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This paper considers the derivation of approximations for stochastic chemical kinetics governed by
the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow
reactions as opposed to fast and slow species and (2) conditional probability densities are used to
derive approximate, partitioned master equations, which are Markovian in nature, from the original
master equation. Under different conditions dictated by relaxation time arguments, such
approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations
coupled with discrete stochastic simulation) approximations previously reported. In addition, the
derivation points out several weaknesses in previous justifications of both the hybrid and
equilibrium systems and demonstrates the connection between the original and approximate master
equations. Two simple examples illustrate situations in which these two approximate methods are
applicable and demonstrate the two methods’ efficiencies. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.2062048]

I. INTRODUCTION

Exact methods are available for the simulation of iso-
thermal, well-mixed stochastic chemical kinetics."™ As in-
creasingly complex physical systems are modeled, however,
these methods become difficult to solve because the compu-
tational burden scales with the number of reaction events.’
Consequently, recent efforts have focused on approximations
to reduce this computational burden. These efforts consist of
approximating either the entire master equation (e.g., the
T—leapingsf7 and binomial—leaping&9 methods) or a portion of
the master equation (the so-called partitioning methods). In
this paper, we focus our attention on the partitioning methods
and their derivations.

The master equation has been partitioned using both the
species number and the extent of reaction coordinates. We
first review contributions that partition on the basis of the
species number coordinate. To the best of our knowledge,
Janssen'”"" and Vlad and Pop12 are the first to examine the
adiabatic elimination of fast-relaxing variables in discrete
stochastic chemical kinetics using this coordinate. These
works draw inspiration from the early contributions of both
Haken'® and van Kampen.14 In fact, Haken outlines a general
procedure for eliminating fast-relaxing variables from the
discrete master equations.13 This general derivation nomi-
nally encompasses any coordinate system, and as we demon-
strate later in this paper the proper choice of coordinate sys-
tem can lead to both convenient reductions in the structure of
the master equation and justification of the adiabatic hypoth-
esis. Rao and Arkin use the quasi-steady-state assumption to
approximate the fast species and propose algorithms for nu-
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merically simulating the resulting reduced system.15 Cao
et al'® equilibrate the fast species using an equilibrium
approximation on a virtual fast subsystem, and then derive
a slow-scale stochastic simulation algorithm for the slow
species.

The extent of the reaction coordinate system has been
used by several authors to partition the master equation. Ha-
seltine and Rawlings17 partition chemical reactions into fast
and slow reactions using an irreversible extent coordinate,
approximate the extents corresponding to the fast reactions
either using Langevin or deterministic equations, and pro-
pose several algorithms to simulate the resulting system.
Here, the authors postulated the form of the reduced master
equation. In contrast to this approach, both Haseltine'® and
Goutsias' partition chemical reactions into fast and slow
reactions again using an irreversible extent coordinate® but
derive the form of the reduced master equation using order-
of-magnitude arguments. By making various approximations
on the fast extents, these authors then derive stochastic simu-
lation algorithms for the slow extents.

In this paper, we use the constructs of (1) partitioning on
the basis of fast and slow reactions using a net extent coor-
dinate and (2) conditional probability densities to derive ap-
proximate, partitioned master equations, which are Markov-
ian in nature, from the original master equation. We
demonstrate that under different conditions dictated by the
characteristic relaxation times, such approximations give rise
to both the hybrid approximation previously presented by
Haseltine and Rawlings17 and the equilibrium approximation
previously reported by Cao et al."® and Goutsias."” Our deri-
vation points out several weaknesses in our previous justifi-
cation of the hybrid system]7 and, in our opinion, presents an
alternative and simpler method for deriving the equilibrium
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approximation than those proposed by either Cao et al.'® or
Goutsias."” Additionally, the derivation demonstrates the
connections between the original and approximate master
equations. Two simple examples illustrate situations in which
these methods are applicable.

Il. STOCHASTIC PARTITIONING

For chemical kinetics, the master equation is usually pre-
sented using the species number coordinate. An alternative
coordinate is the extent of reaction, and working in this co-
ordinate can prove useful as demonstrated by Vlad and
Ross*'"? and Ishida.”® Here, the key ideas are to (1) model
the state of the reacting system using the net extents of the
reactions as opposed to the numbers of molecules of each
species and (2) partition the state into subsets of “fast” and
“slow” extents. With these modeling choices we can exploit
the structure of the chemical master equation, the governing
equation for the evolution of the system probability density,
by making order-of-magnitude arguments. We then derive
the master equations that govern the fast-and slow-extent
subsets. This section presents these steps in greater detail.

We model the state of the system, x, using a net reaction
extent for each reaction. Note that reversible reactions are
modeled using only one net extent. This choice deviates from
previous derivations,'” ™ which model reversible reactions
as two extents (one for the forward reaction and one for the
reverse reaction), and deserves some additional attention.
Consider the simple example

A=B

with initial condition of ten molecules of A and zero B. If we
choose to model this system using a single net extent, then
there are a finite number of values (11) that this extent may
take. On the other hand, if we model this system using two
extents (one for each of the forward and reverse reactions),
then there are an infinite number of values that the extent
might take because we require only that the sum of the two
extents yield non-negative numbers of molecules for both
species. Thus, under standard assumptions such as conserva-
tion of elements, a finite number of reactions, and finite
stoichiometries for reaction events, the net extent represen-
tation yields a master equation with a finite number of
entries, whereas the irreversible extent representation yields
an infinite number of entries. To facilitate the analysis of
the master equation, we have chosen to use the net extent
representation.

In this representation, species numbers are, of course,
related to the reaction extents by

l’l=n0+VTX (1)

and the choice of the reaction extent coordinates is motivated
only by improved clarity when treating large and small reac-
tion propensities in the subsequent development. Assuming
m net reaction extents among p chemical species, we have
the following:
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e x is the state of the system in terms of net reaction
extents ( an m-vector),

e n is the number of molecules of each species (a
p-vector),

* n, is the initial number of molecules (a p-vector), and

* v is the stoichiometric matrix (an m X p-matrix).

The upper and lower bounds of x are constrained by the
limiting reactant species. We arbitrarily set the initial condi-
tion to zero. Given assumptions outlined by Gillespie,24 the
governing equation for this system is the chemical master
equation

M => a’,:(x—lk)P(x —1I;;1)

dt k=1

+a(x+I)P(x+1;:1) - (a,i(x) + a;(x)) P(x;1)
(2)

in which

* P(x;1) is the probability that the system is in state x at
time 1,

af,:(x)dt is the probability to order dr that the kth forward
reaction occurs in the time interval [z,7+dt),

ay(x)dt is the probability to order dr that the kth reverse
reaction occurs in the time interval [¢,7+dt), and

o I, is the kth column of the (m X m)-identity matrix I.

Here, each net extent is characterized by a forward and re-
verse reaction with propensities a(x) and aj(x), respectively.
Potentially either or both of these propensities may be zero
for a given x. The structure of I arises for this particular
chemical master equation because of the net extent coordi-
nate system. Also, we have implicitly conditioned the master
equation (2) on a specific initial condition, i.e., n,. General-
izing the analysis presented in this paper to a distribution of

initial conditions (ng 1, ...,ng,) is straightforward due to the
relation
P(x|ng . ....ng 50 =2 P(x|ng ;1) P(ny ) (3)

J

and the fact that the values of P(n;) are specified in the
initial condition.

Now we partition the extents into two subsets: those that
have small net propensity functions (|a{(x)+a,’((x) ’s), and
those that have large propensity functions. We designate
these subsets of x as the (m—1)-vector y and the [-vector z,
respectively. Note that
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y | slow extents r o
X= 1= (4)

Z fast extents 0 FF

in which I’ and IF are (m—1Xm-1)- and (I X [)-identity ma-
trices, respectively. Denoting the total extent space as the set
X, we define a subset XPC X for which

|cl(y.2) + ci(y.2)| > |b(y.2) + b)(y.2)|

y
z

Vi<k<l, 1<sjsm-I, {]exp (5)

in which we have partitioned the reaction propensities into
groups of fast (c]f and c;) and slow (b; and b;)

di(y,z;t) bi(y,z;1)
aﬁl—l(y’z;t) b£1_,(y,1;t) slow reaction
r = r . s (6)
ay(y,z;1) bi(y,z;1) propensities
atrn—l(y’Z;t) bfn_,(y,z;t)
a1 (y.2:0) (y,z;0)
a{n(y,z;t) c{(y,z;t) fast reaction o
a i (y.z;t) || ¢i(y.z;r) | propensities
a,(y,z;1) ci(y.z;1)

We also define the sets Y and 7 to span all possible combi-
nations of slow and fast reaction extents, respectively.
Y,CY and 7,C7 are the slow and fast reaction extents cor-
responding to Eq. (5).

Thus, Eq. (2) becomes

-1

3

J

dP(y;1) S (
ZEZp

dt

1]
—_

l

k=1
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dP(y,z;t)

m—[
=D by-L,z)P(y-L,z;t
& 2 blly )P(y )

j=1
+bi(y +1;,2)P(y + I},z;1)

- (bjf(y’z) + b;(y,z))P(y,ZJ)
1

+ > cly.z—E)P(y,z - L)
k=1

+ ey, z+ ) P(y,z + I};1)
— (c(y.2) + c(y.2)) P(y, z;1). (8)

Ultimately, we are interested in determining an approximate
governing equation for the evolution of the joint density,
P(y,z;1), in regimes where fast-reaction propensities are
much greater than slow-reaction propensities.

By defining the conditional and marginal probabilities
over this subset as
zel 9)

P(y,z;t)=P(z >

Y:OP(y;t) VyeY,

P(y;0) = > P(y.z:1)

zeﬂp

VyeY, (10)

we can alternatively derive evolution equations for both the
marginal probability of the slow reactions, P(y;t), and the
probability of the fast reactions conditioned on the slow re-
actions, P(z|y;t). Consequently, we then know how the fast
and slow reactions evolve. Also, this partitioning is similar to
that used by Rao and Arkin,"® who partition the master equa-
tion by species to treat the quasi-steady-state assumption. We
partition by reaction extents to treat fast and slow reactions.

A. Slow-reaction subset

We first address the subset of slow-reaction extents y.
From the definition of the marginal density,

P(y;n)= >, P(y,z:1)

ZEZP

VyeY,. (11)

Differentiating Eq. (11) with respect to time yields

dP(y;t) S dP(y,z;1)

\v Y. 12
dt dt yeir (12)

zeZp

Now substitute the master equation (8) into Eq. (12) and
manipulate to yield

bi(y ~I.2)P(y ~ I,2:1) + b(y + I, 2)P(y + I}, 2:1) — (b](y.2) + b{(y.2)) P(y.2:1)

+ 2 vz = )Py, 2z~ I;0) + cjy.z + I)P(y,z + ;1) - (c(y,2) + c,i(y,Z))P(y,z;t)) VyeY, (13)
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m—l
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=2 2 bi(y-I.2)P(y—I.z:1) + bi(y + L.2) P(y + I}.z:1) — (b/(y.z) + b}(y.2)) P(y.2:1)

j=1 zeZp
l

+2 2 Ay z— Py, —I:0) + cj(y,z+ [Py, 2+ I = (}(y,2) + f(y,2) P(y, 2:1)

k=1 zeZp

Sy

€1,

If ZP=Z, then Eq. (15) is exact; otherwise, we obtain a
boundary condition equating the probability fluxes between
the partitions [i.e., P(y)Vy e Y, and P(y)Vy ¢ Y ,]. Also, if
we rewrite the joint density in terms of the conditional den-
sity using the definition

P(y,z;

then one interpretation of this analysis is that the evolution of
the marginal P(y;7) depends on the conditional density
P(z|y;t). We consider deriving an evolution equation for the
conditional density P(z|y:?) next.

Verp, ZEZ[,, (16)

B. Fast-reaction subset

We now address the evolution of the probability density
for the subset of fast reactions conditioned on the subset of
slow reactions, P(z|y;t). For our starting point, we use
order-of-magnitude arguments, i.e., Eq. (5), to approximate
the original master equation (8) as

1
% ~ g y.z-)P(y.z—I}:1)
+cey,z+ I)P(y,z+ ;1)
— (c}(y.2) + c}(y.2) P(y.2:1)
VyeY, zel, (17)

We define this approximate joint density as P,(y,z;?), and
thus its evolution equation is

1
dP,(y,z;t) :
d[ égci(y3z_li)PA(y3z_Ii9t)

+ e (y,z+ ) Py(y,z + I;;0)
- (Ci(Y7z) + C;(y7z))PA(va;t)
Ver[,, ZEZP. (18)

Following Rao and Arkin,”” we define the joint density
P4(y,z;t) as the product of the desired conditional density
P4(z|y;t) and the marginal density P,(y;?):

PA( VyEYp,

.
Ze Ap.

(19)

s &y

Differentiating Eq. (19) with respect to time yields

by - Iy,z)P(y F,z;t) + br(y +Iy,z)P(y +I‘,z,t) (bf(y,z) + br(y 2))P(y,z;t)

VyeY, (14)

VyeY,. (15)
[
dPs(y.z;1) _ A(y )
dr dr Pu(y;1) + ————P,l(zly;1)
VyeY, zel,. (20)

Solving Eq. (20) for the desired conditional derivative yields

1 (dPA(y,z;t)

dt - Pu(y;1) dt
dP,(y;t) )
gt zly;1)
VyeY, zel, (21)

Equation (21) obviously requires the probability P,(y;?) to
be nonzero for 7,<<t<<cc. Under standard assumptions such
as conservation of elements, a finite number of reactions, and
finite stoichiometries for reaction events, it can be shown
that this statement is true for the net extent coordinate.
Evaluating the marginal evolution equation by summing Eq.
(18) over the fast extents z yields

1
dP,(y;t z
PAYD _ 5 S f(yia-E)Paly.a—Ea)
dt ze7, k=1

+ ey, 2+ I)Py(y.z +I}50)

= (c{(y.2) + c}(y.2)) Pa(y.2:1)
VyeY, (22)

=0 VyeV,. (23)

Consequently, Eq. (21) becomes
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!
dP(zly;t)
T: zc}z(y,z_li)PA(Y7z_Ii;t)

+ ey, 2+ I)Py(y,z + I};1)

- (c;:(y’z) + clrc(y’z))PA(yaZ;t)) PA(yt)

VyeY, zel (24)

14

1
=2 c[(y.z-)Py(z-Ly:1)
k=1

+c(y,z+I)Py(z+ L]y;1)
- (c;:(yaz) + C]C(Y7z))PA(Z

y:t)
Vy e Yp, zZe Z[,, (25)

which is the desired closed-form expression for the condi-
tional density P,(z|y;?).

C. The combined system
We approximate the joint density P(y,z;7) as
P(Y7Zat) = PA(Z y’t)P(y’t) vy € Yp’ ze Zp' (26)

Combining the evolution equations for the slow- and fast-
reaction extents, i.e., Eqs. (15) and (25), respectively, then
yields the following coupled master equations:

m—l
dP(y; : : : :
LUEIESS ( > Dy -I.2)Pa(aly —I%t))P(y—I;‘-;r)

dr j=1\zeZ,

n ( S by +LL2)Paaly + p‘;r))P(y + L)

zeZp

- ( S, (bl(y.2) +b(y,2)) Pa(z

zeZp

y;t))P(y;t)
VyeY,, (27a)

1
dP,(zy;1)
TATED S, diva-ppaa- 1

yi1)

+ ey, 2+ )Pz + L]y;0)
— (c(y,z) + c{(y,2))PA(z

VyeY,,

yit)

ze7, (27b)

dP(x;t "
AP0 S afx - 1)P(x~I:1)
dt k=1

+a (x+[)P(x+ ;1)
— (al(x) + aj(x)) P(x;1)
Vx ¢ X, (27¢)

Additionally, the initial condition for the coupled master
equations (27) can easily be derived from the initial condi-
tion for the original master equation (2). From these equa-
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tions, using order-of-magnitude arguments to partition the
system has clearly had three effects. First, the original master
equation given by Eq. (27¢) still holds when the partitioning
criteria are not met (i.e., x & X)), whereas coupled, approxi-
mate equations govern the system evolution when the parti-
tioning criteria are met (i.e., X € Xp). Second, the coupled
expressions for the marginal and conditional evolution equa-
tions in (27) are Markovian in nature. Finally, the approxi-
mate evolution equation for the fast extents conditioned on
the slow extents, P,(z|y), has completely decoupled from
the slow extent marginal, P(y). With these findings, we ad-
dress the claim made by Cao et al. ' that the real fast system
conditioned on the slow system is not Markovian. Indeed,
density P(z|y;?) is not Markovian and solving for it would
require solution of the joint density P(y,z;t). However, the
approximate density P,(z|y;t) calculated using order-of-
magnitude arguments is Markovian and independent of the
slow marginal P(y;7), which makes analysis tractable as is
shown subsequently.

Exact solution of the coupled master equations (27) is at
least as difficult as the original master equation (2) due to the
fact that one must solve an individual master equation of the
form of Eq. (27b) for every element of the slow conditional
equation (27a). From a simulation perspective, Eq. (27) is
also as difficult to evaluate as the original master equation
(2) since both of the coupled master equations are discrete
and time-varying. However, approximating the fast extents
can significantly reduce the computational expense involved
with simulating these coupled equations. Different approxi-
mations are applicable based on the characteristic relaxation
times of the fast and slow extents. Next, we investigate two
such approximations: an equilibrium approximation for the
case in which the fast extents relax significantly faster than
the slow extents, and a Langevin or deterministic approxima-
tion for the case in which both fast and slow extents relax at
similar rates.

D. The equilibrium approximation

We first consider the case in which the relaxation time
for the fast extents is significantly smaller than the expected
time to the first slow reaction. To illustrate this case, we
consider the simple example

KoK
A=B—C. (28)
Ky

We denote the extents of reaction for this example as €, and
€, and define the reaction propensities as

a}(x) = kin,, (29a)
d;(x) = king, (29b)
al(x) = kyne. (29¢)
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If k{ ,k{>kf , then we can partition €; as the fast-reaction
extent z and €, as the slow-reaction extent y. Additionally,
we would expect the fast extent of reaction to equilibrate
(relax) before the expected time to the first slow reaction.
Returning to the master equation formalism, this equilibra-
tion implies that we should approximate the fast reactions,
Eq. (27b), as

0~ cj(y.z—I})Py(z~Ly:1)

i
=1

+c(y,z+ ) Py(z+I}|y;t)

— (cly,z) + ci(y,z)) P4 (zly;1)
(30)
VyeY, zel.

Here, we expect that 7,=7 and Y,=Y since fast reactions
always have large propensities for this case. The resulting
coupled master equations are

m—l

Py 5 ( S bly-L,0)Paly —I»‘.’;t)>P(y ~L:)

dt =1 \ze7,
¥ ( S bily +E2)Py(aly +1_>f;r>)P(y +I31)
zeZp
- ( S By + bj(y,z>>PA(z|y;r>)P<y;r>
zeZp
Vyel, (31a)
1
0=, cj(y,z—L)P,(z-Ely;t)
k=1
+ ey, z+ )Pz + L)y;t)
- (CJ/:(y,Z) + c;(y»z))PA(zb’;t)
(31b)

VyeY, zel.

This coupled system, Eq. (31), is comparable to that pro-
posed by Haken,"® who considered the adiabatic elimination
of fast-relaxing variables from the discrete master equation.
In contrast to Haken’s derivation, we have chosen a specific
coordinate system (the net extent of reaction) and a specific
means of partitioning this coordinate (by the order of mag-
nitude of the corresponding reaction propensities). Given
these specific choices, inspection of Eq. (14) reveals that the
special nature of the stoichiometric matrix for the extent sys-
tem (an identity matrix) zeros the sum

J. Chem. Phys. 123, 164115 (2005)

0= > cJy,z-)P(y,z-I;;1)

ZEZp k=1
+ ey, z+ ) P(y,z+I;;1)

- (CJ/:(Y’Z) + C/C(y,z))P(y,Zﬂ)
VyeY,. (32)

That is, this coordinate system generates the same value of y
in all terms of Eq. (32) when summing over z € 7, thus
making the sum over all fast-reaction propensities zero.
Hence our specific choices lead to significant simplification
for the evolution equation of the slow marginal density, a
result that is not obvious from Haken’s derivation. Addition-
ally, Haken’s adiabatic hypothesis makes the assumption that
fast transitions do not affect the slow partitioned variables.
Here, we demonstrate that choosing the appropriate coordi-
nate and partitioning strategy enforces this particular con-
straint; in this case, fast reactions do not change the value of
the slow-reaction extents.

This coupled system, Eq. (31), is markedly similar to the
governing equations for the slow-scale simulation recently
proposed by Cao et al.'® Their derivation is different from
ours, however, and the differences deserve some attention.
First, Cao et al.'® partition on the basis of fast and slow
species rather than extents, with fast species affected by at
least one fast reaction and slow species affected by solely
slow reactions. We have chosen to remain in the extent space
because reactions are equilibrating, not chemical species. In-
deed, Cao et al.'® note that reactions (not chemical species)
are the primary concern when they pose the question: “[I]s
there a legitimate way to skip over the fast reactions and
explicitly simulate only the slow reactions?” Also, Cao
et al."® use the construct of a virtual fast system to arrive at
an evolution equation for the slow species [similar to our
evolution equation for the slow-extent marginal, Eq. (15)], a
choice that obviates the need for defining an evolution equa-
tion for the conditional density P(z|y). In contrast to this
approach, our approach has a tighter connection to the origi-
nal master equation because we derived the coupled system,
Eq. (31), directly from the original master equation and
because we can obtain an approximate value of the joint
density P(y,z;t) through Eq. (26). Also, all approximations
arise directly from order-of-magnitude and relaxation-time
arguments.

We note that the evolution equation for the slow species
derived by Cao et al. 16 can also be derived using conditional
density arguments. We consider partitioning the species in
the same manner as these authors, denoting the slow species
as n* and the fast species as n/. We define the partitioned
subsets of the fast and slow species as N; and N;, respec-
tively. The stoichiometric matrix for the species coordinate
partitions as follows:

a7
7] o

Then the corresponding evolution equation for the slow mar-
ginal density is
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-1
dP(n’;t) =
—c > 2 b -wn - V)P’ -
4 J=l e Nj;

- (bf(ns,nf) + b;(ns,nf))P(n‘Y,nf;t)

t) + b'(n
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v/ + vf)P(n v+ v )

I
> > c{(nx,nf— y{)P(n“,nf— y{;t) + c,’((n‘v,nf+ l_}Z)P(n“,nf+ y{;t) - (cZ(nS,nf) + c,’((n“,nf))P(nS,nf;t) (34)

k=1 NS
nfeN{,

—1

Fz

e N£

§

~.
Il

F— )P/ - %[’ - ],t)>P(n ~%31)

¥ ( S b+ 0 + )P+’ + ffjs;t))P(ns +V0) - ( > Gl + b;(ns,nf))P(nf]ns;t))p(ns;t)}

ne I\];

in which the fast reactions have again dropped out of the
evolution equation. Additionally, we can use order-of-
magnitude arguments to derive an approximate evolution
equation for the conditional density P(n/|n*;z) that is analo-
gous to Eq. (31b). Hence the governing equations for the
slow-scale simulation can also arise from conditional density
arguments.

E. The Langevin and deterministic approximations

We now consider the case in which both fast and slow
extents relax at similar time scales. Revisiting the reaction
example (28), we consider the case in which k{ > k! ,kg and
Ny, > Np,,Nc, iIn Which the notation ny, refers to the initial
number of A molecules. For this example, we partition €; as
the fast-reaction extent z and €, as the slow-reaction extent
y. Until a significant amount of A has been consumed, we
would expect numerous firings of reaction (1) interspersed
with relatively few firings of reaction (2). Clearly the system
never equilibrates, but rather fast and slow reactions fire until
the fast-reaction propensity reaches a similar order of mag-
nitude as the slow-reaction propensity. We note that the net
extent coordinate system requires us to either neglect the
reverse reaction of €, or to treat it the same as the forward
reaction of €; even though its propensity may be the same
order of magnitude as that of the slow extent [i.e., a/(x)
> af(x), af;(x) and a’(x) za/;(x)]. However, we expect such
approximations to introduce a negligible amount of error into
the estimates of the net extents. Note also that, in contrast to
the equilibrium approximation, we have introduced the num-
ber of molecules into the time-scale argument. For most
cases, we expect this time-scale argument to involve large
numbers of reacting molecules, but such involvement is
not always the case as demonstrated in the viral infection
example presented by Haseltine and Rawlings.'7 Rather,
we require that the magnitude of the fast-reaction propensi-
ties remain large relative to the magnitude of the slow-
reaction propensities through the expected time of the first
slow reaction.

e \{;

(35)

Returning to the master equation formalism, this process
requires a different approximation for the conditional density
P(z|y). We proceed by demonstrating as outlined by
Gardiner”™ how this subset can be approximated using the
Langevin approximation. Define the characteristic size of the
system to be () and use this size to recast the master equation
(25) in terms of intensive variables (let Z < z/(}). Perform-
ing a Kramers-Moyal expansion on this master equation re-
sults in a system size expansion in ). In the limit as z and ()
become large, the discrete master equation (27b) can be ap-
proximated by its first two differential moments with the
continuous Fokker-Planck equation

!
OPy(z|y;t J
AN 5 04 v )P (alyin)
ot i=1 9Zi
1o
1
S ,
2z=1 Jj=1 (9 ’
VyeY, zel, (30

in which (noting that z consists of extents of reaction)

l
A(y.z) = 2 I(cl(y.2) - ¢](y.2) (37)
i=1
=[c]1C(y’z) - C}]’(y7z)’c£(y7z) - Cg(y’z), ooy
Jy.z) - cj(y.2)]", (38)
1
[B(y,2)] = X E(I)"(cl(y.2) - ¢}(y,2)) (39)
i=1

=diag(c/(y,z) + ¢|(y.z),
cé(y,z) +c5(y,z), ... ,cf(y,z) +ci(y,z)). (40)

Here, diag(a,...,z) defines a matrix with elements a, ...,z
on the diagonal. Equation (36) has It6 solution of the form
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164115-8 E. L. Haseltine and J. B. Rawlings

!
dz;=A(y.z)dt + 2, B;(y,z)dW,,

j=1

VisislyeY, zel, (41a)
_ , T

=(cl(y.z) - c{(y,2))dt + \cl(y,2) + ¢/(y.2)dW,
Vi<isl, yeY, zecl, (41b)

in which W is a vector of Wiener processes. Equation
(41) is the chemical Langevin equation, whose formulation
was recently readdressed by Gillespie.26 Note the difference
between Egs. (36) and (41). The Fokker-Planck equation
(36) specifies the distribution of the stochastic process,
whereas the stochastic differential equation (41) specifies
how the trajectories of the state evolve. Also, bear in mind
that whether or not a given () is large enough to permit
truncation of the system size, expansion is relative. In this
case, () is of sufficient magnitude to make this approxima-
tion valid for only a subset of the reactions, not the entire
system.

Combining the evolution equations for the slow- and
fast-reaction extents, i.e., Egs. (27a) and (36), respectively,
the problem of interest is the coupled set of master equations

dP(y;t)
dt

m—l

-3

( f by - I, 2)P,(zy - Iy;t)dZ’)P(y -I:1)
k=1 z

m—l
+ (J b,’c(y+Iy,z,L)PA(z,£|y+Iy;t)dz’)P(y+Ii;t)
k=1 z

- (f (Oy.z") + bi(y.z)) Pz’ y;t)dZ’>P(y;t)

VyeY,, (42a)
P
1
IP,(zly:1) g
— —(A. ,Z)P .t
at zﬁzi( {(y.2)P4(z]y:1))
|
1 s
Py B.. 2p 4
*32 2 5y o B0 Palely)
vyeY, zei, (42b)
dP(x;t "o
£=Ea.]{’(x_lk)l)(x_lk;t)
a =

+af(x + I) P(x + I;;1) — (al(x) + af(x)) P(x;1)
Vx ¢ X,. (42¢)

If we can solve these equations simultaneously, then we have
an approximate solution to the original master equation (8)
due to the definition of the conditional density given by Eq.
(26). Note that the solution is approximate because we have

J. Chem. Phys. 123, 164115 (2005)

used the Fokker-Planck approximation for the master equa-
tion of the fast reactions.

In the thermodynamic limit (z—o0, Q—o0, Z=2z/Q)
=finite), the intensive variables for the fast subset of reac-
tions (Z’s) evolve detelrministically.27 Accordingly, we pro-
pose further approximating the Langevin equation (41) as

dz;= (C{(y,z) —-ci(y,2)dt Vis<is<l, yeVY, zel,.

(43)
In this case, the coupled master equations (42) reduce to

m—1
dP(y;t)
—= = > by - L.z(0) Py - ;1)
dt k=1
+bi(y + B.z(0)P(y + ;1)

— (bl (y,2(1)) + bi(y,z(0)) P(y;1)

(44a)

VyeY,,
dz;= (c{.(y,z) —cily,z)dt Visisl, yeY, zel,
(44b)

m

dP(x;1) : ,
— ; di(x —L)P(x —I;:0) + af(x + L) P(x + I ;1)

—(@l(x) +ai(x)P(x;1)  Vx ¢ X, (44c)

in which z() is the solution to the differential equation (43).
The benefit of this assumption is that Eq. (43) can be solved
rigorously using an ordinary differential equation (ODE)
solver. If the magnitude of the fluctuations in this term is
small compared to the sensitivity of ¢;(y,z) to the subset y,
then Eq. (43) is a valid approximation. This approximation is
also valid if one is primarily concerned with the fluctuations
in the small-numbered species as opposed to the large-
numbered species, assuming that the extents approximated
by Eq. (43) predominantly affect the population size of large-
numbered species. Alternatively, we could recast the exten-
sive variables (i.e., X, y, and z) as intensive variables; in this
case, we would expect smaller deviations between the origi-
nal and partitioned master equations.

This derivation points out several weaknesses in our pre-
vious justification of the hybrid system.17 Previously, we de-
rived an approximate expression for the fast marginal density
P(z;1) using the order-of-magnitude argument

dP(y|z;t
Wlzo) _

dt

(45)
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164115-9 Approximations for stochastic chemical kinetics

We also postulated (without derivation) the functional form
of the evolution equation for the slow marginal density
P(y;t). The postulated evolution equation is virtually identi-
cal to Eq. (44), but with a different coordinate (irreversible as
opposed to net extent). Here, we derived the evolution equa-
tion for the slow marginal density P(y;f) and the (approxi-
mate) conditional density P,(z|y;f) using more precise
order-of-magnitude arguments [i.e., Eq. (5)]. By so doing,
we have the stronger connection between the approximated
densities and the original joint density through Eq. (26).

lll. NUMERICAL IMPLEMENTATION
OF THE APPROXIMATIONS

We now outline procedures for implementing the equi-
librium, Langevin, and deterministic approximations pre-
sented in Sec. II. We propose using simulation to reconstruct
moments of the underlying master equation. We note that the
simulation requires that all reversible reactions be treated as
two irreversible reactions. Consequently, we group all of the

E b,u(y’Z)PA(Z

ze7

b,(y.z;t)dt = f

b,(y.2')P(2'y;t)dz' dt

z

in which b,,(y,z;1)dt is the probability (first order in dr) that
reaction u occurs in the next time interval dr. The joint prob-
ability function P(7,u) is

=+T

P(r,u) = bﬂ(y,z;t+ T)exp<— f ,{Ol(ﬂ)dﬂ) (47)

in which
2m=21
na= 2 by.z:1). (48)
j=1

We refer the interested reader to Haseltine'® for details on the
derivation of this function.
By conditioning the joint probability function P(7,u),

P(,1) = P(u| DP(7), (49)

we can determine the probability density for when the next
reaction occurs

+7

P(7) = (t+ T)exp<— f r{’m(t’)dt’) (50)

J. Chem. Phys. 123, 164115 (2005)

reversible reaction propensities together for the unpartitioned
reactions and the slow-partitioned reactions, i.e.,

al(x) [ a(x) ]
ay(x) a(x)
ajr;(x) Ay ()
_a:n(x) i | a2m(x) i
and
Moo | [ soo |
b'(y.z) by(y,z)
b’;;-l(y,z) bay-21-1(y.2)
_b:n—l(y’z)_ | me—Zl(y»z) _

For the slow reactions, Gillespie28 outlines a general
method for exact stochastic simulation that is applicable to
the desired problem, Eq. (27a). This method examines the
joint probability function, P(7,u), that governs when the
next reaction occurs and which reaction occurs. For this end,
we define

y;f)dt equilibrium approximation

(46)
Langevin or deterministic approximation
[
and which reaction it will be
b, (y,z;t+7)
P(ul7) = : (51

Pt + 7)

These manipulations correspond to the hybrid equivalent of
the direct method. It is a simple exercise left to derive the
necessary densities [i.e., P(7|u) and P(u)] for the hybrid
equivalents of the first and next reaction method. Using
Monte Carlo simulation, we obtain realizations of the desired
joint probability function P(7,u) by randomly selecting 7
and w from the probability densities defined by Egs. (50) and
(51). Given two random numbers p; and p, uniformly dis-
tributed on (0,1), 7 and w are constrained accordingly:

=+7
f wo(?')dt’ +1og(p) =0, (52a)
t
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p—l iz
2 by zst+ 1) < porig(t+ 1) < 2 by(y.zit+ 7). (52b)
k=1 k=1

Simulating the different approximations require slightly dif-
ferent algorithms, which we address next.

A. Simulating the equilibrium approximation

We first address the equilibrium approximation. For this
case,

biy.z;t) = > bj(y,z)PA(z|y;t) V1<;j<2m-2I.

ze
(53)

Additionally, the quantities b;(y,z;?) are actually time in-
variant between slow reactions. Thus, the integral constraint
(52a) reduces to the algebraic relation

__ log(p,)
Rt

Algorithm 1 presents one method of solving this system.
Note that we could draw a sample from the equilibrium dis-
tribution P4(z|y) at any time to determine a current value of
the state, which may be desirable for sampling the system at
uniform time increments. Also, this algorithm is similar to
the slow-scale stochastic simulation algorithm proposed by
Cao et al.,'® with the exception that our algorithm partitions
extents as opposed to species.

(54)

J. Chem. Phys. 123, 164115 (2005)

Solution of the equilibrated density P,(z|y) deserves
some further attention. If we stack probabilities for all pos-
sible values of the fast extents into a vector p, we can recast
the continuous-time master equation as a vector-matrix prob-
lem, i.e.,

d
d_lt) =Cp~=0 (equilibrium assumption) (55)

in which C is the matrix of reaction propensities. The equi-
librium distribution is then the null space of the matrix C,
which we can compute numerically. In general, we expect C
to be a sparse matrix. Consequently, we can efficiently solve
the linear system (55) for p using Krylov iterative methods”
such as the biconjugate gradient-stabilized method. Cao
et al.'® outline some alternative, approximate methods for
evaluating this equilibrated density.

B. Simulating the Langevin and deterministic
approximations: Exact next-reaction time

We now address methods for simulating the Langevin
and deterministic approximations. These approximations
have time-varying reaction propensities, so we must satisfy
Eq. (52a) by integrating ), and the fast subset of reactions z
forward in time until the following conditions are met:

ALGORITHM 1. Exact solution of the partitioned stochastic system for the equilibrium approximation.

Off-line. Partition the set x of 2m extents of reaction into fast and slow extents. Determine the partitioned stoichiometric matrices [the matrices »” and v7]
and the reaction propensity laws [a,(y,z)’s]. Also, choose a strategy for solving the distribution P,(z|y) given by Eq. (31b) for the fast reactions in the

partitioned case.
Initialize. Set the time ¢ equal to zero.
Set the number of species n to n,.

1. Solve for the distribution P,(z|y), denoting all possible combinations of z as (z(0), ...,z(t)).

Record the initial value of z as z(i).
2. For subset y, calculate

(a) the reaction propensities, b;(y.z)=2,_sb;(y.2)P4(z|y) Vj=1....,2m-2l, and

(b) the total reaction propensity, r), =>2""2'b,(y,z).

3. Select three random numbers p,, p,, and p; from the uniform distribution (0,1).

4. Choose z(j) from the distribution P4(z|y) such that
Jj-1 J

D Pa@Bly) <py = D, Paa®)y).

k=1 k=1

Set v,=z(j)—z(i).
5. Let 7=—log(p,)/r},. Choose j such that
j-1

j
D by.0) < pyrin = >, bily.2).
k=1

k=1

6. Let n—n+(v))"+¥,, where » is the jth row of »”.
Go to step 1.
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164115-11 Approximations for stochastic chemical kinetics

t+7
f ra(t")dt’ +1log(p)) =0, (56)
t
2m=21
ra= 2 biy.z:0), (57)
j=1
biy.z:t) = f bj(y,z’)PA(z’|y;t)dz’ Visj<2m-2l.
Z
(58)

For the Langevin approximation, we propose reconstructing
the density P4(z|y;?) by simulating the stochastic differen-
tial equation (41) (also known as the Langevin equation). In
this case, Eq. (58) becomes

J. Chem. Phys. 123, 164115 (2005)

N

— 1

biy,z;t) = ]T]E bj(y,zk) Vi<js2m-2l (59)
k=1

in which z* is the kth simulation of Eq. (41). For the deter-
ministic approximation, Eq. (44) indicates that we need only
solve for the deterministic evolution of the fast extents. We
propose using Algorithm 2 to solve this partitioned reaction
system, in which we choose to use only one simulation to
evaluate Eq. (59) for the Langevin case. This Algorithm 2 is
in fact identical to the one we previously proposed in Hasel-
tine and Rawlings.17 The derivation presented in this paper,
however, points out that using more than one simulation to
evaluate Eq. (59) for the Langevin case is also possible. Such
techniques are not considered in this paper, but are left for
future investigations.

Our previous papelr17 provides some heuristics for parti-
tioning of the state x into fast and slow extents. We refer the
interested reader to several more recent papers that address
this issue in greater detail

ALGORITHM 2. Exact solution of the partitioned stochastic system for the Langevin and deterministic approximations.

Off-line. Determine the criteria for when and how the set x of 2m reaction extends should be partitioned. Determine the stoichiometric matrices of the
form given in Eq. (1) and reaction propensity laws for the unpartitioned [the matrix » and the a;(x)’s] and partitioned cases [the matrix »”, the matrix 77,
and the b,(y,z)’s]. Also, determine the necessary Langevin or deterministic equations for the fast reactions in the partitioned case.

Initialize. Set the time ¢ equal to zero. Set the number of species n to n,,.

1. If the partitioning criteria established off-line are met, go to step 5.

2. Calculate
(a) the reaction propensities, r,=a,(x), and
(b) the total reaction propensity, r, =" r,.

3. Select two random numbers p;,p, from the uniform distribution (0, 1).

Let m=—log(p,)/ ri

Choose j such that

J-1 J
E Iy < Patiot = 2 T
k=1 k=1

4. Let t—t+T.
Let n<—n+ VjT, where w; is the jth row of .
Go to step 1.

5. For subset y, calculate
(a) the reaction propensities, r;=b,(y,z), and
(b) the total reaction propensity, 1, =S2""2'r).

6. Select two random numbers p;,p, from the uniform distribution (0, 1).

7. Determine ,=(°)"[z(t+7)—2(r)] by integrating r},,

2m=21

=T
f RE)dt +1og(p) =0 such that 7,() = X by(y,z31).
t

k=1

8. Let t—t+T.
Let n—n+7v..
9. Choose j such that

D R <P =

k=1 k

J-1 j
.
=1

Current values of the r}’s and r},, should be available from step 7.

10. Let IIHI]+(VJY)T, where ij is the jth row of »”. Go to step 1.

(r) and the subset of fast reactions z until the following condition is met:
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TABLE 1. Model parameters and reaction propensities for the enzyme ki-
netics example.

Parameter Symbol Value

Forward reaction propensity (60a) al(x) Kngng
Reverse reaction propensity (60a) a’(x) kingg
Reaction propensity (60b) ab(x) kongg
Reaction (60a) forward rate constant ¥ 20
Reaction (60a) reverse rate constant Ky 200
Reaction (60b) rate constant ky 1
Initial number of E molecules ng, 20
Initial number of S molecules ng, 10
Initial number of ES molecules s, 0
Initial number of P molecules np 0

0

IV. EXAMPLES

We now consider two motivating examples that illustrate
both when the various approximations should (and should
not) be used and the accuracy of the approximations. For
clarity, we first briefly review the nomenclature that indicates
which approximations, if any, are performed in a given simu-
lation. We can either perform a purely stochastic simulation
on the unpartitioned reaction system or we can partition the
system into fast and slow reactions. For this partitioned case,
a stochastic-equilibrium simulation equilibrates the fast reac-
tions, a stochastic-Langevin simulation treats the fast reac-
tions as Langevin equations, and a stochastic-deterministic
simulation treats the fast reactions deterministically.

A. Enzyme kinetics

We consider the simple enzyme kinetics problem

y
E+S=ES ¢, (60a)
K
ky
ES—E+P e. (60b)

The model parameters and the reaction propensities are
given in Table I. For this example, the first forward and
reverse reactions occur many times before the expected time
of one second reaction. Hence we partition the reaction ex-
tents as follows: €, comprises the subset of slow reactions y
and €, comprises the subset of fast reactions z.

For this example, the hybrid simulation techniques (i.e.,
approximating the fast reactions using deterministic or
Langevin equations) are clearly not valid. Changes in the fast
reactions lead to large changes in the fast-reaction propensi-
ties due to the small number of molecules involved. Rather,
the fast reactions equilibrate (relax) significantly faster than
the slow reaction. Therefore, we consider using the equilib-
rium approximation to address this example.

We calculate the averages of all species using 1000
simulations sampled at a time interval of 0.1 units. We use
both the stochastic-equilibrium and exact simulations to
compute these averages. Figure 1 presents the results of the
comparison. The stochastic-equilibrium simulation provides
an excellent reconstruction of the mean behavior. The exact

J. Chem. Phys. 123, 164115 (2005)
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FIG. 1. Comparison of the stochastic-equilibrium simulation (points) to ex-
act stochastic simulation (solid lines) based on 1000 simulations.

simulation requires roughly 27 times the amount of compu-
tational expense as the stochastic-equilibrium simulation.

We refer the interested reader to Cao et al.'® for addi-
tional examples and discussion of the equilibrium approxi-
mation. While their derivation of the equilibrium approxima-
tion differs from ours, their simulation algorithm is similar to
our Algorithm 1.

B. Simple crystallization

We consider a simplified reaction system for the crystal-
lization of species A presented previously by Haseltine and
Rawlings:17

ky
2A—B €, (61a)
ky

The model parameters and the reaction propensities are
given in Table II. For this example, the first reaction occurs
many more times than the second reaction. Hence we parti-
tion the extents of reaction (g;’s) as follows:* €, comprises
the subset of slow reactions y and €, comprises the subset of
fast reactions z.

For this example, the equilibrium approximation is
clearly not valid. Equilibrating the fast reaction would result
in all of the A forming B, and hence no C would ever react.
Rather, the relaxation times of the fast and slow reactions are
comparable, so we should approximate the fast reactions ap-
propriately. Here, we approximate the fast-reaction subset
using the Langevin approximation (stochastic-Langevin
simulation) and attempt to reconstruct the first two moments

TABLE II. Model parameters and reaction propensities for the simple crys-
tallization example.

Parameter Symbol Value

Reaction propensity (61a) a,(x) %klnA(nA— 1)
Reaction propensity (61b) a,(x) kynane
Reaction (61a) rate constant k| 1x1077
Reaction (61b) rate constant ky 1X1077
Initial number of A molecules ny, 1X10°
Initial number of B molecules ng, 0
Initial number of C molecules ne, 10
Initial number of D molecules np, 0
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164115-13  Approximations for stochastic chemical kinetics

of each species. The Langevin equations are integrated using
the Euler-Murayama method®® with a time increment of 0.01.
We account for the time-varying propensity of the slow re-
action exactly as outlined by Haseltine and Rawlings.17 Fig-
ure 2 compares these results to the exact stochastic results for
10 000 simulations. The approximation accurately recon-
structs the mean and standard deviation for all species with a
13-fold reduction in computational expense. We refer the in-
terested reader to Haseltine and Rawlings17 for results in
which the fast reaction is approximated deterministically
(stochastic-deterministic simulation). This approximation ac-
curately reconstructs all of the means as well as the standard
deviations for species C and D, but fails to reconstruct the
standard deviations for species A and B. This phenomenon is
expected because approximating e€; deterministically ne-
glects all fluctuations caused by the first reaction. However,
the stochastic-deterministic simulation has the additional
benefit of providing a bound on the computational expense.
For example, any increase in the initial number of A mol-
ecules na, increases the computational expense of exact sto-
chastic simulation, whereas the computational expense of the
stochastic-deterministic simulation remains constant regard-
less of the value of ny,-

V. DISCUSSION AND CONCLUSIONS

The primary contribution of this work is the develop-
ment of a conceptual framework that gives rise to both the
hybrid and equilibrium approximations for stochastic chemi-
cal kinetics. This task is facilitated by partitioning a purely
stochastic reaction system using net reaction extents into
subsets of slow and fast reactions. Using order-of-magnitude
arguments, we derive approximate Markov evolution equa-
tions for the slow-extent marginal and the fast extents con-
ditioned on the slow extents. The evolution equation for the
fast extents conditioned on the slow extents is a closed-form
expression, whereas the evolution equation for the slow-
extent marginal depends on this conditional probability. Us-
ing relaxation-time arguments, we can propose two approxi-
mations for the fast extents: a Langevin or deterministic
approximation when both fast and slow extents exhibit simi-
lar relaxation times and an equilibrium approximation when
the fast extents relax faster than the slow extents. Derivation
of the Langevin and deterministic approximations points out
several weaknesses in our previous justification of the hybrid
system.17 Many of these weaknesses were also noted inde-
pendently by Goutsias."” The equilibrium assumption is
similar in nature to the slow-reaction simulation recently
proposed in the literature by Cao et al."® These authors did
an excellent job of deducing how an approximate simulation
should behave when a subset of the total reactions equilibrate
stochastically. However, their approach partitions chemical
species as opposed to reactions. This choice obscures the fact
that reactions are equilibrating, not chemical species. Addi-
tionally, the choice of introducing a virtual fast system leaves
open the question of how their slow-scale stochastic simula-
tion and the original master equation are connected. We be-
lieve that our approach (1) more clearly points out what
terms are neglected in the derivation of the equilibrium ap-
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FIG. 2. Comparison of exact stochastic-Langevin simulation (points) to ex-
act stochastic simulation (lines) based on 10 000 simulations and a Langevin

time step of 0.01. (a) Comparison of the means A and B for species A and B,
respectively. (b) Comparison of the standard deviations o, and oy for spe-
cies A and B, respectively. (c) Comparison of the mean (C) and standard

deviation (+0) for species C. (d) Comparison of the mean (D) and standard
deviation (o) for species D.
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proximation and (2) provides a tighter connection between
the original and approximate master equations. Also, the ap-
proximate, coupled master equations (27) are similar to the
ones independently proposed by both Goutsias' and
Haseltine.'® However, our derivation differs in the subtle
choice of representing the system using net extents as op-
posed to irreversible extents. As noted previously, under
standard assumptions such as conservation of elements, a
finite number of reactions, and finite stoichiometries for re-
action events, the net extent representation yields a master
equation with a finite number of entries, whereas the irrevers-
ible extent representation yields an infinite number of entries,
which makes analysis of the approximate master equation
more difficult. For example, given the standard assumptions
enumerated above, it is possible to prove that the approxi-
mate marginal density P,(y;t) >0V 1,<t< because there
are only a finite number of states in the joint density
P4(y,z;1). For the infinite dimensional case, it is not clear if
there exist some y for which P,(y;7)=0; therefore, the ques-
tion arises as to whether or not P,(z|y;z) is well defined.
Additionally, the irreversible extent representation renders a
master equation that may never equilibrate to a steady state.
In the specific case of all reversible reactions, each irrevers-
ible extent tends to infinity in the limit as t—ce. It is only in
the net extent or species number coordinates that a true
steady state can be realized. This issue is tacitly present but
never addressed by Goutsias' when the stochastic quasi-
equilibrium assumption is introduced. Goutsias'’ proposes
that some fast-reaction propensities should be approximately
equal, i.e.,

cy.z:t) = cf(y.z:0). (62)

This statement is misleading because Eq. (62) is never ex-
actly true in any limit, except for some fortuitous choice of
rate constants. On the other hand, equilibration of the condi-
tional probability distribution as given by Eq. (31b) is true in
the limit as #— oe. Finally, we note that each of the examples
presented by Goutsias' employs strategies for evaluating
linear combinations of the irreversible extents that corre-
spond exactly to the net extent.

Neither Cao et al.'® nor Goutsias' address the case in
which the fast- and slow-reaction extents exhibit similar re-
laxation times. The simple crystallization example presented
in this paper illustrates an example of this case. In this ex-
ample, exact stochastic simulation is computationally expen-
sive because the fast reaction fires substantially more times
than the slow reaction. However, the fast and slow reactions
are relaxing at similar rates. Applying the equilibrium ap-
proximation to this example would yield the incorrect con-
clusion that the slow reaction never occurs. It is precisely
this case that our previous paper17 addressed.

By equilibrating the fast-reaction subset, we can substan-
tially reduce the computational requirement by integrating
the system over a much larger time step than the exact sto-
chastic simulation. This method requires solving for the
equilibrium distribution of the fast reactions. If there are few
fast extents or many of the fast extents are independent of
one another, then exactly solving for this distribution is pos-
sible as illustrated by the enzyme kinetics example. If there
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are a large number of coupled fast extents, then exact solu-
tion may not be computationally feasible. For example, con-
sider the coupled, fast reactions

A+E=B+E=C+E=D+E.

A minimal representation of these reactions requires three
(reversible) extents of reaction. The resulting system is dif-
ficult to solve given a reasonable number of molecules for
each species. Here, simulation methods may prove useful in
approximating the equilibrium distributions.

By approximating the fast-reaction subset using Lange-
vin equations, we can reduce the computational requirement
by integrating the system over a much larger time step than
the exact stochastic simulation. However, we must now em-
ploy schemes for integrating stochastic differential equa-
tions. By approximating the fast-reaction subset determinis-
tically, we can bound the computational requirements for
simulation of the system. For this case, we can employ ex-
isting and robust ordinary differential equation solvers for
integration of this reaction subset. In contrast, the computa-
tional expense for exact stochastic simulation scales with the
number of reaction events.

The partitioning techniques presented here sacrifice
some numerical accuracy for a bound on the computational
load. By equilibrating some fast reactions, one cannot expect
to accurately reconstruct statistics for species affected by
these fast reactions at fine time scales. However, we are often
interested in the macroscopic behavior of the system, and it
may not be possible to even observe a physical system at
such fine time scales. Approximating some discrete, molecu-
lar reaction events as continuous events via the Langevin
approximation loses the discrete nature of the entire system.
However, as illustrated by the simple crystallization ex-
ample, this approximation still accurately reconstructs at
least the first two moments of each reacting species. Further-
more, approximating fast reactions deterministically elimi-
nates all fluctuations contributed to the system by these re-
actions. Depending upon the system and the modeling
objective, though, these sacrifices may be acceptable.

The approach described here represents only a small
fraction of the approximations that should prove useful for
simulating stochastic chemical kinetics. For example, Tian
and Burrage8 propose classifying reactions into three catego-
ries (slow, intermediate, and fast), then making appropriate
approximations for each category (exact simulation for slow
reactions, 7 or binomial-leaping for intermediate reactions,
and Langevin or deterministic simulation for fast reactions).
The techniques presented in this paper could easily be ex-
tended to derive appropriate master equations for such cases.
Also, we did not present algorithms for other possible simu-
lation methods such as the next- or first-reaction methods.
These extensions follow directly from the joint probability
function P(7,u) given by Eq. (47). However, a recent nu-
merical study by Cao et al.* shows that these methods are
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often less efficient than the direct method for exact simula-
tion. Additionally, we expect the majority of the reduction in
computational expense to result from the fast-reaction ap-
proximations.

Finally, we attempt to classify each of the recently pro-
posed simulation algorithms. We note that the computational
burden of stochastic simulation stems from three primary
phenomena:

1. Some subset of reversible reactions occur frequently,
whereas the remaining reactions occur rarely.

2. Some subset of irreversible reactions occur
36 .. .
frequently,” whereas the remaining reactions occur
rarely.

3. Some subset of the chemical species react so quickly
that their average number is significantly less than one
throughout the course of the simulation.

The first phenomenon is attributable to stiffness in the under-
lying master equation for these system. For deterministic ki-
netics, such stiffness can be handled by employing an equi-
librium approximation. This paper, Goutsias,19 and Cao
et al.'® each consider simulation algorithms for the stochastic
equivalent of the equilibrium approximation. The second
phenomenon is unique to the discrete stochastic formulation
of chemical kinetics and arises due to the fact that exact
simulation methods can advance only one reaction at a time.
Only our previous paper17 and this paper address this phe-
nomenon. None of the above-mentioned articles consider the
third phenomenon. In a deterministic setting, this phenom-
enon is typically addressed by applying the quasi-steady-
state assumption (QSSA) to equilibrate the rate of change for
a given chemical species. In terms of our previous example,
reaction (28), we could choose species B as the quasi-steady-
state species and set a’f (x)—aj (x)—aé(x):O. For the discrete
master equation, however, it is unlikely that such a situation
can arise due to the integer nature of all chemical species.
The most likely situation is for either af;(x)>0 and a’(x)
=a}(x)=0 (for nz=0) or a}(x),a}(x)>a}(x) (for ng>0). In
this case, we would expect to almost never find a B molecule
in an exact simulation. Although Rao and Arkin" recently
addressed this issue, they assumed a Markovian form for
their governing master equation rather than derive it directly
from the original master equation (2). A tighter connection
between the original and approximate systems should be
possible.
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APPENDIX: NOTATION

a-Jf-'(n) = jth forward reaction propensity (rate)
a;-(n) = jth reverse reaction propensity (rate)

bi(y,z) = jth slow-reaction rate averaged over values
of the fast extents
lﬂ;(y,z) = jth forward slow-reaction rate
b;(y,z) = jth reverse slow-reaction rate
= matrix of reaction propensities
cf(y,z) = jth forward fast-reaction rate

c;(y,z) = jth reverse fast-reaction rate
I = identity matrix
k; = rate constant for reaction k
N = number of Monte Carlo simulations
/' = set containing the molecule space for the
fast partitioned species
N; = set containing the molecule space for the
slow partitioned species
n; = number of molecules for species j
n;, = initial number of molecules for species j
n = number of molecules for all reaction species
n/ = number of molecules for the fast-reaction

species

n’ = number of molecules for the slow-reaction
species

n, = initial number of molecules for all reaction
species

ny; = jth initial number of molecules for all reac-

tion species
p = probability vector for all possible values of
the extents of reaction
P = probability
P, = approximate probability (reduced by order-
of-magnitude arguments)
p = random number from the uniform distribu-
tion (0,1)
Tt = sum of reaction rates

ry, = sum of reaction rates for the slow-reaction

partition
t = time

tp = initial time

W = vector of Wiener processes

X = set containing the total accessible extent
space

X, = set containing the extent space for the parti-

tioned reactions
x = state of the system in terms of extents
Y = set containing the total accessible slow-
extent space
Y, = set containing the slow-extent space for the
partitioned reactions
y = subset of slow-reaction extents
z = subset of fast-reaction extents
7. = set containing the total accessible fast-extent
space
7, = set containing the fast-extent space for the
partitioned reactions
Z = subset of fast-reaction extents scaled by ()
€ = extent of reaction
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M = one possible reaction in the stochastic kinet-
ics framework

= stoichiometric matrix

standard deviation

time of the next stochastic reaction

= characteristic system size
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