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Three multiscale computational methodologies for biomolecular systems are described: the
force-matching method for developing coarse-grained models directly from atomistic
simulations; the quasi-particle approach of simulating field theory representations at the
mesoscopic scale; and the multiscale-coupling method for direct information transfer between
mesoscopic and atomistic scales on the fly. The statistical mechanical background for each
of the methods is described in a comprehensive manner in order to highlight their theoretical
foundations. Examples of various applications of these methods to model different biophysical
processes are given. Combining with atomistic-level MD simulations, these three methods
compose a powerful tool for bridging and spanning the multiple spatial and temporal domains
that are present in many biological assemblies. Future directions of the methodology

developments are also discussed.

1. Introduction

The functionalities of complicated biological assemblies
such as cell membranes, chromosomal DNA, and
protein complexes, contain processes that occur at
multiple length- and time-scales. Describing how various
properties at these different scales are coupled is thus
critical in order to understand the molecular mechan-
isms that ultimately sustain the life of a cell. Molecular
modelling and simulation has become an indispensable
tool to study biological systems [lI-16]; however,
integrating theoretical approaches and physical models
at different scales (ranging from atomistic to almost
macroscopic spatial/temporal domains) remains a
fundamental challenge [7-21].

In order to overcome the multiscale challenge men-
tioned above, an intermediate coarse-grained (CG)
scale, in which fewer details than the actual number of
atoms are used to represent the molecules in a system,
can be very useful, if not necessary, in order to bridge
information across different scales [10, 14, 16, 21-29].
Although the morphology and resolution at the CG
scale can be modulated for different systems and
problems, the possibly arbitrary nature of the exact
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choice of CG description, along with the lack of
theoretical underpinning for developing CG models
has made the interpretation and reproducibility of CG
scale simulations difficult.

However, it is possible to formally derive a statistical
mechanics for coarse-graining, and such a derivation for
the multiscale force-matching method is presented here.
The multiscale coarse-graining (MS-CG) method based
on the force-matching (FM) [1, 26] approach system-
atically utilizes the force data obtained from atomistic
molecular dynamics (MD) simulations to develop CG
force-fields. The MS-CG method has been successfully
applied to CG scale simulations of different bio- and
nano-systems. [1-3, 26-29]

As an alternative to the ‘bottom-up’ FM approach to
developing reduced models directly from the atomistic
scale, a more ‘top-down’ field theory based approach
can extend the spatial/temporal domains that are
required to fully model many complex bioassemblies
[17-21]. In a field theory formulation, order parameters
describing the fields that are involved in a process are
first defined, and the response of order parameters
to external excitations such as thermal fluctuations
is then described by a phenomenological mesoscopic
Hamiltonian [30, 31]. The material properties that act
as key parameters in the mesoscopic Hamiltonian
can be directly computed from atomistic scale simula-
tions using non-equilibrium molecular dynamics
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(NEMD) [32], thus allowing the information transfer
across different scales. This field theory approach is
particularly useful for self-assembled structures com-
posed of distinct length-scales such as cell membranes
and chromosomal DNA. Computational methodologies
that can be used to model biological systems based on
field theories with complicated geometries and composi-
tions are also described in this work and used to model
different biophysical properties of lipid bilayers.

Of course, one obvious drawback to an essentially
continuum-level field theory picture is the complete lack
of atomistic details. As such, it is not possible to, for
example, examine the atomistic response of a biolog-
ical assembly (e.g. a membrane-bound protein) to
mesoscopic-level phenomena (e.g. mesoscopic stress
fields). However, we have recently shown that it is
possible to effectively ‘embed’ an atomistic-level system
into a field theory-based model [19, 20, 33].
This scheme is denoted multiscale coupling (MSC) and
has been applied to both pure bilayers [19] as well as
bilayers with membrane-bound proteins [20, 33]. MSC
couples the effects of mesoscopic perturbations such as
plane stress fields into synthetic and spatially distributed
fields at the MD level via the equations of motion at the
atomistic scale. The MSC method will also be described
in this paper. Results for the coupling of a membrane-
bound influenza A virus M2 proton channel at the
atomistic scale to the mesoscopic undulations of
the surrounding lipid bilayer will be given to illustrate
the application of this method.

In the following sections, each of the three methods
mentioned above will be described in a comprehensive
manner with the results of implementation/application
reported. Finally, concluding remarks are drawn.

2. The development of CG models from atomistic
simulations: the multiscale coarse-graining approach

‘Coarse-graining’ (CG) is a procedure for reducing the
number of degrees of freedom that are used to represent
a system. For example, in an all-atom model, the CG
procedure begins by grouping several atoms together
via a mapping expressed as:

N N
R, = Z Coili, With Z ¢yi =1 foreacha. (1)
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In equation (1), ¢,s are the coefficients used for
determining the positions of CG sites from the coordi-
nates of atoms. The summation index i is the atom index
for an N atom system, and « is the index for an M site CG
representation of the same system. After a mapping as in

equation (1) is defined, the configurational Helmoltz free

energy, A(k), of the system can be partitioned according
to the CG site coordinates:
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so that the thermodynamic Helmoltz free energy A4 is
given by:
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In equations (2) and (3), the boldfaced letter R denotes
a 3M-dimensional vector recording the positions of
all CG sites, ¢ denotes the remaining 3(N — M) internal
coordinates in addition to the M R, (position of a CG
site &) that are needed to fully describe an atomistic
configuration ¥ of dimension 3N, U(R, q), or U(¥), is the
atomistic potential energy, V' is the volume, 8= 1/kpT,
and A(R) is the configuration free energy of the
atomistic system as a function of CG site coordinates
and is defined as the exact CG effective potential energy
that a CG force field should ideally reproduce. Although
A(R) is directly related to U(¥) as indicated in
equation (2), the very large number of degrees of
freedom makes the direct determination of A(R)
extremely difficult in practice.

On the other hand, it can be shown that the effective
forces on the CG sites due to derivatives of A(R) can
be related to the ensemble averages of the forces on
the CG sites due to U(F) (see Note at the end of this

paper):
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Equation (4) is the key equality for the MS-CG
approach. The RHS of equation (4) can be directly
computed from an atomistic MD simulation, and a CG
force field can then be obtained by matching the forces
on CG sites. This matching is done by first defining an
residual function, %2, as the following:

"= %ij((fs“(k) —FP) 5)
a=l

where ffG(ﬁ) is the force on a CG site a given R
determined by a CG force field, and Fy(F) = >, fi(F)
is the force on «a due to U(r). By applying the
variational principle, the force field that minimizes %>
is determined.
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Although the exact CG potential can be obtained via
equation (5), the high dimensionalities that are involved
in this problem preclude its practical use. Usually, the
following assumptions are almost always assumed in
a CG force field:

1. The local interaction approximation:
F{f ~ F{J(Ry. Rg) and (6)
2. the radial force approximation:
Ff (Ros Rg) = F o (Ropiap. (7

Equation (6) suggests that the interactions between
two CG particles depend only on the position of these
two particles but not on those of other sites. Even
though local interaction is usually assumed in U(F),
the configuration integrals in equation (2) or (4) can
introduce non-local correlations. Equation (6) is the
local interaction approximation for pair-wise interac-
tions, and the generalization to many-body interactions
is straightforward. Equation (7) ignores the potential
orientational dependence that may be caused by
reducing the number of degrees of freedom, and may
be considered to be the major source of deviation in the
behaviour of a CG model from that of the underlying
atomistic model. With both the local interaction and
central force approximations, the dimensionality in a
CG force field can be greatly reduced to the point where
it can be efficiently implemented in a simulation
methodology.

The FM approach of developing CG models starts
from an atomistic-level MD simulation of the system.
FM then utilizes the forces and coordinates from the
MD trajectory to determine the force field that
minimizes equation (5). Since a sum of squares form is
used in equation (5), applying a variational principle
results in a least squares problem. By representing the
CG force field in a tabulated form, the least square
problem becomes linear (i.e. a linear least square
problem results). Moreover, using tabulated force
coefficients not only avoids the iterations that would
be required for solving a nonlinear least square problem,
it is also not required to assume any specific functional
form for the CG force field. In this way, the emergent
form of site-site interactions at a CG scale can be
captured directly from the atomistic scale. Therefore,
given a set of assumptions such as equations (6) and (7),
using the FM approach combined with a tabulated form
of force coefficients is a general and systematic way to
propagate the information obtained at the atomistic
scale to a CG scale.

As an example, if an atomistic model of liquid water
is coarse-grained into a one site per water model with the
centre of mass of the water being the position of the
CG site, the emergent site—site interactions of such a CG
model in the liquid phase cannot be found a priori;
however, FM can be used to resolve the emergent
behaviour of site-site interactions from an atomistic
MD simulation. For the case where the TIP3P all-atom
water model is used to describe the interactions among
125 water molecules in a cubic box of 15.2A under

periodic boundary conditions with full electrostatics,
the emergent sitesite interactions for an one-site CG
water model (see figure 1) is shown in figure 2. It can be
seen that the pair interactions between CG water is not
a simple functional form and cannot be represented
by a small set of inverse power potentials that are

Figure 1. Atomistic and CG representations of liquid water;
125 water molecules under periodic boundary conditions
are shown. The left panel is the all-atom representation,
and the right panel is a CG representation with one CG site
corresponding to each water molecule.
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Figure 2. Pair wise force between one-sitt CG water
molecules in the unit of kcal/mol/A as a function site-site
distance in the unit of A. The CG pair wise force is determined
by the force-matching approach and an atomistic MD
simulation of liquid water based on the TIP3P model.
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typically used in atomistic force fields. Again, by using
a multiscale method such as FM, the information
at the atomistic scale can be propagated into the CG
scale. More details of the numerical implementations
and applications of FM can be found elsewhere
[1-3, 26-29, 34].

3. The development of computational methodologies
for modeling and simulation at mesoscopic scale

The CG scale models that were discussed in the previous
section are generally reduced representations of a
molecular entity, but the general characteristics such as
shape, length, and size, etc., of a molecule are still
preserved. However, as the degree of a coarse-grained
mapping such as equation (1) becomes larger and the
resulting molecular details become blurred, ‘fields’,
such as density, strain, pressure, and velocity become
the variables that characterize a system. Continuum
mechanics are usually employed in this case to describe
the dynamics associated with field theories at the
mesoscopic scale. For example, the Helfrich free
energy functional [30, 31] describes the undulation
of an elastic membrane by using continuous strain
and bending fields. Except for extremely simplified
scenarios, the formal field theory representation of a
complicated biological system is generally too compli-
cated to allow for analytical solutions. The development
of flexible computational methods that can be used
analyse complicated biological systems at a mesoscopic
scale is thus extremely valuable. Moreover, since the
emergent properties of biological processes at a meso-
scopic scale originate from the underlying atomistic
scale as previously discussed, the ability to bridge
information between atomistic and mesoscopic scales
is also required.

The challenges of mesoscopic scale simulations
of biological systems have led to the development of
a particle-based methodology [8, 18, 35, 36], originating
from the fields of non-equilibrium molecular dynamics
(NEMD) [32], Smooth Particle Applied Mechanics
(SPAM) [37-40] and Smoothed Particle Hydrodyamics
(SPH) [41, 42]. The approach is to take the complex
continuum field theory representations of biological
membranes and other assemblies and formally re-cast
them into new ‘quasi-particle’ representations [35]. The
resulting dynamics of the system is then transformed
into a form similar to that employed in NEMD [32].
This approach can easily incorporate multiple highly
inhomogeneous  components into the scheme
(e.g. transmembrane proteins embedded in the bilayer),
and the non-local hydrodynamics [43, 44] can also be

automatically included via an explicit mesoscopic
solvent.

Developing a robust multiscale mesoscopic mem-
brane/solvent simulation methodology that is ultimately
capable of coupling to atomistic-level models has also
been an ongoing project [18, 19, 33, 36, 45, 46]. The
mesoscopic component of this multiscale simulation
methodology consists of two interacting parts: an elastic
membrane and a viscous solvent. The mesoscopic
membrane model is denoted EM2 [21] and it is a
discretized solution to the Helfrich Hamiltonian for
a membrane [30, 35]. This is expressed as

k, J
FH:fdA5[2H12+/dA%[2s]2 (8)

where dA is an area element, k. is the bending modulus,
H is the mean curvature, / is the membrane thickness,
A is the bulk modulus, and 2¢ is the plane strain.

The term ‘discretized’ refers to the fact that the EM2
membrane consists of free energy ‘quasi-particles’
that interact in such a way that the behaviour of the
governing field theory model is recovered above a
critical discretization length-scale. The EM2 quasi-
particle interactions employ parameterizations that are
based on properties calculated at the atomistic scale
(i.e. the bending modulus, k., bulk modulus, A) [33, 36,
45, 47] as well as structural information (density and
thickness). The discretization of a continuum-level field
theory model into an interacting set of quasi-particles
can remove the restrictions due to the boundary
conditions, and thus forms a general scheme for treating
complex geometries (i.e. vesicles [35, 36] domain
formation (with Cahn-Hilliard or Landau—Ginzburg
dynamics) [48] and explicit hydrodynamic effects [48]).

The remaining component of the mesoscopic model
is an explicit mesoscopic solvent denoted BLOBs, and
again this is composed of a new set of interacting quasi-
particles that are characterized by very strong random/
drag forces whose magnitude/character can also be
found from atomistic-level MD simulations of small
fluid droplets. More details concerning the quasi-
particle mesoscopic simulation methodology can be
found elsewhere [35, 45, 48].

When the elastic mesoscopic EM2 membrane is
brought into contact with the explicit mesoscopic
BLOBs solvent, the critical hydrodynamic dampening
behaviour of a bilayer in a viscous solvent is recov-
ered [35]. In fact, the observed undulation dynamics of
the EM2 membrane in the BLOBs solvent agree with
hydrodynamic theory, and it was also found that the
shear viscosity of the BLOBs solvent plays a key role
in the membrane undulation dynamics.
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The EM2/BLOBs mesoscopic model, by virtue of
its quasi-particle decomposition, can be employed to
examine large length-scale and long time-scale phenom-
ena that would be difficult to resolve by tackling the
underlying continuum-level equation directly, such as
the structures and dynamics of lipid bilayers in confined
geometries (e.g. smectic membranes [31, 49] bilayers
against surfaces [31, 50-52] and close bilayer pairs
[31, 53-55]). For example, in the case of two bilayers
separated by a small distance d, an entropic repulsion
that scales like 1/d* has been predicted theoretically
[31, 54] and has also been observed experimentally by
reflection interference contrast microscopy [56]. An
undulation coupling between the two membranes,
including the narrow channel of solvent separating
them [31, 53], starts to appear as the separation d
decreases.

In figure 3, the free energy scaling for two EM?2
membranes with explicit mesoscopic solvent is shown;
the 1/d* scaling as the membranes are brought closer
is indeed apparent. What is interesting is to examine a
snapshot of the two EM2 membranes. In figure 4,
simulation snapshots at a separation of 3 nm (top image)
and 1.5nm (bottom image) show a distinct lack of
spatial correlation between the two membranes. In other
words, the two membranes do not elect to adopt a
‘lasagna-like’ structure, but rather exist in a state of
dampened undulations. The origin of the entropic
repulsion is in fact the dampened undulation magnitudes
of one membrane due to the other. The free energy
difference, AF, can be compactly expressed as [21, 48]
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Figure 3. Free energy change, AF, as a function of the
separation, d, for two EM2 membranes. The dashed line gives
the 1/d” fit to the data.

where N, is the number of wavevectors sampled and
k¥ is the measured effective bending modulus due
to the dampened undulation magnitudes.

The EM2 approach can be further extended to
examine lipid domain formation by superimposing a
Landau model for phase coexistence on the EM2
membrane and then employing Cahn—Hilliard (CH) or
Landau—Ginzburg (LG) dynamics to resolve the domain
dynamics. In keeping with the free-energy quasi-particle
discretization of the problem, the composition dynamics
component of the methodology are further decomposed
via Smooth Particle Applied Mechanics (SPAM) into
another set of interacting composition quasi-particles. In
this case, the SPAM particles move about the surface of
the EM2 membrane; they contain a host of ‘particle
properties’, for example, the local composition of the
EM2 membrane, ¢ as well as local composition-
dependent material properties. The SPAM approach
removes any reliance on boundary conditions, and
allows the system at the mesoscale to explore complex
geometries and to respond to a variety of deformations/
perturbations that could occur in the real system.

In the case of domain formations arising from ternary
mixtures of lipids in Giant Unilamellar Vesicles (GUV),
a Landau model capable of describing phase separations
can be expressed as [35, 46, 57, 58]

2
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Figure 4. Simulation snapshot of the EM2/BLOBs system
for two different values of the separation. The upper panel has
d=3nm while the lower panel has d=1.5nm.
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where ¢ gives the non-local strength of the gradient of ¢
the composition, V(¢) is a double-well potential,
and A is the coupling strength between the curvature
and composition [35, 46, 57, 58]. In this case, the entire
membrane and composition dynamics can be formu-
lated with SPAM. The resulting expressions appear
complicated, but are easily implemented within a pair-
wise additive algorithm similar to that employed in MD
simulations. In this discretized form, equation (10) takes
on the form of

N

2
Fr{¢,Hlpy = Z (% |V¢/.|2-|-V(</>_/) + A¢_,H?> (11)

J=1

where py is a surface area number density, and the
summation goes over all N SPAM quasiparticles.

In figure 5, the change in domain structure due to
an external deformation on a 20pum GUYV is shown.

Figure 5. Composition dynamics for a GUV using SPAM.
The externally imposed dint is shown in the upper panel.
The color coding is explained in the text.

The two domains are shown in black and green
(where the green domain favors regions of higher
curvature due to its smaller bending modulus, k.); the
GUYV is shown in exactly the same orientation in both
panels, but in figure 5(a) an external ‘dint’ is imposed
(i.e. mirroring a micromanipulation experiment) while
in figure 5(b) the GUV is unperturbed. The dint in
figure 5(a) is shown by the yellow ring of high curvature,
and it is observed that the domain favouring higher
curvature regions (the green domain) encompasses the
external dint. Furthermore, the domain structure far
away from the dint is also altered; it is not just a
localized event.

By superimposing composition dynamics over the
deformation dynamics of a bilayer, another component
in the overall multiscale simulation methodology is
created. When composition-dependent material proper-
ties are allowed to modulate the governing interactions
of the EM2 membrane, a feedback scenario can be
constructed, and complex multicomponent systems can
thus be modelled. When combined with specially
selected atomistic-level ‘windows’ via a multiscale-
coupling (MSC) scheme that will be described in the
next section, the atomistic-level response to a meso-
scopic phenomenon such as the ‘dint’ described above
can be captured and fed back to the atomistic scale,
thus completing the process of bridging these two scales.

4. Coupling between atomistic and mesoscopic scales

In the previous two sections, methods for systematically
developing models at CG and mesoscopic scales were
presented. At both scales, different ways of extracting
atomistic scale information can be devised, such as the
FM approach to define the force field of a CG model
and NEMD to obtain the material properties for a field
theory formulation at the mesoscopic scale. After a
reduced model is developed, simulations can then be
performed to explore the system at larger length-scales
and longer time-scales. However, due to the fewer
number of parameters in a reduced representation, the
detailed behaviour of a complicated molecular system
cannot be fully captured at CG or mesoscopic scales
(e.g. the example of strain-dependent material property
of a GUV mentioned earlier). Therefore, the capability
of coupling CG and/or mesoscopic scales to the under-
lying atomistic scale directly is highly desirable for
modelling certain biological processes, especially when
large-scale structural motions are involved.

Such direct coupling between atomistic and meso-
scopic scales can be achieved by embedding an
atomistically detailed ‘window’ or ‘patch’ in the meso-
scopic model. This multiscale methodology has recently
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been developed and is denoted as Multiscale Coupling
(MSCQC) [19, 33]. With MSC, a detailed atomistic-level
model is ‘embedded’ into a field theory-based meso-
scopic model of the same system [19, 33, 35, 36, 45,
46, 48]. The approach allows a specific region of interest
to retain a full degree of atomistic-level resolution, while
the details at very long spatial dimensions are smoothed
into a continuum representation. However, the coupling
has to be implemented carefully; when done properly
[33], the coupling can be shown to be formally exact.
Earlier attempts of coupling different scales involve
adding ‘buffer regions’ that try to alleviate the disconti-
nuities caused by mixing models at different scales
[59-61]; as a result, important interactions such as long-
range electrostatics for biological systems are difficult
to incorporate by this kind of coupling.

The above difficulty can be avoided by MSC. One
of the novel aspects of MSC is that the atomistically
detailed system is never explicitly embedded in the
mesoscopic model. Rather, it remains bound within the
periodic boundaries in the atomistic MD simulation.
This approach alleviates difficulties associated with
long-range electrostatics, as well as lipid diffusion.
The explicit mixing of different scales is avoided because
the coupling to mesoscopic fields can be translated
into spatially distributed fields in the equations of
motion at the atomistic scale. Propagating the effective
fields back and forth thus achieves the bridging between
the two different scales.

The MSC approach can allow membrane-bound
proteins, for example, to sample long wavelength
mesoscopic  stress modes originating from both
long wavelength membrane undulations as well as
membrane-solvent couplings. For example, in the case
of a membrane-bound influenza A virus M2 proton
channel in the open state [62] embedded in a dimyr-
istoylphosphatidylcholine (DMPC) bilayer, small, but
distinct, variations in the structure of the two His®’
residues can be observed as a result of the mesoscopic-
level perturbations [20]. Figure 6 shows the M2 proton
channel embedded in the bilayer; the location of the
His®’ residues is shown in figure 6(b). Under MSC, the
protein is subjected to very slowly varying plane stress
fields as generated from the surrounding EM2/BLOBs
mesoscopic environment. These stress fields are then
propagated down to an ensemble of MD simulations
that follow the slowly varying mesoscopic plane stress
field. The result, over the course of 4 ns, is that the local
structure of the M2 protein is slightly altered and the
density near the His®’ residue is slightly reduced due to
the effects of mesoscopic stresses. In figure 6(c), it can be
seen that the orientation of the His’ residues is altered:;
the His®” residue next to the protonated one is pushed
into the channel wall slightly. This effect was observed

in all members of the atomistic-level ensemble. On the
other hand, without coupling to the mesoscopic EM2
membrane this effect was not observed, as seen in the
result of an isolated constant pressure MD simulation
of the M2 channel, figure 6(d), where all four residues
are directed towards the channel pore.

The above result indicates that certain variations in
the protein structure can be traced back to the external
mesoscopic stress fields. This observation suggests
that membrane-bound proteins are not only affected
by phenomena occurring at close range (i.e. lipid—
protein interactions) but also by phenomena occurring
at very long range (i.e. long wavelength membrane
undulations).

5. Concluding remarks

The interplay of phenomena at multiple length- and
time-scales makes a systematic and detailed study of
complicated biological systems extremely difficult. In
this article, three categories of multiscale computational
methodologies that aim to overcome this multiscale
challenge are introduced. It is shown that these methods
can be developed rigorously based on the principles of
equilibrium and non-equilibrium statistical mechanics.
With a multiscale method such as force-matching (FM),
atomistic scale information can be systematically pro-
pagated to the CG scale so that the emergent mesoscopic
behaviour can be captured. Alternatively, material
properties of bioassemblies can also be computed
directly at the atomistic scale based on the NEMD
formulation and then used in a field theory representa-
tion of the system at the mesoscopic scale. The multi-
scale coupling (MSC) between atomistic and mesoscopic
scales through effective fields, rather than having
multiple different models present simultaneously,
avoids the difficulties caused by boundary condition
discontinuities. In this way, the molecular properties
responsible for certain functionalities and activities of
interest can be elucidated. Future research directions
in overcoming the multiscale challenge include investi-
gating the transferability of CG force fields, analysing
the effects of different assumptions such as equation (6)
and (7) on the quality of a CG model, examining the
time-scales corresponding to CG simulations, establish-
ing a connection between the field theory representation
and CG models, and developing general methods for
exchanging information at different scales in a simula-
tion designed to overcome the multiple time-scale issue.
With such ongoing advancement of computational
methodologies and computer power, multiscale model-
ling and simulation is expected to play an increasingly
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Figure 6. MSC simulation of an influenza A virus proton channel in a DMPC bilayer. Panel (a) shows the full proton channel
embedded in the bilayer, panel (b) shows the location of the His®’ residues (which form the PMF barrier to proton transport),
panel (c) shows a top down view of the His*’ residues in the open state under MSC, while panel (d) shows the same residues under
an uncoupled constant pressure MD simulation. The ‘P’ designates the protonated residue.

more important role in the fields of molecular biology,
biophysics, and systems biology.
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Note

See W. G. Noid, J.-W. Chu, G. S. Ayton and G. A.
Voth, J. Chem. Phys. B. (2007), in press, for further
details.
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