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Considerable progress has been recently achieved in the

multiscale modeling of complex biological processes.

Multiscale models have now investigated the structure and

dynamics of lipid membranes, proteins, peptides and DNA over

length and time scales ranging from the atomic to the

macroscopic. Serial multiscale methods that parameterize low-

resolution coarse-grained models with data from high-

resolution models have studied long time or length scale

phenomena that cannot be investigated with atomically

detailed models. Parallel multiscale methods that directly

couple high- and low-resolution models have efficiently

explored slow structural transitions and the importance of long-

wavelength fluctuations for biological molecules. The success

of such models relies upon new theories and methods for

constructing accurate multiscale bridges that transfer

information between models with different resolutions.
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Introduction
Many fundamentally important processes in biology are

inherently multiscale. Biological processes (e.g. protein

folding, nucleic acid packaging and membrane remodel-

ing) that evolve on mesoscopic to nearly macroscopic

length and time scales are intimately coupled to atomic

and/or molecular level dynamics (e.g. fluctuations in side-

chain conformation or lipid diffusion). Consequently, it is

not surprising that many diverse computational method-

ologies have been developed for modeling biological

processes with varying degrees of resolution. Atomically

detailed modeling techniques (e.g. molecular dynamics

[MD] [1,2]) remain a powerful tool for investigating

biological structure and dynamics over nanosecond time

and nanometer length scales, with femtosecond and

Angstrom-level resolution. However, low-resolution
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coarse-grained (CG) models provide the capability for

investigating the longer time and length scale dynamics

that are critical to many biological processes. CG models

have now been developed for investigating lipid mem-

branes [3��,4–13,14�,15�,16,17�,18��], proteins [19��,20–35,

36�,27–39,40�,41–43,44�,45,46,47�,48–50,51�,52–56,57�,
58], peptides [59��–61��,62–65], DNA [66��,67–70,71�,
72�,73]) and even the ribosome [74–76].

Coupling the CG and atomistic-level systems involves

some degree of bridging of information across various

length and time scales, the end goal ultimately being to

integrate the different resolutions of the system into a

single, unified, multiscale simulation methodology. The

development of new theories and computational meth-

odologies for connecting the disparate spatial and

temporal scales relevant to cellular processes remains,

arguably, one of the most significant challenges for the

modeling of complex biological phenomena. As such, the

aim of this review is to examine the multiscale methods

currently employed to model various biological systems.

For additional surveys of various CG models for biosys-

tems, see [3��] for membranes and [19��] for proteins.

Serial and parallel multiscale simulation
The multiscale methods currently used to examine com-

plex biomolecular systems can be roughly categorized

according to the means by which information is trans-

ferred between different resolution models, ranging from

atomistic, to CG and to even higher scales. This infor-

mation transfer can proceed by either serial or parallel

mechanisms, as illustrated in Figure 1.

In serial multiscale approaches, the different resolution

models are employed in sequence. There is no direct

interaction between atomistic-level molecules and CG

particles. Serial multiscale approaches can be further

classified according to the rigor characterizing this infor-

mation transfer (Figure 1a). A ‘type S-A’ serial multiscale

approach attempts to rigorously employ atomistic-level

information to develop the reduced-resolution model.

Snapshots of this type of approach are shown in

Figure 2a, whereby a peptide is coarse grained at various

levels. A ‘type S-B’ serial multiscale approach employs

atomistic data obtained from various sources to assist

directly in the parameterization. A ‘type S-C’ approach

provides the least quantitative multiscale bridge and

usually takes the form of a ‘top-down’ approach, in which,

for example, desired thermodynamic data motivate the

functional form and/or parameterization of the reduced-

resolution model.
www.sciencedirect.com
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Figure 1

Schematic of the serial and parallel multiscale simulation decomposition

for biomolecular systems. (a) A serial multiscale methodology in which

different types of initial parameterizations are used to develop a CG

model. Three different types of initial information can be used. A type S-

A serial multiscale scheme has a systematic multiscale coupling

between atomistic and CG representations. A type S-B serial multiscale

scheme employs more general atomistic structural information, whereas

type S-C employs thermodynamic and/or other top-down approaches to

bridge the different scales. The type S-A approach gives the ‘strongest’

serial multiscale bridge and type S-C gives the weakest. (b) A parallel

multiscale simulation. A type P-1 approach mixes different resolutions in

one model, whereas type P-2 employs resolution exchange between

concurrently running simulations.
By contrast, in parallel multiscale methodologies, all the

different representations of the system are modeled con-

currently and a direct information transfer couples differ-

ent resolution models. In some ways, such methods are

considerably more difficult to implement with the same

level of rigor that serial multiscale methods approach.

Figure 1b illustrates this scenario. As in the serial case,

parallel multiscale modeling approaches may also

be classified according to the mechanism by which the

different resolution components interact. In this case, the

parallel scheme can be implemented using a ‘type P-1’ or

‘type P-2’ methodology. The designation type P-1 and P-2

is employed here as opposed to the letter designations used

in the serial case to emphasize that the two schemes are on a

par, in terms of their respective multiscale character. Type

P-1 parallel methods (see e.g. [66��,67]) are the analog of

quantum mechanics/molecular mechanics (QM/MM)

methods and combine atomically detailed models of a

given subsystem of interest with a CG representation of

the relevant environment. This situation is depicted in

Figure 2b, whereby a type P-1 multiscale simulation of a

transmembrane protein is shown. In this case, the coupling

is continuous in time, and the atomistic and CG com-

ponents of the system directly interact. The type P-2

parallel multiscale approach employs a resolution

exchange methodology in which different representations
www.sciencedirect.com
of a system evolve concurrently; however, after discrete

time intervals, an exchange is attempted in which

the resolutions describing different representations of

the given system are swapped (see [59��–61��] for

examples of this scheme). Here, high- and low-resolution

models do not directly interact, but rather configurations

swap resolution in a process that is analogous to parallel

replica exchange.

Multiscale simulation: in serial
Lipid membranes

Lipid bilayers are critical to many biological phenomena

and have been modeled using both atomistic-level MD

simulations [2] and CG methods [3��,4–13,14�,15�,16].

In a serial multiscale sense, several recent CG lipid

models deserve attention. The Marrink model [8], in

particular, spontaneously formed stable bilayers for

small systems and vesicles in larger systems [9], and

can incorporate non-lipids (e.g. cholesterol) [10]. The

multiscale connection between low- and high-resolution

models using this type of approach relies on the success

of the top-down ‘building block’ nature of the scheme.

The reliance on thermodynamic information to para-

meterize the model makes it a type S-C serial multiscale

approach (c.f. Figure 1). Similar type S-C implicit, or

‘solvent-free’, approaches have also been proposed (e.g.

[11–13,14�]; [3��] and additional references therein).

The solvent-free approach is quite appealing because

the computational cost of modeling a solvated bilayer

is tremendously reduced if the effects of an aqueous

solvent can be incorporated into the CG lipid inter-

action.

A solvent-free model using the reverse Monte Carlo

method has also been developed recently [14�]; this

particular model can, in fact, also be treated as a type

S-A serial multiscale approach. Multiscale coarse-graining

(MS-CG) [15�,16] has also been employed to model pure

bilayers [15�] and mixed lipid–cholesterol bilayers [16]. In

the MS-CG method, CG force fields are systematically

derived from atomistic MD simulations using a statistical

implementation of the ‘force matching’ (FM) method [77].

The MS-CG link between the atomistic and CG models

provides a robust type S-A serial multiscale bridge and

accounts for three-body effects [78��]. It also provides a

possible route to making the dynamics of CG models more

realistic [79].

Peptides and proteins

CG models of peptides and proteins have a long and

distinguished history, since the seminal work of Levitt

and Warshel [20], and Levitt [21]. The field of CG protein

simulation as of 2005 has recently been surveyed in the

review by Tozzini [19��]. The original concept of using

knowledge-based potentials [22], in combination with the

quasi-chemical approximation [23], and employing

potentials of mean force [24], has provided a framework
Current Opinion in Structural Biology 2007, 17:192–198
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Figure 2

Two examples of a biomolecular multiscale simulation. (a) Snapshots of a type S-A serial multiscale simulation (c.f. Figure 1) employing

MS-CG to examine a polyalanine pentadecamer [65] as the underlying atomistic-level template (i). Two MS-CG schemes were employed: a three

bead per backbone model (ii) and a coarser one bead per backbone model (iii). For the one-bead model, the backbone (-NH-CH-CO-) is treated

as a single CG site; the sidechain (-CH3) is treated as another CG site. The higher resolution three bead per backbone peptide model treats the

backbone groups of -NH-, -CH- and -CO- of each residue as CG sites. (b) Example of a type P-1 parallel multiscale simulation, in which an

MSC simulation of a transmembrane protein is considered [17�]. An ensemble of eight different atomistic-level simulations of the same system

(in this case, an influenza A M2 proton channel in a dimyristoylphosphatidylcholine lipid bilayer) is coupled to a corresponding mesoscopic

membrane/solvent system [81]. The small light ‘patch’ region on the mesoscopic membrane at the bottom gives the relative length scales

of the atomistic and mesoscopic systems.
for type S-B serial multiscale simulation methods for

proteins.

Recent work has been aimed at developing more detailed

orientation-dependent residue–residue interactions

[25,62] and also including many-body interactions in

CG force fields, such as with the united-residue

(UNRES) force field [26,27]. It should be noted that

the determination of pair interaction potentials from pair

correlations within structural databases using approxi-

mations such as the quasi-chemical approximation [24]

might be problematic, especially when many-body effects

and multiparticle correlations are important [28,29]. Such

approximations do not provide an exact multiscale link

between atomistic and CG representations because the

three-particle correlations are not directly considered. By

contrast, the UNRES model developed by Scheraga and

co-workers attempts to incorporate these effects by

approximately evaluating the restricted free energy

[30]. Additionally, some CG protein models incorporate

direct experimental data using the reverse Monte Carlo

method [31]; this type of methodology is thus a type S-A

serial multiscale methodology. Likewise, MS-CG simu-

lations of peptides have been able to systematically

derive CG peptide interactions from underlying MD

models at various CG resolutions [65]; these studies fall

within the type S-A methodology. As seen from the
Current Opinion in Structural Biology 2007, 17:192–198
simulation snapshots in Figure 2a, the MS-CG approach

can be applied at various resolutions. Within the serial

multiscale approach, this particular aspect of the MS-CG

approach is quite appealing.

Interaction potentials for CG proteins have also been

determined using the ‘consistency principle’, also

referred to as the ‘principle of minimal frustration’

[32,33], to optimize a funnel landscape for protein folding

[34,35]. As an extreme example of such funnel-based

potentials, Gō models consider only native contacts as

favorable, providing a perfectly smooth landscape [33].

Protein folding simulations employing a Gō model in

combination with discrete MD [64] have recently been

used to investigate the transition state ensemble of the

Src SH3 protein domain [36�]. Importance sampling

techniques combined with MD identified an ensemble

of atomically detailed structures near the folding tran-

sition state. CG representations of these structures

were generated and their folding investigated using

Gō-type interactions. This approach is quite promising

and can be cast as a type S-B serial multiscale method.

Elastic network models (ENMs) also provide a CG

protein model that has proved effective in structural

biology [37–39]. This approach has been used in

conjunction with a normal mode analysis (NMA)
www.sciencedirect.com
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[40�,41–43,44�,45]. (It should be noted that an NMA,

when combined with, for example, cryo-electron micro-

scopy (cryo-EM) low-resolution structures [44�,45], is in

itself a type S-B multiscale modeling approach.)

The fundamental assumption of these models is that

the biologically significant fluctuations of folded proteins

are low-frequency collective modes, which behave much

like an elastic material. This behavior persists even for

various levels of CG [46]. A variable-resolution ENM

[47�] has been developed that models certain parts of the

protein with atomistic-level detail (albeit with an ENM),

whereas other parts are modeled with one site per residue.

However, even though parts of the protein are concur-

rently described at different resolutions, because the

entire system is modeled within an ENM, this approach

is more of a type S-B serial approach, rather than a parallel

multiscale methodology.

The MS-CG method has also been applied to system-

atically derive a CG model for actin [57�], employing

large-scale atomistic-level MD simulation [58]. In this

case, a fluctuation-matching MS-CG approach was

employed and, as such, this method represents a type

S-A multiscale approach. The pronounced collective

modes in actin filaments enabled the fluctuation-matching

MS-CG method to be implemented directly; other systems

that exhibit similar robust collective motions might also be

modeled using such an approach.

DNA

Serial multiscale simulations have also been employed to

investigate the packing of DNA into viral capsids,

employing a low-resolution DNA model in which each

bead corresponded to one turn of a double helix [68,69].

Because atomistic-level information was not employed in

parameterizing the CG model, this method provides a

type S-C serial multiscale approach; however, in prin-

ciple, it should be possible to parameterize a CG DNA

model using atomistic MD simulations and a fluctuation-

matching approach [70]. This type of serial multiscale

approach for DNA could potentially lead to type S-B

serial multiscale simulations of nucleosomal array folding

[71�]. Another example of a type S-B approach for mod-

eling mesoscopic DNA fragments examined the collec-

tive low-frequency motions in a mesoscopic closed

circular DNA molecule using an NMA that employed

an initial energetic model at the base-pair level [72�,73]. It

might be possible to extend this approach by employing

the reverse Monte Carlo method to model the protein–

DNA interactions, as previously applied to model ion–

DNA interactions [80].

Multiscale simulation: in parallel
A promising technique called ‘multiscale coupling’

(MSC) for type P-1 parallel simulations ‘embeds’ an

atomistic MD simulation of a bilayer (with perhaps
www.sciencedirect.com
non-lipid molecules, such as membrane-bound proteins)

within a mesoscopic membrane/solvent model [17�];
simulation snapshots of this approach are shown in

Figure 2b. The MS-CG methodology has also been

applied to determine the effective interactions between

atomistic and CG representations. Using this mixed all-

atom (AA) MS-CG approach (denoted AA-CG) [18��],
simulations have been performed on an AA model of the

gramicidin channel solvated within a MS-CG lipid bilayer

[15�]. Moreover, because the interactions (both lipid–

lipid and protein–lipid) were determined from the MS-

CG methodology [77], the structures generated within

the AA-CG simulation, in principle, occur according to

the correct probability distribution.

Parallel multiscale simulations have also been applied to

study protein function. The low-frequency motions

determined by an ENM have been employed to ‘guide’

atomistic-level simulations [48]. An exciting type P-1

parallel multiscale simulation of a protein and DNA

has recently been performed by Schulten and co-workers

[66��,67]. In these multiscale investigations of a DNA–

protein complex, the LacI complex has been modeled in

atomic detail and coupled to a continuum model for a

75 bp DNA loop. The AA protein component (comprising

over 250 000 atoms) was coupled to the continuum DNA

model through elastic stresses and torques arising from

the looping of the DNA model.

A ‘pseudo’ type P-1 parallel multiscale simulation has

employed a hybrid fully atomistic/Gō model [49] to

examine the folding of a 80-residue fragment of the

l-repressor [50]. This work draws from previous studies

in which an AA Monte Carlo simulation used a Gō

potential [50]. In these simulations, a Gō-type interaction

is superimposed upon the atomistic-level force field, thus

directing the system towards the native state. The multi-

scale bridge between CG and atomistic models occurs by

incorporating a long wavelength ‘nudge’ towards the

folded state resulting from the inclusion of the Gō inter-

action, which favors native contacts. Bridging mesoscopic

and atomistic models of globular proteins has relied on

specifying an interface region between the high-resol-

ution (MD) and low-resolution (a Gō model employing

only the Ca carbons) representations [51�]. The overall

success of this approach relies on systematically deter-

mining the interactions in the interface region; this

scheme gives a ‘loose’ type P-1 methodology. Specifi-

cally, a more systematic means of incorporating the sur-

rounding solvent is required.

Type P-2 parallel multiscale methodologies that

exchange resolution between different representations

of a given system [59��,60��] have also been developed.

As an example, the work of Liu and Voth [61��] com-

bines the MS-CG framework and resolution exchange.

The MS-CG methodology interaction potential is
Current Opinion in Structural Biology 2007, 17:192–198
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employed systematically to derive the low-resolution

model from an AA model in a manner similar to that

previously done for peptides [65]. In principle, this type

of parallel multiscale scheme could also be applied to

develop intermediate-resolution CG models using

fluctuation matching [57�], opening up the possibility

of a fully parallel, multiscale simulation methodology

capable of spanning quite large spatial and temporal

scales. A serious issue with all parallel multiscale meth-

odologies is the question of realistic dynamics, as well as

the dynamical consistency of multiscale bridging across

time scales.

Conclusions and outlook
This review classifies various approaches for modeling

biomolecular processes within the context of an overall

multiscale simulation perspective. Multiscale method-

ologies have been classified into two distinct categories:

serial and parallel approaches. This classification of these

methodologies into serial and parallel approaches facili-

tates an examination of these methods and the systems for

which they have been employed. One observation arising

from this review is fairly clear: both serial and parallel

multiscale schemes provide increasingly valuable insight

into the structure and dynamics of complex biomolecular

processes.

A large number of serial multiscale approaches for lipids,

proteins, peptides and DNA have already been devel-

oped. From this review, it might be observed that most

modeling schemes fall into the type S-B approach. It

seems clear that more systematic and direct links

between the atomistic and reduced-resolution models

must be defined in the future.

Parallel multiscale simulation methods can be divided

into mixed resolution (type P-1) and resolution exchange

(type P-2) methods. The combination of the type P-1 and

P-2 parallel approaches can potentially become an

increasingly robust multiscale simulation methodology

for complex biosystems; current work in this area appears

to be promising.
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