due to

normal modes as an aid in the refinement of the raw cryo-

EM data to produce higher resolution structural informa-

tion. Alternatively, a procedure for the flexible docking of

atomic or residue-level structures into cryo-EM maps has

been suggested, using the NMA mode shapes calculated

for either the pseudo-atomic EN models or homology-

based structures [37�,38�,39,40��].

Domain identification

Because elastic networks quickly identify coupled

motions, it is possible to partition a protein into various

domains [9]. Recently, this idea of decomposing proteins

into domains based on their structural topology has been

automated [41], and applied to identifying domains that

have been recombined or swapped during evolution [42].

Steering MD simulations and exploring non-equilibrium

dynamics

As discussed above, the low-frequency modes from NMA

are able to capture the collective dynamics of proteins. This

fact has recently been applied to steer MD simulations

along these dominant modes of motion using hybrid

methods that combine MD and harmonic modes

[43��,44,45]. Specifically, a hybrid MD/NMA simulation

protocol has been implemented, whereby motions along

the direction of the slowest few modes are coupled to a

temperature bath and thus amplified to study the unfold-

ing and large-scale domain motions of peptides and

proteins [43��,44]. The inverse of this approach, namely

that the normal modes of a protein can be extracted from

an applied driving force in an MD simulation [46], has

also recently been shown.
www.sciencedirect.com
Drawing on similar insight, it has been suggested that one

can minimize steric clashes and interpolate between two

conformations of a protein using the modes from an EN

model [47] to characterize this transition. Because the

harmonic approximation of NMA remains valid only near

the equilibrium structure, an alternativemethod for escap-

ing the local minima surrounding the native state involves

the iterativecalculationof successiveENmodelsdeformed

along one or several low-frequency modes [48]. This

method allows ‘cracking’ or partial unfolding of the under-

lying EN structure, suggesting that such unfolding or ‘pro-

teinquakes’ may be coupled to collectivemotions [49,50�].

High-throughput examination of families of proteins

Fold families, such as globins [51], and protein super-

families [52��] in general have been compared using

NMA-based methods to identify common and distinctive

structural and dynamic features. For the test case of

proteases, salient dynamic features derived from GNM

calculations, combined with data-mining methods in an

unsupervised learning technique, have been shown to

identify the highly conserved catalytic triad [53]. More

recently, the minima in the slowest modes (global hinge

centers) have been shown to be co-localized near catalytic

residues in a representative set of enzymes [33�]. These

results indicate that a great deal of information about

functional residues can be extracted from the comparative

coarse-grained NMA of protein family members.

How are NMA predictions verified by experiments?

Inherent to many of these computational predictions is

assignment of correlated or collective motions. Several

experimental techniques, including hydrogen-deuterium

(H/D) exchange, FRET probes and labeled NMR, have

the capacity to verify such predictions by identifying pairs

of residues that experience coupled motions. Key resi-

dues predicted to act as functional hinges or ligand-

binding sites [33�], or critical to folding [29,30] are tested

by site-directed mutagenesis (e.g. correlated mutations),

H/D exchange data and other biochemical (e.g. cross-

linking) experiments. The free energy changes associated

with H/D exchange of individual amino acids measured

near native state conditions for a series of proteins have

been correlated, for example, with the entropic costs

predicted by the GNM [54]; the experimentally observed

structural changes of enzymes between their open and

closed forms have been shown, in several applications, to

correlate with the low-frequency motions predicted by

coarse-grained NMA [11,19,33�,55]. As mentioned above,

NMA results are particularly useful in providing insights

into molecular mechanisms of biological function when

interpreted in conjunction with experimental data

[21,25,26,27�,28–32,33�].

Databases and servers of molecular motion

The logical extension of family analysis is the compilation

and maintenance of web-accessible databases housing
Current Opinion in Structural Biology 2005, 15:586–592
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NMA-based calculations for all available protein struc-

tures. Several such databases have been constructed,

including iGNM [56], ProMode [57], ElNémo [58],

WEBnm [59] and MolMovDB [60], which allow the user

to browse precalculated data and/or submit structures for

NMA.

Conclusions and perspectives
The past five years have seen a renewed interest in NMA-

inspired methods because they provide a biologically

relevant and unique analytical solution of the equilibrium

dynamics of biomolecules. The successes of NMA indi-

cate that three-dimensional structures contain the requi-

site information to determine functional motions. The

most collective, or global, modes of motion predicted by

NMA are insensitive to the details of models and energy

parameters, and instead depend on the topology of

inter-residue contacts at equilibrium; this justifies the

widespread use of the more efficient coarse-grained

EN models described here. Such approaches are now

being used, in conjunction with experimental studies, to

unravel the supramolecular dynamics and long timescale

motions of large structures that are otherwise inaccessible

via conventional simulations.

These studies lead to emerging paradigms for a dual role

for key structural elements in both chemical and mechan-

ical activities of enzymes [33�,61], or in both folding and

signaling properties of membrane proteins [30,62]. More

recently, applications to membrane proteins have pro-

vided insights into their gating mechanisms [63,64]. The

major future directions of this type of computational

research and also the anticipated impact on structural

biology lie in the elucidation of the functional dynamics

of quaternary structures or supramolecular assemblies, as

already suggested by the applications to the ribosome,

viral capsids and motor proteins [20–23,25,26,27�,28].
Also, the development of hierarchical coarse-graining

algorithms that reduce the complexity of the systems

while maintaining their functional features will become

increasingly important [65].

The utility of coarse-grained NMA partially stems from

the use of EN models for analyzing structure-encoded

dynamics. An important area of future research is deci-

phering the networks of communication in biomolecular

systems and, in particular, understanding the allosteric

mechanisms of signal transduction [66��]. EN-based

models, combined with NMA and machine learning

algorithms, appear to be promising tools for quantifying

allosteric effects [65,67].
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