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Computational efficiency of stochastic kinetic algorithms depend on factors such as the overall
species population, the total number of reactions, and the average number of nodal interactions or
connectivity in a network. These size measures of the network model can have a significant impact
on computational efficiency. In this study, two scalable biological networks are used to compare the
size scaling efficiencies of two popular and conceptually distinct stochastic kinetic simulation
algorithms—the random substrate method of Firth and Bray (FB), and the Gillespie algorithm as
implemented using the Gibson-Bruck method (GGB). The arithmetic computational efficiencies of
these two algorithms, respectively, scale with the square of the total species population and the
logarithm of the total number of active reactions. The two scalable models considered are the size
scalable model (SSM), a four compartment reaction model for a signal transduction network
involving receptors with single phosphorylation binding sites, and the variable connectivity model
(VCM), a single compartment model where receptors possess multiple phosphorylation binding
sites. The SSM has fixed species connectivity while the connectivity between species in VCM
increases with the number of phosphorylation sites. For SSM, we find that, as the total species
population is increased over four orders of magnitude, the GGB algorithm performs significantly
better than FB for all three SSM compartment models considered. In contrast, for VCM, we find that
as the overall species population decreases while the number of phosphorylation sites increases
(implying an increase in network linkage) there exists a crossover point where the computational
demands of the GGB method exceed that of the FB. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2018641]

I. INTRODUCTION

Conventional formulations of reaction kinetic problems
have traditionally been defined using macroscopic quantities
that are based on species concentrations. This viewpoint is
founded on the assumption of a sufficiently large number of
molecules in a finite volume, where concentration as a well-
defined quantity varies continuously over time. In such
cases, the evolution in time of concentrations in a well-
stirred reacting mixture can usually be described by a set of
kinetic rate equations. While the macroscopic formulation
has been successfully employed in a wide variety of impor-
tant problems, the assumptions on which it is based break
down for many dynamical systems in cell biology. Therefore,
it has been advocated that the mesoscopic view,' in which
chemical species appear in small copy numbers, is a more
appropriate formulation for dynamical systems in biology in
that changes in species populations are discrete and occur as
a consequence of stochastic single reaction events.? Spatially
averaged mesoscopic approaches, too, assume that the

YElectronic mail: mpettigr@u.washington.edu
YAuthor to whom correspondence should be addressed. FAX: 509-372-
4720. Electronic mail: haluk.resat@pnl.gov

0021-9606/2005/123(11)/114707/13/$22.50

123, 1147071

chemically reacting mixture is well stirred and a thermody-
namic equilibrium is maintained. It is with such stochastic
kinetic systems that we are concerned in this study.
Dynamic biological systems are typically characterized
by a large set of species types, some of which can exist at
very small copy numbers. Another common occurrence for
receptor signaling systems is the existence of many different
forms of the receptor, such as the different phosphorylation
states of the receptor or the different complexes that recep-
tors form with their ligands or with other receptors or adap-
tor proteins.3 As the number of species types increases, the
number of possible interactions in the system increases pro-
portionally too. This results in a large set of multistate inter-
actions between complex types and makes tracking the dis-
tribution of the species a difficult task. Although it has been
suggested that, for dynamical systems with these character-
istics, the random substrate method of Firth and Bray4 (FB)
could be more efficient than the more conventional direct
Gillespie algorithm,s’6 how the increase in size of the kinetic
models affects the numerical performance of the stochastic
simulation algorithms has yet to be addressed. In this study,
we have devised two scalable signal transduction reaction
networks to compare and assess the computational perfor-

© 2005 American Institute of Physics

Downloaded 23 Feb 2007 to 158.130.148.33. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.2018641
http://dx.doi.org/10.1063/1.2018641
http://dx.doi.org/10.1063/1.2018641

114707-2 M. F. Pettigrew and H. Resat

mance of the FB algorithm with a well-known Gillespie
variant—the Gibson-Bruck method’ (GGB) through numeri-
cal experiments. Since large data sets obtained in high-
throughput systems biology experiments are now making the
construction of larger and larger biological networks fea-
sible, knowing how the kinetic algorithms scale with net-
work size will be important in choosing the right algorithm.

We base both of our scalable models on the epidermal
growth factor receptor (EGFR) system which regulates cell
proliferation and differentiation. After ligand activation, the
EGFR is rapidly internalized by endocytosis.&9 Following
endocytosis, receptor ligand and other receptor-bound com-
plexes are sorted into different cellular compartments with
distinct properties.z‘lo Receptor endocytosis and the resulting
receptor trafficking within cells is a way for the receptors to
be exchanged between cellular compartments that eventually
leads to receptor deactivation and degradation. A similar re-
ceptor trafficking also occurs for the G-protein-coupled re-
ceptor as well as other receptor systems t00.> More details on
the network models for EGFR signaling may be found in the
recent papers.“_15

Il. KINETIC MODELS AND COMPUTATIONAL
METHODS

We have constructed two scalable models for bench-
marking purposes in comparison studies. The first model, the
size scalable model (SSM), is a scalable four compartment
model that is typical for a receptor tyrosine kinase signal
transduction network. In the SSM, the state of the receptor is
described by phosphorylation at a single amino acid site, and
the receptor becomes active in signal transduction upon
phosphorylation. A subcompartmentalization process allows
for the creation of refined SSM models where the size of the
model increases in proportion to the number of created sub-
compartments while maintaining the connectivity between
species almost unchanged. The SSM model is discussed at
length in Sec. II A and in Appendix B. The second model,
the variable connectivity model (VCM), is a scalable single
compartment signal transduction network in which receptors
have multiple phosphorylation sites so that the linkage of the
network model can be altered by changing the number of
phosphorylation sites. The VCM model is discussed in Sec.
II B.

A. Formulation of the SSM
1. Domain and complex characterization

To facilitate an evaluation of how stochastic algorithms
scale with network size, we employ a subcompartmentaliza-
tion process to multiply the number of reactions included in
the kinetic models. The system volume V in all simulations
of the SSM model described in this paper is first divided into
four major domains (i.e., distinct parent compartments),
where particle exchange between the compartments is al-
lowed. To simplify the numerical problem, we lower the di-
mensionality and convert the three-dimensional (3D) prob-
lem into a two-dimensional (2D) lattice problem. Figure 1
shows a representation of the abstract construct that we use
in the reported simulations. We note that although the geom-
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FIG. 1. The four compartment signal transduction model: SSM 1 (64 sub-
compartments). Expansion on the left shows the subcompartments of the
SSM 2 that correspond to unit 42 of the first model.

etry of the fictitious construct changes, this reduction in the
spatial dimension and reflecting the biological problem onto
a lattice preserves the underlying true nature of the investi-
gated biological system and has no effect on the fundamen-
tals of the algorithm efficiency issue that we are addressing
in this study. To keep the connection with the biological sig-
nal transduction networks, we label the major compartments
of the model as (1) extracellular region, (2) cell plasma
membrane, (3) intravesicular endosomes, and (4) cytoplasm
of a mammalian cell.

2. Subcompartmentalization

We create different versions of our four compartment
model through the process of further partitioning as a way to
facilitate the evaluation of numerical efficiency on network
size. Our approach effectively is equivalent to creating a lo-
cally homogeneous model to include the spatial inhomoge-
neities where the coarseness of the model depends on the
number of used subcompartments. Figure 1 illustrates the 64
subcompartment model, which is created by dividing the
simulated system into 64 equal size units. This model will be
referred to as SSM model 1 in the remainder of this report.
For the employed square 2D setup, SSM model 1 is con-
structed by simply dividing the x and y edges into eight
equally spaced sections, i.e., 8§ X8=64 subcompartments,
while preserving the four major compartments intact. We
again note that cells are obviously three dimensional but
since our main aim is to compare the computational effi-
ciency of stochastic algorithms, we opted to characterize the
cell as a fictitious object that can be characterized as a two-
dimensional grid. Generalization of our approach to three
dimensions is straightforward; however, three dimensional
representation would increase the complexity of the problem
with no obvious benefits to our purpose. Therefore, a two-
dimensional model was preferred in this study.

In addition to the 64 subcompartment model, we have
created two more models with different sizes by partitioning
the cell into even smaller units. These additional models con-
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TABLE I. Size description of the SSM model.

Size Number of Number of Number of
model subcompartments complex types reactions
1 64 142 518

256 568 2268
3 1024 2272 9464

tain 256 and 1024 subcompartments, and will be labeled
SSM model 2 and SSM model 3, respectively. Table I com-
pares the sizes of the created models. As it is clear from
Table I, the number of reactions included in the network
models increases considerably in going from a 64 to 1024
subcompartment representation. It should also be noted that
further partitioning the system using equal volume subcom-
partment units preserve the volume ratio of the different ma-
jor cellular compartments, and hence, makes the different-
sized models compatible with the parent model.

3. Indexing and particle tracking

For the system subdivided into N’ subcompartments,
starting at the lower left-hand unit, the subcompartment units
are labeled from 0 to N?>— 1 for unique identification. All mo-
lecular complexes are labeled with reference to the subcom-
partment that they reside in, and a molecular species of type
S in subcompartment K of major compartment m is denoted
by S_m_K. The population count of each species in each
subcompartment is updated when internal or mass transfer
reactions occur in that subcompartment. It is important to
note that there is only one independent volume parameter in
our multicompartment SSM, which is the volume V of the
container. Volumes of subcompartments are simply fixed
fractions of the total volume. Therefore, when the particles
of a certain species are distributed among the compartments
of the system in proportion to compartment volumes, the
molar concentration of the species stays uniform between the
subcompartments.

4. Models with different number of molecules

To investigate how the efficiency of the studied algo-
rithms depends on the number of molecules (molecular copy
numbers) in the system, we have created four comparable
population models (A-D) for every subcompartment model
by adjusting the system’s total volume. When the volume is
decreased, it is assumed that the number of molecules de-
creases by the same factor on average so the molar concen-
trations do not change. Although changing the cellular vol-
ume is not biologically sensible, this is a numerical trick that
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makes it possible to modify the copy numbers of molecules
in the computations without changing the molecular concen-
trations. Since the mean results for the concentrations of the
molecules will be the same, this trick allows us to compute
the computational requirements of the investigated algo-
rithms as a function of the number of molecules in the sys-
tem.

Table 1II reports the initial number of molecules for all
species types in population model A. Ligand and adaptor
molecules are initially placed in the extracellular (first major
compartment) and cytoplasm (fourth) compartments, respec-
tively. Receptors initially exist in their free and unphospho-
rylated (R) form and are distributed between plasma mem-
brane (90%) and endosomes (10%), Table II. Using a typical
volume for the eukaryotic cells, in the population model A,
we assume that a concentration of 100 pM equals to
180 molecules in the total cellular volume. For the popula-
tion model B, the volume is reduced with a factor of 10 and
100 pM concentration corresponding to 18 molecules. Simi-
larly, in population models C and D the volume is further
reduced by factors of 10 and 100, respectively. With four
different populations for each of the three different size net-
works, the studied SSM reaction system can thus be simu-
lated in twelve different ways at different scales. In the re-
mainder of the paper, the models will be referred to as SSM
model XY, where X(=1-3) and Y(=A-D), respectively, rep-
resent the network size (i.e., the number of subcompart-
ments) and population (i.e., size in terms of number of mol-
ecules) of the referred model.

5. Boundary conditions

In order to keep simulations as simple as possible, a
no-flux boundary condition on all complexes is assumed for
subcompartments adjacent to the outer cell boundary.

6. Signal transduction aspects of the size scalable
model

Major processes included in the SSM network model are
unimolecular and bimolecular reactions and particle diffu-
sion or exchange between the subcompartments. Reactions
defined within a major compartment are defined per subcom-
partment basis while diffusion is considered as a first-order
mass transfer between subcompartments.

The multicompartment signal transduction network used
in this report contains a set of reactions between eight mo-
lecular species, which are listed in Table III. Most of the
species are receptor complexes and we note that the molecu-
lar species that involve the receptor (i.e., R, RL, RP, RLP,
RPA, and RLPA) will collectively be referred to as receptor

TABLE II. Number of molecules in the SSM population A model. These molecule copy numbers were used as

the initial conditions at the start of the simulation runs.

Compartment L R A RP RL RLP RPA RLPA
1 36 000 0 0 0 0 0 0
2 0 16 200 0 0 0 0 0
3 0 1800 0 0 0 0 0
4 0 0 45 000 0 0 0 0 0
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TABLE III. Molecular species included in the SSM signal transduction
network.

J. Chem. Phys. 123, 114707 (2005)

TABLE V. Molecular species included in the simplified signal transduction
VCM network.

Symbol Description Symbol Description
L Ligand (for example, growth factor or major L Ligand
histocompatability complex) R Free receptor with multiple phosphorylation binding sites
R Free receptor (for example, receptor tyrosine Kinases or RL Ligand-bound receptor, i.e., ligand:receptor complex
T-cell receptors) RP Phosphorylated free receptor (phosphorylated at one or
A Adaptor protein more sites)
RL Ligand-bound receptor, i.e., ligand:receptor complex RLP Phosphorylated receptor in RL complex
RP Phosphorylated free receptor
RLP Phosphorylated receptor in RL complex
RPA Phosphorylated receptor RP complexed with adaptor are phosphorylated at a much higher rate than the ligand-free
protein A , . receptors. We choose the simplest realistic assumptions con-
RLPA RLP complexed with adaptor protein A

complexes in the remainder of this paper. The signal trans-
duction network of SSM consists of two unimolecular and
five bimolecular reversible reactions with mass transfer be-
tween compartments. The reactions constituting the model
are tabulated in Table IV. Reversible reactions 1, 3, and 5
represent ligand (L)-receptor complex association. Revers-
ible reactions 2 and 4 represent phosphorylation and dephos-
phorylation of receptors. Reactions 6 and 7 represent the
recruitment and dissociation of adaptor proteins (A) to phos-
phorylated receptors. By associating with the activated re-
ceptors, adaptor proteins [for example, the Grb2, Shc, Ras,
Raf, and mitogen-activated protein kinase (MAPK) cascade]
are instrumental in transmitting the cell signal initiated by
external stimuli to the interior of the cells. This is the ratio-
nale for taking the number of receptor-adaptor protein com-
plexes as the measure of the amplitude of the cell signal
within the SSM model.

Further details of the SSM model and the list of used
reaction rates can be found in Appendix B.

B. Formulation of the VCM

Our second model, the variable connectivity model
(VCM), is a scalable single compartment signal transduction
network involving two unimolecular and two bimolecular
reversible reactions for 3 species—ligand, receptor, and
ligand-receptor complexes. The species and the reactions
with rates for the VCM model are given in Tables V and VI,
respectively. The receptors in this model may have multiple
phosphorylation binding sites where ligand-bound receptors

TABLE IV. Reactions defining the SSM model.

cerning phosphorylation in our VCM with N phosphorylation
binding sites: (a) any one of the N phosphorylation sites may
be phosphorylated or dephosphorylated with equal probabil-
ity, i.e., the rates of phosphorylation reactions are the same
for every site; and (b) phosphorylation state of a site does not
affect the (de)phosphorylation rates of other sites, i.e., pos-
sible cooperativity effects are neglected in our VCM.

To trace the phosphorylation status of the receptors we
use the multistate notation R_{F---Fy} where the flags F;
shows the state (on/off) of the jth phosphorylation site. For
example, R_00001000 in a VCM would represent that the
receptors have eight phosphorylation sites and this particular
species has the fifth site phosphorylated while the other sites
are unphosphorylated. In our VCM model each multistate
form is treated as a distinct species. Therefore, according to
the reaction scheme for a VCM with N phosphorylation sites
(Table VI), each multistate is connected to N other multi-
states as well as to ligand L and to the complex LR. Clearly
the linkage between the species increases in proportion to the
number of phosphorylation sites.

C. Stochastic algorithms for simulation of model
problems

In this paper, we report our results for the dependence of
the numerical efficiency of two stochastic kinetic simulation
algorithms on the size and connectivity of the investigated
model network. We particularly investigate the size depen-
dence on the number of reactions included in the simulations
and on the total number of molecules in the system. We
chose a variant of the highly popular direct Gillespie
algorithm,s’6 the Gibson-Bruck method,7 as one of the two
stochastic algorithms that we utilize. This will be referred as

TABLE VI. Reactions defining the VCM model.

No. Reaction Number Reaction No. Reaction Rate constants
Ky ks Ky _10-4 —10-3
! L+R=RL > RPA+L=RLPA ! R=RP k=107, k=10
ket ks kg
ko ke ka — -3 —10-3
2 RL—RLP 6 RP+A=RPA 2 RL—RLP ky=4X 107, k_,=10
k- k_g ko
k3 k7 ks _ . s
3 RP+L=RLP 7 RLP+A=RLPA 3 R+L=RL ky=5X10", k_3=10
ks k7 ko3
kg kq — 1 —10-3
N R=RP 4 RPaliRLp ky=5X 101, k_,=10
kg k_g
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the GGB algorithm. It has been suggested that, for dynamical
systems where a large set of multistate interactions exist be-
tween molecular complex types, the inexact Firth and Bray
(FB) algorithm® can be a very efficient method especially
when the total complex population is small. The reactions
defining the signal transduction VCM model studied here are
dominated by the interactions of various receptor complex
types, which correspond to the interactions of various recep-
tor multistate forms. For this reason, we chose the FB algo-
rithm as the second method in this study.

Major aspects of the FB and GGB algorithms are sum-
marized in Appendix A. In conducting our numerical experi-
ments, both the FB algorithm (as documented and coded in
the C++ StochSim simulation software developed by
Morton-Firth in Ref. 4) and the GGB algorithm were effi-
ciently implemented in FORTRAN 95 in SIGTRAN by Cell Sys-
tems Initiative (www.csi.washington.edu). SIGTRAN is a pub-
licly available deterministic and stochastic simulation
software package for kinetic simulations and it supports a
number of algorithms including the stochastic FB and GGB
algorithms. It is clear that the process of specifying the reac-
tion networks for SSM models with 64, 256, and 1024 com-
partments require automation. To achieve this, a FORTRAN 95
program CMPTPARSER was created. The input to this program
are various simulation parameters such as the simulation du-
ration and the number of trajectories, the eight basic complex
types, and the initial populations for each species type as
well as the basic reaction and mass transfer set for each of
the major compartments of the model. Using the input infor-
mation together with the total number N? of subcompart-
ments, CMPTPARSER program creates the simulation, com-
plex, and reaction input files for the SIGTRAN program. For
each major compartment of the SSM model, CMPTPARSER
uniformly distributed the species populations amongst the
subcompartments. A FORTRAN 95 program SIMPLEPARSER,
similar to CMPTPARSER, was created to generate the input
files for the VCM model to uniformly distribute each multi-
state species population amongst the species states. All com-
putations were carried out on a 2.0-GHz Dell Pentium(R) 4
with 512-Mbytes random access memory (RAM) running
Lahey/Fujitsu FORTRAN LF 95 v.5.6 Pro.

We note that the FB and GGB algorithms were chosen
for this study only because they are two distinctly different
approaches to the stochastic simulation of biochemical reac-
tion systems. Our aim was not to provide computational sup-
port for the most efficient algorithm—the answer to this
question clearly depends on the network size and connectiv-
ity as well as on the implementation of these algorithms for
a given computer architecture. Our main purpose was to in-
vestigate the scaling characteristics of these two distinct
classes of algorithms. We also would like to point out that
GGB algorithm may not be the most efficient variant of
Gillespie-type approaches but it was chosen only because it
is widely used in stochastic simulation studies.

lll. RESULTS AND DISCUSSION
A. Size scalable model

Table VII summarizes the simulations for different sub-
compartment and population size models that were per-

J. Chem. Phys. 123, 114707 (2005)

TABLE VII. Summary of the simulations performed with the Firth-Bray
(FB) and Gillespie-Gibson-Bruck (GGB) algorithms for the SSM model.

SSM Population Population Population Population
model model A model B model C model D
1 (64) GGB GGB FB, GGB FB, GGB
2 (256) GGB GGB FB," GGB FB, GGB
3 (1024) GGB GGB FB," GGB FB, GGB

“FB—only five trajectories completed.

formed to investigate the scaling properties of the FB and
GGB algorithms. As will be discussed in detail below, simu-
lations employing the FB algorithm are quite time consum-
ing so the FB algorithm was used in fewer models than the
GGB algorithm. For each model, each simulation consisted
of an ensemble of 50 distinct trajectories run for 8000 s.
Results reported in the figures below are the averages of the
50 stochastic simulation trajectories.

To verify our scalable model, we first analyzed and com-
pared the distribution of complex types in selected subcom-
partments between models. We note that, as mass transfer is
allowed to occur only between next neighbor subcompart-
ments, constituency of subcompartments of a major compart-
ment may show differences depending on their location rela-
tive to the boundary of the major compartment. Although we
have cross verified our results in many subcompartments, for
our 64 subcompartment model (SSM model 1, Sec. IT A), we
discuss our results by reporting the molecule distribution in
three representative subcompartment units (Fig. 1): subcom-
partments 27 and 42 of the second major compartment
(transmembrane region) and subcompartment 50 of the third
major compartment (endosome region). Subcompartment
unit 42 is at the border between the second and third major
compartments, while unit 27 is located away from the
boundary (Fig. 1). For the SSM model 2 (256 subcompart-
ment model), discussed units will be subcompartments 180,
181, 164, and 165. These four units, respectively, are the
upper left, upper right, lower left, and lower right subparti-
tions of SSM model 1 subcompartment unit 42 (Fig. 1). Dis-
cussion for the results for other subcompartments parallel the
discussion for these chosen units.

We first investigated whether having small or large copy
numbers in the simulations have an effect on the model pre-
dictions by comparing the results for the different population
models (see Sec. IT A). Figure 2 reports the mean concentra-
tion of RLPA, ligand-bound, and phosphorylated receptors
that is in complex with the adaptor protein A (Table III), for
SSM model 1 as calculated with the GGB algorithm. The
results for the mean RLPA concentration agree very well
among different population models. The most significant dif-
ference in the results is in the fluctuation levels. As the copy
numbers of the molecules in the compartments decrease,
there is a noticeable increase in the fluctuations about the
mean values. This is a common occurrence in stochastic ki-
netic systems and an expected result because, at the low copy
number limit, a change of one molecule in the compartment
can lead to a large change in the species concentration. The
same trend is also evident in the results for other molecular
types (results not shown). We note the difference in the re-
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FIG. 2. Concentration of complex type RLPA in subcompartments: (a) 50,
(b) 42, and (c) 27 of the SSM model 1 as obtained by averaging the results
of 50 stochastic simulations employing the Gillepsie-Gibson-Bruck algo-
rithm. Results are shown for different population models: curves with the
thick solid [in (c) higher solid curve], dashed, and solid lines show the
results for the population models A, B, and C, respectively.

sults between subcompartments 27 and 42 that belong to the
same major compartment. As mentioned above, because of
the mass transfer events, subcompartment locations would
affect the molecular distributions within a major compart-
ment and the spectrum of the differences also depend on the
molecular species (results not shown).

In Fig. 3, the averaged solution with the GGB algorithm
for complex-type RLPA in unit 42 of the SSM model is
contrasted for different size and population models. As is
evident from the figures, RLPA levels for the coarser SSM
model 1 show a sharp initial transient for all three population
models, a feature not found with the finer compartment mod-
els. This is likely a result of the faster buildup due to easier
mass transfer in the layout with smaller number of compart-
ments. We note that all three size models appear to converge

J. Chem. Phys. 123, 114707 (2005)
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FIG. 3. Concentration of complex type RLPA in unit 42. Shown results are
the average of the 50 stochastic trajectories obtained with the Gillepsie-
Gibson-Bruck algorithm. Population models are (a) C, (b) B, and (c) A.
Results are shown for different SSM Models: curves with the thick solid
(curve nearest to the y axis), dashed, and solid lines show the results for the
SSM models 1, 2, and 3, respectively.

to a steady value of approximately 1.2 nM at 8000 s and that
the results for different population models show very good
agreement between themselves.

We have also investigated the agreement between the FB
and GGB algorithms when both algorithms were employed
for the same model. We demonstrate the comparison of the
results of the two algorithms with a typical result. Figure 4
reports the RLPA levels for the SSM model 1C in various
subcompartments. As they should, results for the FB and
GGB algorithms agree with each other very well, not only
having the same means but also similar fluctuations.

To compare the computational efficiency of the FB and
GGB algorithms, we list the computational expenses of the
performed simulations in Tables VIII and IX. As one can
easily see from these tables, compared to the GGB algo-
rithm, the computational cost of running the FB algorithm is
exorbitant. It should however, be kept in mind that compu-
tational costs can strongly depend on how the algorithms are
implemented and optimized in the simulation software and
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FIG. 4. Concentration of complex type RLPA in units: (a) 50, (b) 42, and (c)
27 of the SSM model 1 with population C, i.e., SSM 1C, as obtained by
averaging the results of 50 stochastic simulations. Figure compares the re-
sults for the Gillepsie-Gibson-Bruck (solid line) and Firth-Bray (dashed
line) algorithms.

on the suitability (integer versus floating point operation ef-
ficiency) of computer architectures on which the simulations
were run. It should also be noted that the efficiency of the
algorithms would also depend on the types of the investi-
gated models.

TABLE VIII. Comparison of CPU times and number of reaction events for
simulation runs with the Firth-Bray algorithm for the SSM model.

Population SSM SSM SSM
model model 1 model 2 model 3
C T (103 us) 8400 45 400 252 000
Tevent (18) 0.525 0.568 0.63
Nevenss (108) 16 000 80 000 400 000
Nreactions 518 2268 9464
Nootecutes (10%) 0.99 0.99 0.99
D T (103 us) 750 4220 16 200
Tovent (8) 0.469 0.528 0.608
Neyenss (10°%) 1600 8000 26 650
Nreactions 518 2268 9464

Niotecutes (10%) 0.099 0.099 0.099

J. Chem. Phys. 123, 114707 (2005)

TABLE IX. Comparison of CPU times and number of reaction events for
the simulation runs with the Gillespie-Gibson-Bruck algorithm for the SSM
model.

Population SSM SSM SSM
model model 1 model 2 model 3
A T (108 us) 972 2000 9630

Teyent (Ms) 6.80 7.55 9.44
Noyenss (108) 143 265 1020
Nreactions 518 2268 9464
Ninolecutes (10%) 99 99 99
B T (108 us) 96.6 202 984
Toent (145) 6.76 7.59 9.74
Noyenss (10%) 14.3 26.6 101
Nireactions 518 2268 9464
Npotecutes (10%) 9.9 9.9 9.9
C T (10% us) 10.4 21.4 112
Tevent (15) 7.32 8.08 11.1
Noenss (10%) 1.42 2.65 10.1
Nieactions 518 2268 9464
Npotecutes (10%) 0.99 0.99 0.99
D T (108 us) 12 2.65 12.3
Teyent (1s) 8.57 9.81 11.9
Novenss (108) 0.140 0.270 1.03
Nieactions 518 2268 9464
Npotecutes (10%) 0.099 0.099 0.099

As biological data obtained in high-throughput experi-
ments starting to make it possible to construct larger and
more complete network models, knowing how the efficiency
of the popular kinetic algorithms scales with the network size
will be important in choosing the right algorithm to use. For
this reason, one of the main aims of this study was to quan-
tify how FB and GGB algorithms scale with the problem
size. It is clear from Tables VIII and IX that the total running
times for the models studied in this report are dependent on
the molecular population as well as on the number of reac-
tions included in the models.

For the FB runs, in all cases reported in Table VIII,
nearly optimal values were used for the time steps
At Vacion! [1(n+ng)], where Viion 18 the reaction vol-
ume, n is the total species population, and ng is the ghost
molecule population (see Appendix A for details). We notice
that the time complexity of the FB algorithm does indeed
scale directly with the square of the total species population
and inversely with the reaction volume with a weak depen-
dency on the number of reactions. For example, moving
across rows C and D in Table VIII the total CPU time in-
creases from four- to fivefold corresponding to a fourfold
subcompartment volume reduction between constant popula-
tion models. Additionally, moving upward from row D to C
the total population increases tenfold while the reaction vol-
ume decreases tenfold thus resulting in an approximately
tenfold increase in total CPU time.

It took approximately 25 h to run one simulation with
the FB for model 1C which implies a total running time of
over 52 days to complete the 50 simulations for comparison
with the other data points. Consequently, we limited the us-
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age of the FB algorithm to only a few cases as indicated in
Table VII. Being able to run the FB algorithm for only a few
cases (Table VII) did not allow us to analyze its size scaling
analytically. In contrast, manageable total running times of
the GBB algorithm made it possible to obtain CPU statistics
for all 12 models that we have used (Table IX). Using all 12
data points in Table IX, where Nyenis» Nmoleculess Nreactionss and
T are the number of reaction events (in units of 108), total
complex population (in units of 10°), total number of reac-
tions in the model, and CPU time (in 10% us), respectively,
and a time complexity estimate of  O(Neactions
+ Neyents 10g Nreactions),16 a least-squares fit for the regression
curve T=aN, moleculesN reactions T DN moleculesN events In N, reactions
yielded values for the fitted coefficients of ¢=1.02 and b
=2.24X 1073, Our regression analysis suggests that GGB al-
gorithm scales weakly with the logarithm of the number of
reactions in the model.

For SSM, we find that, as the total species population is
increased over four orders of magnitude, the GGB algorithm
performs significantly better than FB for all three SSM com-
partment models considered. However, extrapolating from
the data for population model D (99 molecules), the FB al-
gorithm might become competitive with the GGB algorithm
for simulations of SSM model assuming a 1000-fold reduc-
tion in species molarity. Although it corresponds to an ex-
treme case, this limit reflects the design characteristics of the
FB algorithm. As discussed above and in Appendix A, the
Firth-Bray algorithm was not designed as a competitive sto-
chastic algorithm for reaction networks with thousands of
species but was rather intended to show its utility for reac-
tion networks characterized by a moderate number of com-
plex types, each with a very small population, but with a
high degree of connectivity amongst the complex types. So

J. Chem. Phys. 123, 114707 (2005)

the FB algorithm was expected to perform worse than the
GBB algorithm for the SSM and our results confirm this
expectation. Our results for the SSM also nicely show that
the FB method might be the algorithm of choice at the limit
that the FB is structured to perform better.

B. Variable connectivity model (VCM)

Our analysis of the SSM showed that GGB is in general
a more efficient algorithm but for certain cases, the use of FB
might be more advantageous. Although in designing SSM we
have tried to keep a good balance between mass transfer and
biochemical reactions, between the time scales of the in-
cluded events, and between molecular species types, the
structure of the SSM could be favoring the GBB algorithm.
For this reason, extrapolating the CPU requirements to pre-
dict that under certain limiting circumstances the FB might
perform better than the GBB is a rather indirect conclusion.
To directly show that this is actually the case, we have de-
vised a second scalable network model, the variable connec-
tivity model (VCM) that has the features favorable for the
FB algorithm. Our VCM has been described in detail in Sec.
I B. Although Gillespie’s direct and next reaction methods
are closely related, because of the numerical requirements of
the methods, one may be more efficient than the other. For
this reason, to investigate if our conclusions depend on the
form of the Gillespie type algorithms, we have repeated the
simulations with the direct method (G) of Gillespie.”®

Simulations for the VCM were run for 8000 s and mean
values were obtained by averaging the trajectories of 50 runs.
The CPU times necessary to initialize the simulations are not
included in the reported computation times. The runs were
started from an initial distribution where ligand:receptor ratio

TABLE X. Average running times for Firth-Bray (FB), Gillespie-Gibson-Bruck (GGB), and direct Gillespie (G) algorithms for the VCM model.

Initial Initial
Number Reactions Reactions pOIE;l;&;[)IOH po([;t;l;(t;)o n
of with with
binding Number 2N 2N 2N+1
sites of adjacent adjacent FB GGB G FB GGB G
(N) reactions” edgesh edgesh (s) (s) (s) (s) (s) (s)
1 8 50.0, 4 50.0, 3 0.69 0.39 0.31 56.01 3.84 2.80
2 24 333,8 66.7, 5 1.20 0.63 0.48 100.81 7.22 4.52
3 64 25.0, 14 75.0, 7 1.91 1.17 0.69 148.45 12.11 6.94
4 160 20.0, 24 80.0, 9 242 1.75 1.02 196.11 17.81 10.11
5 384 16.7, 42 83.3, 11 3.14 2.69 1.87 246.03 25.73 14.94
6 896 14.3, 76 85.7, 13 3.98 4.17 3.67 298.83 37.23 23.30
7 2048 12.5, 142 87.5, 15 5.09 6.34 6.25 356.77 56.70 4091
8 4608 11.1, 272 88.9, 17 6.38 10.22 43.25 420.14 84.69 187.21
9 10 240 10.0, 530 90.0, 19 8.31 16.81 235.03 484.03 140.69 645.00
10 22 528 9.1, 1044 90.9, 21 10.09 35.01 570.86 548.17 321.68 2085.68
11 49 152 8.3,2070 91.7,23 622.48 798.14 6239.66
12 106 496 7.7, 4120 92.3, 25 725.97 1464.10 16 316.40

“In a VCM with N phosphorylation sites, the total number of molecular species (i.e., complexes) is 2V*!+1. For such a system with interaction rules given in

Sec. II B, the number of reactions included in the model is 2V (N+1).

°In the GGB algorithm, firing of a reaction requires the update of a set of related interactions. In the VCM, there are two classes of reactions: Reactions
involving ligand binding are connected to a series of reactions (i.e., the adjacent edges in the reaction network graph) that require updating the propensities
of a large number (2V+2N) of reactions. In contrast, when they occur, phosphorylation reactions only require updating the propensities of 2N+ 1 reactions. In
these columns, the first and the second numbers, respectively, are the percentage of reactions belonging to the category and the number of reactions whose

propensities need updating.
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FIG. 5. Average running time as a function of the number of phosphoryla-
tion sites for the VCM model. Points show the average running times as
reported in Table X. Line curves present the interpolations for the CPU
times showing the scaling behavior for the Firth-Bray (O), the Gillespie-
Gibson-Bruck (A), and the direct Gillespie ([J) algorithms. Results are for
the population case of (a) 192 complexes and (b) 1920 complexes.

was 2:1 with no existing ligand-receptor complexes. The vol-
ume of the reaction chamber was 1.6 X 107 pl. Table X and
Fig. 5 report the CPU times for the Firth-Bray (O),
Gillespie-Gibson-Bruck (A), and the direct Gillespie ([]) al-
gorithms as a function of the number of phosphorylation
binding sites for two distinct sets of simulations of the VCM.
In the first low population set, Fig. 5(a), the total complex
population was initially set at 192 complexes (128 ligands
and 64 receptors) while for the second set, Fig. 5(b), the total
complex population was initially set at 1920 complexes with
the 2:1 ratio of ligands to receptors unchanged (i.e., 1280
ligands and 640 receptors). In carrying out the simulations
for the two population cases with the FB algorithm, the
maximum number of complexes (cf. Appendix A) was set at
192 and 1920 complexes, respectively. It is clear from Fig. 5
and Table X that for the smaller population set, the FB algo-
rithm becomes more efficient than GGB when the number of
phosphorylation sites N reaches 6 whereas in the larger
population set the GGB is clearly superior for small N’s with
a crossover occurring between N=10 and N=11. In turn the
GGB is superior to the G method for larger values of N for
both population cases while the G method performs slightly
better than the GGB for smaller N. So for the VCM case, our
results clearly establish that depending on the linkage level
of the network either GBB or FB can be more efficient; the
use of FB-type algorithms should be considered for reaction
networks with high connectivity among the involved species.
We note that the conclusion supported by our timing data is
expected from the following arguments.

J. Chem. Phys. 123, 114707 (2005)

Part of the computational increase in the running times
of the simulations is due to the fact that the sum 3, of the
probability rates for all reactions in the network increases
with the number of phosphorylation sites NV, and this reduces
the average waiting time 1/ to the next reaction event (see
Appendix A). The arithmetic computational cost per step of
the FB method is ch+3cmd+ chkFB where ¢4 is the cost of
computing a random number from the uniform distribution
over [0,1], and kg is the number of reactions involving both
objects that are selected by the two grab process which is a
O(N) process for the VCM model (Appendix A). For the
GGB method the arithmetic computational cost per step7 is
cg’GB+cmd+c?GBkGGB+c§GBkGGB log, N, where N, is the
number of reactions, kggg is the number of edges in the
reaction dependency graph (i.e., the number of reactions
whose propensity needs to be updated), and the logarithmic
term is due to the updating of the indexed priority queue.

For the VCM model it is clear from Fig. 5 that the de-
pendence of kggp, and hence the CPU time, on the number
of phosphorylation sites N is nonlinear. Occurrence of a re-
action in the GGB method requires updating the propensities
of the reactions that are adjacent in the interaction network
graph. In terms of the adjacency graph properties, it can be
shown that there are two types of reactions in the VCM
model. A large fraction, N/(N+1), of the reactions has 2N
+1 adjacent edges while the remaining 1/(N+ 1) fraction ex-
hibit an exponential number 2V+2N of edges (see Table X).
Most of the reactions with exponential number of adjacent
edges correspond to ligand receptor binding. These reactions
have a relatively high rate constant and therefore, can occur
frequently and lead to exponential increase in CPU require-
ment for both the GGB and the direct Gillespie methods.
Steep increases seen in Fig. 5 for the computation require-
ments for the VCM models with large number of phospho-
rylation sites are due to the dominance of the reactions with
an exponential number of adjacency edges.

Even without specifying the values of the constants ¢
and cY9C in these expressions the cost per step for the FB can
clearly be less than the GGB when the number of reactions is
large. It can be shown that (Appendix A) the optimal time
step for the FB method varies inversely with both the num-
ber of phosphorylation binding sites and the square of the
total species population. As for the GGB, Cao et al."’ argue
that the cost of accessing and maintaining the heap data
structure for the indexed priority queue can be significantly
higher than the associated arithmetic computational costs
given above when the connectivity of the reaction network is
large. This cost can have a major impact on the average
running time of the GGB method. Additionally Cao er al.'’
also present an optimized version of the direct Gillespie
method which is claimed superior to the GGB when network
connectivity is high. Consequently, for the VCM model, if
the overall species population is held fixed at sufficiently
small levels while increasing the number of phosphorylation
sites (implying an increase in network linkage) there can
exist a crossover point where the simulation time step for the
FB is relatively large compared to the average time progres-
sion step in the GGB method so that the computational de-
mands of the GGB method exceed that of the FB method.
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Thus, it can be stated that the algorithm of choice for the
VCM model is the FB when the connectivity is sufficiently
high and the total complex population sufficiently low.

IV. SUMMARY

In this study, we have developed and presented two scal-
able biological networks, the SSM and VCM, to investigate
the size scaling efficiencies of two popular and distinct sto-
chastic kinetic simulation algorithms. Studied network mod-
els were constructed for use in future benchmarking studied
for comparing the size scaling behavior of stochastic kinetic
simulation algorithms. Our results have shown that, at least
with our implementation of the simulation algorithms and for
the utilized scalable models, the GGB algorithm performs
significantly better than the FB algorithm under realistic bio-
logical conditions. However, we have presented evidence
that the FB algorithm can be competitive with the GGB al-
gorithm when the total number of molecules in the system is
very low and the molecular species are highly intercon-
nected, i.e., can form many different types of complexes with
the other species. We would like to point out that methods
which speed up the computations while insignificantly sacri-
ficing the exactness can be combined with the GGB or other
Gillespie methods to further improve the performance. Ex-
amples of such approaches are the tau-leap method,'® the
implicit tau method,” the probability weighted dynamic
Monte Carlo method,13 and others.'”*""?? In the future, we
will include these algorithms in our studies and quantita-
tively investigate their efficiency performance.

We also note that the used signal transduction models,
2D representation of the cell and its intracellular compart-
ments, and other simplifications that we use in the studied
scalable model may distort the underlying biology of the
model. However, as the aim of this study is to develop a
mechanism for a scalable model as a mean to investigate the
size scaling properties of the kinetic simulation algorithms,
and as we do not attempt to extract any biological informa-
tion from the reported simulation results, the reality of the
studied models is irrelevant for the purpose of this study.
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APPENDIX A

Consider a dynamical system, in reaction volume
Vieactions Of N elementary reactions of M chemical species S;
with population vector p at time 7. The elementary reactions
that we shall consider are unimolecular and bimolecular re-
actions such as

k

Si— 5

uni

(uni),

ki
S3+S4—> SS (bl)

Now the inexact uniform time-stepping method of Firth
and Bray,4 also known as the random substrate method by
Schwehm,” introduces ghost molecules as an algorithmic
artifact allowing both types of elementary reactions to be
treated with a single (simultaneous and independent) two-
step selection or grab process. For example, consider the
unimolecular reaction (uni). According to the law of mass
action, the rate of change in the number of molecules n; over
a time step At is, to O(A7?),

Anl =—kunin1At. (Al)

Assuming a ghost molecule population of n; and a total
species population of n=2p; (here n is taken as the maxi-
mum number of complexes at any time over the simulation),
Eq. (A1) may be rewritten as

An =_{(ﬂ>( ng >:||:kunin(n+nG)At:|
! n/\n+ng ng

= [Pr(G,,) [Pr/(RIG7,)AL].

uni uni

(A2)

In step 1 of the Firth-Bray method an object is selected
from the set of all molecules while in step 2 an object is
selected from the set of molecules and ghost molecules. Thus
the first bracketed expression in Eq. (A2) is the probability of
selecting the correct substrate for unimolecular reaction (uni)
while the second bracketed expression is the product of a
probability rate Pr, and Az, and gives the conditional prob-
ability of the unimolecular reaction, occurring over time in-
terval Az, given an appropriate substrate. Similarly, for bimo-
lecular reaction (bi), the rate of change in population n; [to
0(AA)],

ki
An3 =- bi l’l37l4A[, (A3)
N Avogadro Vreaction
may be rewritten as
kyn(n+n
Any= [2(3>( L )M wnntng)
n n+ng 2N Avogadro Vreaction
= [Pr(Ge) [Pr(RIGi) Ar]. (A4)

Again, the first bracketed expression in Eq. (A4) is the prob-
ability of selecting a pair of substrates S; and S, for bimo-
lecular reaction (bi) while the second bracketed expression is
the conditional probability of the bimolecular reaction occur-
ring, over time interval A¢, given these substrates.

Morton-Firth* estimates the number of ghost molecules
ng,
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kuni max
ng= 2N, AvogadroVreaction k :
bi,max

where ([x] = min{n,n = x,integer n}), (A5)

by equating Pr, for unimolecular and bimolecular reactions,
which coincidentally helps to mitigate stiffness issues be-
tween the first- and second-order reactions. The uniform time
At is computed from =Y Pr,(R;|G*)At< 1. Algorithmically,
the two-step grab is accomplished by selecting two uniform
random numbers from the intervals [1,n] and [1,n+ng]. If
the chosen substrates participate in a nonzero set M of reac-
tions then a third uniform random number s from the unit
interval [0,1) selects the reaction number as the first index i,
satisfying Eﬁ;ﬁl Pr(R, € M|G*)At) >s.

Other than updating population counts of complexes af-
fected by the occurrence of a reaction, no other quantities,
including the reaction probabilities, need be modified since
the time step is fixed and uniform. Morton-Firth, in his
thesis,4 showed that the number of steps in a simulation
Nyeps < (A1) %12/ Viggetion SO that the algorithm depends
strongly on the total complex population n if the reaction
volume is held fixed. It is clear that increasing the population
of each species increases the number of nonproductive steps
since the probability decreases that any two randomly chosen
complexes actually interact.

An important parameter in the FB algorithm is the total
population n of complexes. As an estimate for n, the FB
algorithm uses the maximum number of complexes over the
duration of the simulation. However, if the total population
varies widely over time or is not easily estimated, it is pos-
sible that significant error may be introduced.

In 1976 Gillespies’6 developed an exact algorithm which
avoided the generally intractable problem of solving for the
probabilities of all possible state trajectories described by the
master equation.1 His approach was based on selecting (a)
the next reaction and (b) the time of the next reaction accord-
ing to the probability distributions that underlie the master
equation for the particular reaction system in question. Given
a dynamical system, in reaction volume V ., ion Of N el-
ementary reactions of M chemical species S; with population
vector p at time ¢, define the joint probability density func-
tion ¢(x,7|p,f) or more briefly @(x,7). The quantity
@ (., 7)d T gives the probability that « is the index of the next
reaction and that « occurs over the time interval [f,¢+7

+d7). Gillespie proved that g(«,7) is given by
N

W(K’ T) = (%)(26—27)’ 2 = 2 g, (A6)
i=1

where o; is the reaction probability rate or propensity16 of
occurence of the ith reaction. Summing @(k,7)d7 over all
reactions reveals that the waiting time 7 for the next reaction
event at time ¢ is an exponential random variable with decay
constant 2 and mean 1/2,

&01(7')=Eexp(— ), (A7)

while the integration of ¢(x, 7) over the time interval [0, )
reveals that the reaction index of the next event at time 7 is
the integer random variable «

J. Chem. Phys. 123, 114707 (2005)

O

s (A8)

92(k) =

Gillespies‘6 gave the following direct method for sampling
from the distributions characterized by the master equation:
given two random numbers s; and s, from the uniform dis-
tribution over the unit interval, an exact pair of random vari-
ables (k,7) from the joint probability density function ¢ are
generated from

K

T=- % In(s;) and X, ;> s5,3. (A9)
i=1

Gillespie5 introduced a second equivalent algorithm, the first
reaction method, in which for each reaction «, a waiting time
7, 1s determined from an exponential distribution based on
the corresponding propensity o,. Since it was thought that a
new set of waiting times required N uniform deviates at each
time step, the first reaction method was overlooked for a
number of years, until recently, when Gibson and Bruck’
introduced a variant, the next reaction method (referred to as
Gillespie-Gibson-Bruck in this manuscript), which over-
comes this issue. This, together, with the use of a reaction
dependency graph to minimize reaction probability rate up-
dates and the organization of waiting times into an indexed
priority queue, yields an algorithm which is especially effi-
cient for sparse networks. Gibson and Bruck'® have shown
that following the initial time step, the algorithm requires a
single random deviate per event and has an overall time
complexity of order O[N,+Ng log(N,)] where N, is the num-
ber of active reactions and Ny is the number of events. This
does not include the possibly significant overhead incurred to
maintain the indexed priority queue and updating based on
the reaction dependency graph.

TABLE XI. Conditions imposed on the molecular species in terms of their
participation in the reactions for the SSM model.

Condition Description

1 Only ligand complexes L, originally restricted to
compartment 1, may be exchanged between
compartments
1 and 2 or 3 by mass transfer.

2 Ligand complexes L, originally restricted to compartment
1, exist unbound only in compartment 1.

3 Receptors R, phosphorylated receptors RP, and
phosphorylated ligand-receptor complexes RLP are
restricted
to compartments 2 and 3. Similarly, complexes RPA
and RLPA exist only in compartments 2 and 3.

4 Adaptor complexes A, originally restricted to
compartment 4, exist unbound only in compartment 4.

5 Receptor complexes with attached adaptor protein A may
be exchanged between compartments 4 and 2 or 3.

6 Receptor complex exchange is a reversible process
combining reaction and mass transfer.

7 Compartments 2 and 3 may exchange all permissible
complexes.

8 No-flux boundary conditions exist between model and
the environment.
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TABLE XII. Detailed description of the reactions constituting the SSM
signal transduction model. Given rates are for the SSM model 1 and, as

J. Chem. Phys. 123, 114707 (2005)

TABLE XII. (Continued.)

explained in the text, the rates of the mass transport reactions in other size Cmpt Process
models are adjusted according to the system size. No. type" Process®
3 M.1 8.6x1074
Cmpt Proceass , R 3 K, R 3 K,
No. type Process 6ax10-4
RL_3_K,—— RL_3_K,
1 B None o 8.6X1074 o
1 M.1 8.6x1072 RP_3_K,— RP_3 K,
L1 Ki——L_1K, o paxit '
1 B.M.2 1073 RLP_3_K,— RLP_3_K,
L1 _K+R_2_K,——RL_2_K, T s
3%1073 )
RPA_3_K,——— RPA_3 K,
L 1 K+RP 2 K,—— RLP_ 2 K, T T !
6x1072 B
RLPA_3_K,—— RLPA_3 K,
L 1 K,+RPA 2 K,— s RLPA 2 K, ST, S
1 B.M.3 Laxi07 3 M2 R 3K sox1o R 2K
o L1 K+R 3 K,——RL_3 K, T e
3%1073 )
RL_3_ K,——— RL_2 K,
L_1_K+RP 3 K,—RLP_3 K, -3- Ceexiot
6x1072 )
RP_3_ K,—— RP_2 K,
L_1_K+RPA_3_K,— RLPA 3 K, 3K oot
RLP_3_K,— RLP_2 K,
2 B 10 6.4x1074
RL 2 K&=RLP_2 K RPA_3_K,—— RPA_2 K,
9 43x107*
- RLPA_3_K,— RLPA 2 K,
R 2 K=2RP2 K 3 B.M.3 11x1072
0 RL 3 K,— L 1 K+R_3 K,
2 M.1 8.6x1074 6x1073
- R2K R2K RLP 3 K,—— L_1_K,+RP_3 K,
1.0
et RLPA 3 K,—— L_1_K,+RPA 3 K,
) 3 B,M.4 6.4x1074
RL—2—KS86 = RL_2_K; RPA 3 K,— A_4_K+RP_3 K,
6% 4
4.3X10
RP_2 K, » 10’_FP—2—Kf RLPA 3 K,— A 4 K+RLP 3 K,
.4 X
RLP_2 K,—— RLP_2_K, 4 B None i
64x 10~ 4 M.1 8.6x1072
RPA 2 K,— RPA 2 K, A4 K—— A 4K,
43%107 4 BM.2 107
RLPA 2_K,— RLPA 2 K, A_4_K+RP_2 K, — RPA_2 K,
2 M.2 8.6x1074 10
R2 K,——R_3 K, A_4_K+RLP_2 K, —»4 RLPA_2 K,
6.4x1074 4 B.M.3 107
RL 2 _K,—— RL_3_K, A_4_K+RP_3_K,—— RPA 3 K,
8.6x107 107!
RP 2 K,— - RP 3 K, A_4_K+RLP_3_K,— RLPA 3 K,
6.4x1074 P —
RLP 2 K, RLP 3 K, bB_blochemlcal, M=mass transfer. .
a0~ K, (K,)=source (target) subcompartment index (see text for compartment
RPA 2 K, RPA 3 K, index notation).
43%1074
RLPA 2 K,—— RLPA 3 K,
5 BM.3 103 APPENDIX B
RL 2 K,——L_1_K+R_2_K, N
T s T Table XI reports the conditions imposed on the molecu-
RLP 2 K,—— L_1_K,+RP_2 K, lar species in the SSM model in terms of their involvement
RLPA 2 K 10 L1 K+RPA 2 K in the reactions as a function of their compartments. As
Em— + . . . .
) BMA - ; et ! ST stated in Table XI, unbound adaptor proteins reside in the
T RPA_2_K,—— A_4_K,+RP_2_K, cytoplasm only. However, upon forming a complex with re-
43x107 ceptors, adaptor proteins become part of the compartment
RLPA 2 K,— A 4_K,+RLP_2 K, . i e .
3 B T where the interacting receptor resides in. Similarly, upon dis-
RL_3_K=RLP_3 K sociation from the receptor complex, the adaptor protein re-
9 turns to the cytoplasm. Therefore, reactions 1, 3, 5, 6, and 7
R 3 K]fRP sk actually occur between two molecules in different compart-
— . .
3 B2 T ikt ments. Also, reactions 6 and 7 involve the mass transfer of an
RL3 K—— @ adaptor protein from a source subcompartment to a target
6x107¢ subcompartment. Further details of mass transfer processes
RLP3 K—— @ . . .
ool and reactions 6 and 7 are reported below. It is not difficult to

RIPA3 K—— @

check that species connectivity remains very nearly constant
for SSM models 1, 2, and 3.
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Localization and spatial distribution of molecules in the
SSM system is ruled by particle exchange (i.e., mass trans-
fer) between the subcompartments. A subcompartment may
only exchange material with four adjacent subcompartments
with which it has a common edge. Material exchange with
diagonal neighbor subcompartments is not permitted.
Material exchange between two subcompartments that
belong to the same main compartment results in material
redistribution within that major cellular compartment. In
contrast, material exchange between two subcompartments
that belong to different major compartments results in
material transport between cellular compartments. Rather
than using the diffusion equation, we model the mass transfer
reactions as first-order reactions. Involved rate constants are
guessed using the relationship between the average squared
displacement (r?) of a particle and its diffusion coefficient D
for random two-dimensional motion (r’)~4Dt¢ at large
times. Given a subcompartment, the number of complexes
with diffusion coefficient D leaving the circle of radius r
spanning the subcompartment per unit time can be estimated
as ~4D/{r*). As subcompartments have four edges, the mass
transfer rate through any one of the four sides would be
D/{r?). If there are N> subcompartments in a model, (+?) is
proportional to A/N? where A is the area of the system. Thus,
it follows that the mass transport rate is proportional to N,
and this factor was used to equalize the rates among different
size models. Mass transfer rate constants that were used in
our simulations, as well as the rate constants of the included
biochemical reactions occurring in each of the four major
compartments are tabulated in Table XII.

We note that compartments may have different charac-
teristics and that the reaction rate of a particular reaction may
not be the same in all compartments. For example, the pH
(acidity) can have a strong effect on the association rates and
cell compartments are known to have different pH
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values."*"® In this study, we include such effects by using

different reaction rates in different compartments for the
same type of reaction (Table XII).

'D. T. Gillespie, Physica A 188, 404 (1992).

2H. H. McAdams and A. Arkin, Trends Genet. 15, 65 (1999); A. Arkin, J.
Ross, and H. H. McAdams, Genetics 149, 1633 (1998).

3C. Stanford and R. Horton, Receptors: Structure and Function, 2nd ed.
(Oxford University Press, New York, 2001).

‘c. T Morton-Firth, Ph.D. thesis, University of Cambridge, Cambridge,
UK, 1998.

D.T. Gillespie, J. Comput. Phys. 22, 403 (1976).

°D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).

"M. A. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000).

8s.S. Schmid, Annu. Rev. Biochem. 66, 511 (1997).
Y A. Sorkin, Biochem. Soc. Trans. 29, 480 (2001).

P, P. DiFiore and G. N. Gill, Curr. Opin. Cell Biol. 11, 483 (1999).

''B. N. Kholodenko, O. V. Demin, G. Moehren, and J. B. Hoek, J. Biol.
Chem. 274, 30169 (1999).

ZA. R. Asthagiri and D. A. Lauffenburger, Biotechnol. Prog. 17, 227
(2001).

By Resat, H. S. Wiley, and D. A. Dixon, J. Phys. Chem. B 105, 11026
(2001).

4y, Resat, J. A. Ewald, D. A. Dixon, and H. S. Wiley, Biophys. J. 85, 730
(2003).

SA. R. French, D. K. Tadaki, S. K. Niyogi, and D. A. Lauffenburger, J.
Biol. Chem. 270, 4334 (1995).

M. Gibson and J. Bruck, California Institute of Technology Report No.
ETRO26, October 1998.

'7Y. Cao, H. Li, and L. Petzold, J. Chem. Phys. 121, 4059 (2004).

'8D. Gillespie, J. Chem. Phys. 115, 1716 (2001).

'E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002).

M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, J. Chem. Phys.
119, 12784 (2003); D. T. Gillespie and L. R. Petzold, J. Chem. Phys.
119, 8229 (2003).

2IC. Rao and A. Arkin, J. Chem. Phys. 118, 499 (2003).

2T, Kiehl, R. Mattheyses, and M. Simmons, Bioinformatics 20, 316
(2004).

BM. Schwehm, Parallel Stochastic Simulation of Whole-Cell Models, Pro-
ceedings of the Second International Conference on Systems Biology
(ICSB 2001), Los Angeles, CA, 4—7 November 2001 (Omni Press, Madi-
son, 2001), pp. 333-341.

Downloaded 23 Feb 2007 to 158.130.148.33. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



