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Monte Carlo (MC) simulation of most spatially distributed systems is plagued by several problems,
namely, execution of one process at a time, large separation of time scales of various processes, and
large length scales. Recently, a coarse-grained Monte Carlo (CGMC) method was introduced that
can capture large length scales at reasonable computational times. An inherent assumption in this
CGMC method revolves around a mean-field closure invoked in each coarse cell that is inaccurate
for short-ranged interactions. Two new approaches are explored to improve upon this closure. The
first employs the local quasichemical approximation, which is applicable to first nearest-neighbor
interactions. The second, termed multiscale CGMC method, employs singular perturbation ideas on
multiple grids to capture the entire cluster probability distribution function via short microscopic
MC simulations on small, fine-grid lattices by taking advantage of the time scale separation of
multiple processes. Computational strategies for coupling the fast process at small length scales (fine
grid) with the slow processes at large length scales (coarse grid) are discussed. Finally, the binomial
7-leap method is combined with the multiscale CGMC method to execute multiple processes over
the entire lattice and provide additional computational acceleration. Numerical simulations
demonstrate that in the presence of fast diffusion and slow adsorption and desorption processes the
two new approaches provide more accurate solutions in comparison to the previously introduced

CGMC method. © 2006 American Institute of Physics. [DOL: 10.1063/1.2166380]

I. INTRODUCTION

Over the last few years, emphasis has been placed on the
development of lattice kinetic Monte Carlo (KMC) models
for applications ranging from catalysis to separations to at-
mospheric sciences to epitaxial growth to biology.l_7 While
these models provide significant insight into microscopic and
mesoscopic scale phenomena, they cannot easily be extended
to study large scales for several reasons. First, in KMC one
at a time process is selected out of several possible ones.
This approach limits KMC to systems with a few processes,
to small populations for well-mixed systems, and to small
lattices for spatially distributed systems. Second, in most
physical systems there is a separation of time scales between
physical processes. This aspect, known in computer science
as stiffness, results in frequent sampling of fast processes and
rare sampling of slow processes. For example, in most sur-
face deposition experiments the ratio of the diffusion to ad-
sorption fluxes is large (e.g., 10° or higher).® Similar time
scale issues arise in catalysis.” Given that the time step is
mainly controlled by the fast processes, the time advanced in
stiff systems via a conventional KMC is too short.

Recent research efforts, reviewed in Ref. 10, aiming at
acceleration of KMC have mainly focused on well-mixed
systems.“_15 In parallel, we have been developing a multi-
scale stochastic mathematical and simulation framework,
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called coarse-grained Monte Carlo (CGMC) method,'®™'® for
spatially distributed systems. The CGMC method uses a
coarse grid to enable simulation of large length scales at a
reasonable computational cost by effectively reducing the
number of cells and processes and possibly by shortening the
interaction potential. The challenge in any accelerated KMC
method lies in accurately coarse graining the underlying mi-
croscopic physics. So far the local mean-field (MF) stochas-
tic closure has been invoked in the CGMC method to arrive
at an analytical expression for the transition probabilities as a
function of coarse observables. This closure assumes that the
probability distribution function (pdf) of particles (herein
particle refers to atoms, molecules, or other species interact-
ing on a lattice) within each coarse cell is uniform. The MF
closure is too poor an approximation, especially when inter-
actions between particles are short ranged.

In order to improve the accuracy of the CGMC method,
in this paper a hierarchy of stochastic closures is explored
ranging from the existing MF to the local quasichemical
(QC) approximation19 to a new multiscale CGMC method.
The latter method explicitly exploits the separation of time
scales between various processes by a technique that is remi-
niscent of singular perturbation. Its construction allows one
to compute the entire pdf on a fine grid over short time scales
and pass this information to the coarse grid governed by
slow processes and thus to retain the correct noise between
scales at substantially lower computational cost. This feature
is important when modeling phenomena where fluctuations
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and spatial correlations play an important role. In addition,
the binomial 7leap method of executing multiple processes
per time increment'* is combined with the multiscale CGMC
method to provide further time acceleration. It is demon-
strated that the multiscale CGMC method gives statistically
indistinguishable results from those of the KMC method.

The structure of this paper is as follows. The micro-
scopic lattice model is briefly described in Sec. II. The
CGMC method along with the results of singular perturba-
tion method (see the Appendix) based on time scale separa-
tion of various processes are outlined in Sec. III. Various
closures and the new multiscale CGMC method are dis-
cussed in Sec. IV. Detailed balance is addressed in Sec. V.
Algorithms are outlined in Sec. VI, followed by numerical
simulations in Sec. VII. Finally conclusions are provided in
Sec. VIIL

Il. MICROSCOPIC LATTICE MODEL

In the microscopic model, a lattice £ consists of N sites
that denote potential minima where particles can reside. Each
site v € L is characterized by an occupancy function o, that
takes a value of 1, when the site is occupied, or 0, when it is
unoccupied. Let o be the configuration-space vector contain-
ing the time-dependent occupation functions on L. The
Hamiltonian of the microscopic lattice is given by

2 2 J(|U_v,|)o-vo-v'+ E hav’ (])

UEEU'EE, vel

H(p)= -

’
v Fu

where h is an external field, such as the chemical potential.
Here the two-body interaction potential J(r) describes the
strength of lateral particle-particle interactions, and r=|v
—v'| is the distance between sites v and v’. The convention
followed in this paper is that J(r) is positive (negative) for
attractive (repulsive) interactions. The interaction energy U,
of an adsorbed particle at site v with the rest of the adsorbed
particles on the lattice is

U, (g) = 2

v'elv #v

J(lo=v"Doy. 2)

The maximum dimensionless interaction of a particle at a
site occurs when all sites are occupied.

Blh=B X ), 3)

vy’ el
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where B=(kzT)™"', kg is the Boltzmann constant, T is the
absolute temperature, and L, is the interaction potential
length. For nearest-neighbor (NN) interactions (L,=1) of
strength Jyn=Jo/c, which are considered in the numerical
examples of this paper, the Hamiltonian is given by

1 <
H(Q)Z_EJNNE n;+ E ho,. 4)
j=0 vel

Here c is the coordination number of the lattice [e.g., c=4 for
the (100) square lattice] and »; is the number of occupied
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TABLE I. Transition probability per unit time of microscopic processes.
The prefactors for adsorption and desorption are those of the corresponding
mean-field model. I',, is the 2D diffusion hopping frequency when the co-
ordination number is ¢=4; the factor of 1/4 appears since there is an equal
probability of an adsorbed particle hopping in any of the four directions.

Process Transition probability per unit time
Adsorption
Pt k,P=dy, 7,=0
Fa(v) =
0, o,=1,
or equivalently I' (v)=k,P(1-0,)
Desorption
rpti o 0, 0,=0
V)=
d kye Pl = dyeP=0) | o =1,
or equivalently ['y(v)=k,o,e P
Diffusion

0, 0,=0
’ -BU, — —
Fmig(v—»l) y=41,e"4, o,=1, 0,=0

0, o,=1, o, =1,

. I "N -
or equivalently Iy ,(v —v') =70, (1-0,)e Pt

sites on the lattice with j occupied NNs, j={0,1,...,c}.
The starting point for a stochastic description of the sys-
tem is the master equation20

dp
D_ S 6o~ ore)- 3 Gl )P
o' tg zr’_#o

(5)

that gives the probability P(o) of observing state o. G(o
—¢g’) is the transition probability per unit time of transition
from state o to state o’. Alternatively, one can write a

difference-differential equation21

do,= 2 Th(v,0)dt - 2 T, (v, 0)dr (6)

that gives the temporal evolution of the occupancy function
at site v in terms of the transition probability per unit time
F;(v ,0) [F;(v ,0)] of process p that leads to a particle addi-
tion (deletion) at site v.

In this paper, a simple prototype system is studied for
demonstrating the various multiscale coarse graining ideas
introduced. However, our approach is sufficiently general
and can be used for more complex systems. Three micro-
scopic processes are considered. These include adsorption of
a particle from the adjacent fluid phase to an empty-lattice
site, desorption of an adsorbed particle from an occupied site
to the fluid phase, and diffusion, i.e., an adsorbed particle
hopping to a nearest-neighboring empty-lattice site. The tran-
sition probabilities per unit time I', for these processes are
typically postulated and are tabulated in Table 1. In Table I
and below we use the simplified notations I',(v) and I'4(v)
for the transition probabilities per unit time of adsorption and
desorption at site v, respectively, and I'y;,(v—v') for tran-
sition probabilities per unit time of a hop from site v to v’,
despite the desorption and migration probabilities being de-
pendent on ¢ via the interaction energy U,(o).
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FIG. 1. (Color online) Schematic of different approaches for passing micro-
scopic scale information to the coarse scale. (a) Enforcing stochastic closure
via approximations for various moments of the cluster probability distribu-
tion function (pdf). (b) Estimating the cluster pdf using multiple grids.

The effect of interactions between adsorbed particles on
the activation energy is accounted for using Arrhenius
dynamics.zz’23 Specifically, the activation energy of hopping
is taken to depend only on the departing site given by Eq.
(2). The activation energy of an adsorbed particle on an
empty substrate (i.e., in the absence of lateral interactions),
denoted as U, is lumped into the prefactors k; and I, (see
Table I). The lattice processes are assumed to be Markov
processes. Equation (6) is solved numerically using the KMC
method.

lll. THE COARSE-GRAINED MONTE CARLO (CGMC)
METHOD

A. Coarse lattice variables, transition probabilities,
and energetics

We outline the CGMC method in this section. Details
can be found in Refs. 16—18. The first step in CGMC is to
group ¢ microscopic sites of L into coarse cells Cy to form a
coarse lattice £, (see Fig. 1). Here ¢ is an integer that de-
termines the level of coarse graining. Site conservation re-
quires that £, consists of m=N/g uniformly sized coarse
cells, where m is also an integer. One defines 77k=2ueckffu as
the coarse-grained occupancy in the kth cell C,, i.e., the
number of particles in Cy, where 0<7,<q and 1<k=m,
and 7 as the vector of time-dependent coarse-grained occu-
pancies of all cells. This vector is the main observable of a
CGMC simulation. We define the cell coverage, i.e., the frac-
tion of occupied sites of C;, as 7,=7,/q and the spatially
averaged coverage over the entire lattice as =2]_, 77,/ m.

Assuming k; and k,P to be constant, the coarse-grained
transition probability per unit time for adsorption can easily
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TABLE II. Coarse-grained transition probability per unit time of slow pro-
cesses used in the CGMC methods (assuming large coarse-cell size, i.e., ¢

Process Transition probability per unit time
Adsorption B

I'y(k) = k,P(q = m)
Desorption

L k) =k, E (o,e7PY)

veCy

be expressed in terms of the coarse variable 7, as follows
(overbars are hereafter used to denote the corresponding
coarse-grained variables):

fa<k>=< ) ra<v>>= S k(1= (o)

veCy veCy

—k,P(g-7). k=1,...m. (1)

In the case of desorption, the coarse-grained transition prob-
ability per unit time is

fd(k)=< > Fd(v)>= > kfo,eP%y, k=1,...,m.

veCy veCy
(8)

These results are summarized in Table II. The difficulty here
is that spatial correlations on the microscopic lattice make
the connection between the average of the last term and the
coarse variable 7, difficult. The same is true for diffusion
between coarse cells. Likewise, spatial correlations deter-
mine the coarse Hamiltonian

H(g)= 2 Hy(k) + Hy(k) + Hoy (k). )
ke L

Here, the contribution from interactions between C) and
other cells C; is given by

_ 1
Hl(k)=—52 > J(o-v'ha,o,0. (10)
UECkU/ECj
Jj#k

and the contribution from interactions within C; is given by

> > U(v-v'o,o,). (11)

vely v eCy

— 1
Hy(k)=——=
(=3
v’ #v
H,(k)=hm, gives the contribution of the coarse external

field . Again, the challenge is how to connect these coarse
quantities (transition probabilities and energetics) with the
coarse observable 7. In order to achieve this task, some clo-
sure is necessary.

B. Separation of time scales and local equilibrium

In our previous work, it was tacitly assumed that local
equilibrium exists within each coarse cell. This local equilib-
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rium implies a separation of time scales, namely, some pro-
cesses relax much faster than the rest. Here we explicitly
exploit this separation of time scales in order to put a firm
foundation to the multiscale CGMC method discussed later.
For our specific model system, the separation of time scales
is achieved via taking diffusion to be fast compared to ad-
sorption and desorption (I',,>k,P,k;), a very common
physical situation. In other systems, other choices may be
more suitable. It is shown in the Appendix that the configu-
ration space evolves at fast time scales t~f= I',,t according to

43 @)= S S (o (1-0)e )

veCy UECkv'EBU
- <O-v(1 - O-v’)e_BUv»s (12)

whereas the slow processes of adsorption and desorption and
the coarse occupation variables remain fixed at short times.
Here B, is the set of sites around v to (from) which diffusion
from (to) site v can occur (see also the Appendix). Since
diffusion is fast, the coarse cell is locally equilibrated in a
short time (relaxation time) determined by I',,, after which
Eq. (12) gives

E E (<0-v’(1 - o-v)e_BUv'> - <O-v(1 - O-v’)e_ﬁuv» =0.

vely v'eBU
(13)

The configuration space evolves over the slow time
scales 7,=k,Pt of interest according to

d 2 (o () =di, 2 (1-(0,) - (o) (14)
veCy veCy
subject to Eq. (13) (see the Appendix). Here w=k,/k,P. This
approach is reminiscent of adiabatic elimination in stochastic
differential equations.”>** Equation (14) is projected to the
coarse lattice and the corresponding coarse-grained
difference-differential equation is given by

dm =T (k)dt - T (k)dt. (15)

In passing we should note that the separation of time
scales results in decoupling of fast processes [studied at short
times in the canonical (NVT) ensemble in this case] and
slow processes [studied at long times in the grand canonical
(uVT) ensemble in this case]. Such decoupling arises for all
models that exhibit (in continuum nomenclature) a spectral
gap, i.e., which they have a large separation of time scales,
but may not necessarily result in simulations done in differ-
ent ensembles. Reference 25 provides an example of fast and
slow chemical reactions, without any diffusion, where no
decoupling of ensembles happens. Many physical systems
exhibit such a large separation of time scales. In our case, the
time-dependent coarse variables, such as the coarse coverage
obtained from applying Eq. (15), are constraints in Eq. (13).
In turn, the underlying pdf of microscopic states, given by
Eq. (13), dictates the transition probabilities of slow pro-
cesses firing according to Eq. (15). Even though an analytical
expression for the exact equilibrium pdf with NN interac-
tions is known for the one-dimensional (1D) lattice,19 so far
the exact two-dimensional (2D) and three-dimensional (3D)
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lattice pdfs are not available for the general case. When the
exact equilibrium pdf is not available, a stochastic closure is
employed to eliminate Eq. (13) and approximate spatial cor-
relations along with their effect on the coarse transition prob-
abilities [Fig. 1(a)]. Alternatively, one may employ multiple
grids to numerically solve both Egs. (13) [or its time-
dependent version Eq. (12) and (15) [Fig. 1(b)]. These ap-
proaches are discussed in the next section.

IV. STOCHASTIC CLOSURES
A. Local mean-field (MF) approximation

In the local MF approximation, one assumes a random
distribution of particles and disregards any local correlations
between particles inside a coarse cell. The coarse-grained
Hamiltonian on £, was derived previously in Refs. 16 and
17 as [compare to Eq. (9)]

1 Hy(k) Hy(k)
H(l])=—5 > > Jiimem; + > Tumdme=1)
kecchl:c ke L.
j#k
Hey(K)
+ 2 hwy. (16)
ke L

C

J, w 18 the coarse-grained potential within cell C; and J, ki is the
coarse-grained potential between cells C; and Cj.]6‘17 The
coarse-grained potentials are real-valued constants evaluated
in the beginning of a CGMC simulation using wavelets.

In order to obtain dynamics, a systematic procedure for
coarse graining the microscopic transition probabilities per
unit time of various processes was introduced in Ref. 26. The
coarse-grained interaction energy between adsorbed sites us-
ing the local MF approximation is given by

> Ty (17)

le Lo 1#k

Ue=Julme—1) +

Neglecting the spatial correlations in Eq. (8) one gets

Ty = S kylo,e Bl = kyme V%, (18)

veCy

Note that by using MF closure we are able to connect I ;(k)

and U, with the coarse variable 7,. Hereafter, the CGMC
method with the local MF closure is denoted as the
CGMC-MF method.

It has been found through simulation and large deviation
theory that the CGMC-MF method preserves the noise, does
not suffer from numerical instabilities, and gives significant
computational savings over KMC (see Refs. 16 and 17 for
details). In the limit of infinitely long-ranged interactions
and/or weak interactions and/or high temperatures, the local
MF assumption is accurate. When this is not true, the local
MF assumption results in information loss of the particle
locations and correlations. For example, with short-ranged
interactions many moments of the pdf are needed to describe
the cluster size distribution, and the local MF assumption is a
poor approximation. When the temperature is greater than
the critical temperature, so that no phase separation is evi-

Downloaded 23 Feb 2007 to 158.130.148.33. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



064110-5 Multiscale spatial Monte Carlo simulations

denced, the error of CGMC-MF is a function of the coarse-
cell size, the strength and range of interactions, the occu-
pancy, and the dimensionality of the lattice.”’

B. Local quasichemical (QC) approximation
for nearest-neighbor (NN) interactions

Here the QC approximation (or the equivalent Bethe-
Peierls approximation) is employed within each cell (termed
as local QC theory) when NN interactions are present. In the
local QC approximation, one works with four possible states
of a pair of sites inside a coarse cell C, namely, both sites
being occupied, one site out of the pair being occupied and
both sites being unoccupied. All pairs are assumed to be
independent of each other. The partition function for a large
coarse cell Cy is written as

O(m.q.T) = ankE gNN(nk’Q»NONIN)eXp(BJNNNII\]lN ., (19)

Noi

where the combinatorial factor gan(7:,q,Npy) gives the
possible number of ways 7, occupied sites and g— 7, vacant
sites can be distributed among ¢ sites, Q,=e¢ " is the parti-
tion function of a single adsorbed particle on the lattice,
NyN(NYY) is the number of pairs with one site (both sites)
occupied, and Jyy is the isotropic NN interaction potential
between two neighboring adsorbed particles. The cell size ¢
is assumed to be large enough to neglect boundary effects.

J. Chem. Phys. 124, 064110 (2006)

q, 1-c
WL et (g - m!
(cql2)!
X NN 2 NN
(/2 = NYNI2) | (Ngi/2)1X(e(g — m)/2 — NAN72)1

21

is the configurational contribution to the partition function Q
and c¢=4 is the coordination number of a 2D square lattice.

The adsorption isotherm is obtained by equating the
chemical potential of the coarse cell C; obtained from the
QC approximation using Eq. (20) with the chemical potential
of the fluid phase and is given by19

(Ian—1+27)(1 - 7) ]C/ze—BJNNclz
(Onn+ 1 =27 7

ANO(1 - 7) = 7]k|:

(22)
where A=eP*, 0< 7, <1, and
=N =471 - (1 — Py, (23)
The (configurational) energy of the cell is given by19

CqJNN|:_ _ 27 (1 - 7_71()}
2 |+l |

Hy(k)=- (24)

Neglecting boundary effects (g— o), H,(k)=0. Using Eq.
(24), the Hamiltonian is given by [compare with Eq. (9)]

Hrp= X Bk + 2 hp=— > cqJIxn

2
Using the maximum term method, the partition function for kele kele kele
the coarse cell C, is'"” 27.(1 =7 _
‘ X|:7_7k_M + 2 ho (25)
- I+ 1 kel
0(q, . T) = O OnNs (20)
Note that the right-hand side (rhs) of Eq. (22) provides the
where ensemble average
0, ﬁk = 0
—1+27)(1=7) |
S (e ) ~ k[ = "k)} N0 < 7 < 1 (26)
veC, (Uan+1-27) 7
qe_.BJNNC, 7=1.

Equation (26) is used in Eq. (8) and the coarse-grained transition probability per unit time for desorption is given by

0, 7]/{:0
_ (L= 142701 =7) |7, _
T )=( 2 T )= kdm{ = | e o< <1 (27)
veG, (Onn+ 1 =270 7
kdqe_ﬁj NN¢/ 7e=1.

Hereafter, the CGMC method with the local QC approxima-
tion will be denoted as the CGMC-QC method. Equations
(25) and (27) are improvements over Egs. (16) and (18) and
are the key results of the CGMC-QC method. Like the local
MF approximation, the local QC approximation provides an
analytical expression connecting the transition probability

per unit time and energetics with computed observables of a
CGMC simulation.

C. The multiscale CGMC method

An advantage of the aforementioned closures is that they
analytically link the coarse energetics and transition prob-
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FIG. 2. (Color online) Schematic of the multiscale CGMC method. The
algorithm consists of two integrators, namely, the coarse-grained lattice dy-
namics on slow processes/long times and the fast microscopic lattice equili-
bration on a small, fine grid for short times. Both integrators communicate
with each other and exchange different length and time scales information.

abilities with the coarse observable 7,. However, the
CGMC-MF is exact only when the potential is infinitely long
(and in limiting cases where the temperature is infinitely high
or the interaction is zero) and the CGMC-QC is a good ap-
proximation (but not exact) when the potential entails NN
interactions only. More sophisticated approximations, such
as cluster expansions, etc.,w’28 can also be employed to im-
prove the accuracy but the accuracy usually improves slowly
with increasing the number of moments of the pdf in com-
parison to the mathematical complexity needed.

There is obviously a need for a numerical method that is
accurate for short-ranged potentials and is relatively easy to
implement. This new approach is accomplished with a two-
grid scheme. In the new method, a coarse grid of cell size ¢
is employed to numerically solve Eq. (15) over large length
scales, as in a regular CGMC simulation, but a small micro-
scopic lattice of size g,, is also embedded within each coarse
cell [see schematic in Fig. 1(b)] to solve Eq. (12). The over-
all idea, depicted in Fig. 2, is that the coarse variable 7 is
used as a constraint while performing a KMC simulation of
the fast processes on the fine grid within cell C;. In turn, the
fine-grid KMC simulations provide the correct pdfs needed
for computing the transition probabilities of slow processes
of a CGMC simulation on the coarse grid over long times.

Next we discuss time acceleration issues, some general
issues of sampling states and processes when coupling simu-
lations between scales followed by the equations for a spe-
cific example. Comparison of this new method to related
work follows. Finally, the multiscale CGMC method is
elaborated more in the algorithmic Sec. VL.

1. Time acceleration of the multiscale CGMC method

Significant acceleration can result when the size of the
embedded fine-grid lattice ¢,, is much smaller than that of a
coarse cell, i.e., g,,<<g, because one computes the correct pdf
by simulating, via the microscopic KMC method, only a
small fraction g,,/g of the entire domain. This fact stems
from the CPU that typically scales more than linearly with
system size. Further acceleration results from the time scale
separation, discussed in Sec. III B, between simulations on
the two grids. Specifically, the microscopic KMC on the fine
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grid needs only to be performed for shorts periods of time, of
order O(I';"), in comparison to the large time increments of
the slow processes that are of order O[(k,P)~']. As a result,
one is able to evolve the system over macroscopic (or slow)
time scales with the correct transition probabilities obtained
from the underlying pdfs via short KMC simulations on
small length, fine grids. These CPU savings are ideally of
order O(1/¢), where & denotes the separation of time scales
between diffusion and adsorption/desorption in our physical
system (see also Appendix for its precise definition) but in
reality are reduced due to the cost associated with the fast
equilibration on the fine grid. It is clear that the larger the
time separation is the faster the multiscale method will be.
Further acceleration can result by maintaining the same pdf
for a while and by firing multiple processes at once. These
approaches are optional but we use them for the calculations
of this paper and we discuss them in Sec. VL.

2. Computing pdfs and sampling of states on the fine
grid

In the multigrid scheme, KMC simulations are per-
formed on the microscopic lattice to obtain the probability
P-,f(g'k) of observing a configuration g} out of several equi-
librium configurations {o;}. The subscript k denotes that the
microscopic lattice is subject to the constraints imposed by
coarse variables of C; such as density, energy, temperature,
pressure, etc. (in our case 7,q,,,T). The superscript f de-
notes that the pdf is obtained by running fast processes only.
Typically the coarse cell and the microscopic lattice have
different dimensions (g,,<<q). Thus, P{(gk) encountered in
the master Eq. (5) on a small fine lattice cannot directly be
used on the coarse grid in solving Eq. (15) due to size (length
scale) mismatch. Therefore, one needs to construct a pdf

f’-,’:()_c) of relevant states x that are common to both the mi-
croscopic and the coarse grids. We prefer to compute a pdf
that is related to cluster size distribution and/or energy dis-
tribution. This choice stems from the fact that the transition
probabilities of the slow processes depend precisely on such

pdfs. For example, the form ﬁ{()_c) = P; (the probability of an
occupied site on the microscopic lattice with j occupied
NNs) is used below.

One important point is how does one choose a micro-
scopic state to fire from. An obvious method is to compute
the time-average transition probabilities of the coarse pro-
cesses (this is very easy to do during the microscopic KMC
simulation) and then fire from an “average” microscopic
state, the previous time step one, a random one, or even the
last one. All of these could lead to pitfalls. The method of
state and process selection has been detailed for well-mixed
systems with disparity in time scales in Ref. 25. An impor-
tant trait of our method is that while we compute the pdf of
microscopic states on the fine grid, we do not have to com-
pute an average microscopic state from which the evolution
of slow processes occurs. Instead, the slow variables evolve
from a microscopic state according to suitable probabilities.
It is expected that firing from a microscopic state rather than
an average state will be important for bistable and oscillating
systems. One such numerical example is presented below but
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064110-7 Multiscale spatial Monte Carlo simulations

these issues should be further explored in future work. Ex-
tending our work from Ref. 25, it turns out that the transition
probability per unit time of firing the slow process p’ from
state x" in the coarse cell C/ is given by an average of the
coarse cell

D,k x)= 2 PLET, K v.x'), (28)

veCyr

where ﬁi,()_c’) is the probability of observing state x” via the
fast processes and F‘;,(k’,v,g’) is the transition probability
per unit time of firing out process p’ from state x’ at site v of
cell Cps (here the more explicit and general notation of tran-
sition probabilities is used). As a result, a slow process p’
from a particular microscopic state x’ in cell C/ is selected
with a probability (from a uniform distribution)

2 PLeOT (K v.x)

veCyp

2222 ﬁ{(z)F;(k,v,)_C).

keL. x p veCy

(29)

In the denominator we sum over all slow processes p and
over the entire lattice as happens in any microscopic KMC.
The lack of overbars on the rhs of Egs. (28) and (29) indi-
cates that the transition probabilities of slow processes are
microscopic and are computed from the pdf of the fast pro-
cesses. Using Eq. (28), Eq. (29) becomes

(K x")
S II0W )
kelLe. x p

(30)

Since the slow variables do not change by the fast vari-
ables (canonical ensemble fine-grid simulations) in our
model system, in the simulations that follow the stochastic
average transition probability per unit time is computed by
summing over all microscopic states of each coarse cell. The
transition probability per unit time of firing a slow process p’
from all possible states in cell Cy, is

f:,r(k,) = E 2

x veCy

PLT, (K v,%). (1)

The probability of firing the slow process p’ among all pro-
cesses over the entire coarse lattice is then

> X

k,(x)F (k' v,x)

x veCy _ f;r(k,) (32)
S I3 I Pwhkey X ST0
keL. x p veCy keL. p

Alternatively, by computing the probability of observing a
state from its average lifetime,” one has a simple way to
evaluate the transition probabilities of slow processes on the
fly of the microscopic KMC on the fine grid [instead of using

Eq. 31)]
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©u) =13 S Ad, T, v)/EAtk,m, (33)

an
m'vEC

where Atk, is the ith time increment of the microscopic
KMC event on the fine grid and t,=%; Atk, is the total
(relatively short) time simulated by the KMC on the micro-
scopic grid lattice C, in the coarse cell Cy [see Fig. 1(b)] at
equilibrium (after an initial, discarded period needed to com-
pute equilibrium statistics).

3. An example of computing the pdf and coarse
transition probabilities on the fine grid

Next we derive the PJ(x) for the system studied in this
paper. The coarse-grained adsorption transition probability
per unit time given by Eq. (7) is a linear function of the
coarse variable and, as such, it does not contain any spatial
correlations, i.e., it is exact. The desorption transition prob-
ability per unit time is given by

IVGOE kd< > o, exp(- BU,,)>

veCy

= kd< > Cexp(- ,BUU)>. (34)

veCy

Here the asterisk indicates summation over all occupied sites
within cell C, (where o,=1). For NN interactions, one can
write Eq. (34) as

T (k) =k, 2 n;j exp(= BjJxn), (35)
Jj=0

where n; denotes the number of occupied sites with j occu-
pied NN sites, such that =7, n;= 1. Furthermore, by defin-
ing the probability p;=(n;)/ 7, one has

Tyk) = kym 2 pj exp(= B, (36)
J
so that Pl(x)=p ; and the task is reduced to estimating
2; p;jexp(=BjJxn)- This can easily accomplished by evaluat-
ing the conditional probabilities {p;}}_, of all occupied sites
having j NN. This approach can easily be extended to
longer-range interactions.

At constant pressure and temperature, {pj};:() is only a
function of the coarse lattice coverage. There are two meth-
ods for computing p;. One can generate a priori a database
for {p;}_y using microscopic lattice KMC simulations for
various values of coverage (see also Ref. 30 for use of this
idea in boundary-value problems). However, this may be te-
dious for complex systems and will require interpolation
and/or tabulation.

The second approach computes the equilibrium pdf
{p;}j=o within Cy at 7, on the fly using a microscopic lattice
embedded within each coarse cell with ¢,,>1 sites via, in
our example, a canonical ensemble KMC simulation. The
size of the microscopic lattice should be larger than the cor-
relation length to avoid finite-size effects.” The microscopic
lattice uses periodic boundary conditions and (7,,,¢,,,7) as
inputs. Its output is p;=(n;)/7,,. Here 7,=int(g,,7,) is the
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064110-8 A. Chatterjee and D. G. Vlachos

number of particles on the microscopic lattice, where int() is
the greatest integer function. Details of the algorithm are
mentioned in Sec. VI. Since there is always some uncertainty
in the numerically ascertained {p; ‘=0» the fact that 7,/q,,
may not exactly match 7, does not affect the accuracy of the
multigrid method as long as g, is sufficiently large. (n;) is
obtained by time averaging n; from a single trajectory calcu-
lation once the microscopic processes have reached local
equilibrium.
Using the pdf {p;}_,, the configurational energy of the
cell is given by
4
) == 33 jp . (37)
j=0
As in the case of CGMC-QC, the coarse cell is assumed to
be large (g—°) and boundary effects are neglected. Thus,

H,(k)=0. The Hamiltonian is given by
H(n) = > H(k)+ X hy

ke L. ke L.

4

mg< . _

=—72]PJJNN+ 2 h. (38)
Jj=0 ke L,

Since in the new method one solves the fast (slow) processes
at small (large) length scales, hereafter, the method will be
denoted as the multiscale CGMC method.

4. Connections to other literature methods

Multigrid methods have been applied in various contexts
in the literature (see review in Ref. 10) mainly for determin-
istic, continuum partial differential equations (PDEs).”' In
addition, multigrid MC methods have also been invoked to
handle critical slow down when the sampling by MC be-
comes very inefficient due to the local updates of the
lattice.*>*> Wavelets have also been applied successfully for
coarse graining a fine-grid representation in both
deterministic** and stochastic systems.35 The overall idea of
previous multigrid MC work is that one performs nonlocal
(collective-mode) updating by solving a sequence of auxil-
iary problems on various grids of different size where ran-
dom samples are generated from the Boltzmann distribution
by heat-bath sweeps. These multigrid methods have a close
root to block-spin renormalization-group theory and iterative
multigrid methods used for PDEs and differ from the dy-
namic multiscale CGMC method presented here for arbitrary
complex ensembles and processes. Our method has analogies
to adaptive mesh refinement strategies for PDEs.***7 The
heterogeneous multiscale method and the related gap-tooth
method ™ couple usually different models (hybrid multi-
scale models) in different spatial domains and are conceptu-
ally closer to our approach.

In most available hybrid multiscale methods, informa-
tion from the small length and time scales is computed via a
microscopic molecular simulation, such as molecular dynam-
ics, and passed often to deterministic conservation equations
that evolve over large length and time scales. In turn, mo-
lecular simulations are carried out under an imposed external
field determined from the macroscopic model. In such hybrid

J. Chem. Phys. 124, 064110 (2006)

multiscale models, lack of connection in the physics of mod-
els at different scales, i.e., in their corresponding constitutive
equations, can result in the violation of conservation, nu-
merical instabilities, and very importantly in incorrect noise
passing between scales with unclear consequences for the
physics of the problem studied.'®*' In contrast, the multi-
scale CGMC method is mathematically founded and does
not exhibit numerical instabilities. In the limit of ¢,,— ¢ and
when no time scale separation is used, the method reduces to
the conventional KMC. Furthermore, due to its nonhybrid
nature and its probabilistic construction, it seamlessly pre-
serves stochasticity at all scales, a feature currently impos-
sible with any other available multiscale method, including
wavelet transformations. Our method here builds upon our
recent work on handling stiffness of reaction networks (sin-
gularly perturbed systems) in well-mixed environments> but
extends it to spatially distributed systems by employing two
grids and by capitalizing on our earlier mathematical work
on the CGMC method.

V. DETAILED BALANCE

The reader is referred to Refs. 17 and 18, where it was
shown that the CGMC-MF method obeys detailed balance. It
is shown here that the CGMC-QC method also satisfies de-
tailed balance. For example, in the case of exchange of par-
ticles between cell Cy and the fluid phase via adsorption and
desorption, detailed balance requires that

IT gxn ek,Plq- )

ke L. P
= I enn ey 2 (o,e7P%) (39)
ke L veCy 73,

Here &, is a unit vector with the kth element being 1. Rear-
ranging and retaining only the terms for cell C;, one gets

kg 2 (o,e )

8NN e_BHL,k veCy s (40)
ENN e_BH|7]k+] kaP(q - 77]()|77k
Using the maximum term method, one has
e e, oy, (41)
8NN e_BH‘ et Ql’lk”
Writing
do
= + —| 4. 42
Q|77k+1 Ql”k d?']k " ( )
or
0l, 41 dIn
= Q C = PR (43)
Ql M d’]k M

Finally, using Eqs. (41) and (43) and k,P/k,;=Q,, one gets
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TABLE III. Results from various stochastic closures used in computing Eveck(a,,e’ﬁUv) by various CGMC
methods.

2 (e

veCy

Closure/method

Local mean-field

theory me? U U =Ty(me—1) + E Tam
le Lol=k
Local quasichemical 0 5 =0
theory ’ " =
(ow=1+27)(0=7) |° s B
KL (L + 1 =27 % PR, 0 < <1
e PINne =1
Multiscale, ~
computational method 2 E Pu(x)o,e P
x veCy
—BU — K K+1
(g,e7P) =NQ,(1 = 7). (44) _ .
2h<g, =21 (45)
i=1 i=1

According to Egs. (22) and (26), both sides of Eq. (44) are
equal. Thus detailed balance is satisfied.

For the multiscale CGMC scheme, the microscopic
model on the fine lattice uses the KMC subject to the con-
straints of a coarse cell (in our example simply a canonical
ensemble at a specified coverage) and it automatically satis-
fies detailed balance by suitable choice of the transition prob-
abilities (Table I). Since equilibrium is unique and thus inde-
pendent of the kinetics/transport processes involved, the
transition probabilities of the slow processes, computed us-
ing microscopic local equilibrium configurations from the
fine scale model of the fast processes, also obey detailed
balance because they are simply ensemble averages of prop-
erly equilibrated microscopic states.

V1. ALGORITHM FOR CGMC-QC AND MULTISCALE
CGMC METHODS

A. Implementation of the CGMC-QC method

The CGMC-QC method employs the conventional mi-
croscopic KMC algorithm, known also as stochastic simula-
tion algorithm42 (SSA) but on a coarse grid with coarse tran-
sition probabilities (Tables II and IIT). It works similar to the
CGMC-MF method and consists of the following steps:

(1) Initialize the coarse lattice, the time (¢=0), and the rate
constants.

(2) Compute the coarse-grained transition probabilities per
unit time for all slow processes on the coarse lattice.

(3) Select the (K+1)th slow process randomly from all
possible processes based on the criterion

where T is the transition probabilities per unit time of

the ith slow process, I, is the sum of transition prob-

abilities per unit time of all slow processes over the
entire lattice, and ¢ is a uniform random number
e(0,1).

(4) Increment the time ¢ by a continuous amount
At=—In & /T (46)

tot>

where £’ is the second random number from a uniform
distribution.

(5) Execute the (K+1)th process by updating the coarse-
grained occupancies.

(6) If desirable time is reached, stop. Otherwise, return to
step (2).

The slow processes involve adsorption and desorption
with coarse transition probabilities per unit time given by
Eqgs. (7) and (27) (Tables II and III). Because of the similari-
ties of the CGMC-MF and CGMC-QC methods, their com-
putational requirements are nearly the same.

B. Implementation of the multiscale CGMC method

1. Accelerated time advancement and sampling
on the coarse grid

The multigrid method is obviously computationally
more expensive than the other analytical stochastic closures
because of the microscopic lattice KMC simulations. How-
ever, further acceleration can result by realizing that when
adsorbing or desorbing a particle no substantial change of the
microscopic pdf occurs. This is true when the populations do
not change substantially between events. Consequently, in
this paper the pdf is kept fixed in time intervals during which
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several adsorption and desorption events occur. Sampling on
the coarse grid and calculation of time increments can follow
the conventional KMC algorithm of one at a time process
selection. However, the presence of coarse cells naturally
allows one to fire bundles of slow processes at each time
increment over the entire lattice instead of one at a time
selection of KMC. Specifically, the binomial -leap method
introduced in Ref. 14 for well-mixed systems and extended
to the CGMC method (spatially distributed systems) in Ref.
43 is employed to select the time interval based on the r
criterion®

T=r mkin( /T 4(k),(q = p)IT (k). (47)

In well-mixed systems, Eq. is formally derived from a ver-
sion of the ensemble-averaged difference-differential equa-
tion for each species by requiring that the change in the
number of molecules per time step is sufficiently small. This
equation has a form similar to the algebraic equations ob-
tained by applying the explicit (first-order) Euler scheme to
deterministic systems. The maximum value of the parameter
r (and thus the maximum time step 7) is dictated from the
absolute stability analysis of the difference-differential
equation.”® The adsorption X,(k) and desorption X,(k)
bundles at C; are sampled from a binomial distribution. Once
the bundle size for all adsorption and desorption processes is
determined, the coarse lattice is updated according to

i+ D= ) + X, 00) = X,6), k=12,...m, (48)

and the time is incremented by 7.

2. Initialization of the fine grid at each coarse time
step

The estimation of the equilibrium pdf {p; ;:0 has to be
computed for various coverages, and thus, proper initializa-
tion of the microscopic lattice can save some time to mini-
mize the time needed to reach equilibrium within a coarse
cell. The simpler approach is to store the final equilibrated
microscopic configuration in each cell from the previous
coarse time step, and use it at the new time step, while ap-
propriately adding/removing particles from vacant/occupied
sites according to the coarse-grid constraints. The reduction
in CPU using this approach versus randomly placing par-
ticles on an initially empty microscopic lattice and then
equilibrating the system is discussed in Sec. VII A. Alterna-
tively, one may randomly place clusters based on the pdf
from the last equilibration step so that 7, particles are
present on the microscopic lattice.

3. Algorithmic details

A schematic of the multiscale CGMC algorithm is
shown in Fig. 2. We execute the fast processes (diffusion) on
the fine grid over short times using the KMC method and fire
the slow coarse-grained (adsorption and desorption) pro-
cesses over coarse, long time scales via the binomial 7-leap
method. The algorithm can be outlined as follows:

(1) Initialize the coarse lattice coverage {7;}i.,, the time
(=0), the rate constants, and the numerical parameters

J. Chem. Phys. 124, 064110 (2006)

[the value of r for the binomial 7-leap method and the

tolerance for testing the local equilibrium criterion, see

step (5)]. Set the microscopic occupancy to zero and

the net change in coarse lattice coverage A7]/<F= Tie-
Fast scale/fine-grid KMC equilibration (micro-
scopic integrator).

(2) In each cell, if Aﬁk6>(<)0, randomly add (remove)
4m|A7 | particles to (from) vacant (occupied) micro-
scopic lattice sites. Set the microscopic lattice time
clock in each cell to ¢,,=0.

(3) For each coarse cell, partition a KMC simulation on a
number of windows (intervals) of Nz MC events each.
In each window, perform KMC on the microscopic lat-
tice for the fast processes for Ny MC events. In each
MC event:

(a) Select the (K+1)th process from all possible fast
processes based on the criterion =X V<&V
sEglff , where the superscript f denotes fast pro-
cess. Here TV is the sum of transition probabilities
per unit time of all fast processes over the entire
lattice.

(b) Increment the microscopic time ¢, by Af =

—In &' /T .
(c) Execute the (K+1)th fast process and update the
microscopic lattice occupancies and transition prob-

abilities per unit time.

(4) Obtain the probability distribution function P/(x) for
fast processes.
(5) Test for local equilibrium condition.

(a) If the Isf()_c) obtained is from the first window of the
microscopic integrator, then store the current pdf as

Prol(x)=P/(x) and go to step (3)(a).
(b) Otherwise, compare the current pdf P/(x) with the

P/°M(x) and test for statistical convergence using
the x> method. If the two pdfs are the same (say
with a probability of 99%) go to step (6) (after
simulations in all coarse cells have been run). Oth-

erwise, store the current pdf as P/°4(x)=P/(x) and
go to step (3)(a).

Slow scale/coarse-grid binomial T-leap CGMC.
(6) Calculate the transition probabilities per unit time of all

slow processes on the coarse lattice 13f()_c) [for example,
see Eq. (36)] for all coarse cells.

(7) Set 7_70,01d: ’7]k, k:l,...,m.

(8) Select a time leap 7 based on the r criterion [Eq. (47)]
and increment the coarse (macroscopic) time scale ¢ by
T I=t+T.

(9) Compute the number of firings for each slow process
using the binomial distribution."

(10) Update the populations of species of the coarse lattice
based on Eq. (48) and the lattice coverage {7}/ .

(11) If desirable time is reached, stop. Otherwise, compute
A% =M= oa> k=1,...,m and return to step (2).
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In order to obtain p; during a KMC simulation of step
(4), we compute the time-averaged number of sites n; with j
occupied NN sites, i.e., Efiﬁ njAtin/tm for j=0,1,...,c. The
probability  distribution  function p; is given by
EZEI n;At, /1 qut,, where t, is the total time elapsed in the
microscopic integrator.

VIl. NUMERICAL ASSESSMENT OF THE CGMC-QC
AND MULTISCALE CGMC METHODS

In this section, numerical simulations are carried out for
a simple prototype system. Results from simulations of si-
multaneous adsorption, desorption, and diffusion on a peri-
odic 2D lattice are reported.

A. Simulations in a uniform pressure field
at high temperatures

The accuracy of the transient and equilibrium solutions
of the KMC, CGMC-MF, CGMC-QC, and multiscale
CGMC methods is first assessed. A spatially uniform exter-
nal field (of pressure) is imposed. A total of N=100X 100
=10000 sites are present on the KMC, CGMC-MF, and
CGMC-QC lattices. Square coarse cells of size g=10X10
=100 are employed for the CGMC-MF and CGMC-QC
simulations. The judiciously chosen small values of ¢ and N
allow comparisons of the CGMC methods with the compu-
tationally expensive KMC method on a single microscopic
lattice. For the multiscale CGMC simulations, coarse cells of
size g=100X 100 are employed, and the lattice contains
N=1000X 1000=1 000 000 microscopic sites. The 2D mi-
croscopic lattice for multiscale CGMC contains ¢,,=40
X 40 lattice sites (note that g,, is large but not much smaller
than ¢. This choice is in order to have comparable results to
the KMC method rather than to obtain high computational
efficiency). To allow comparison of results of different
CGMC methods, one coarse cell of the multiscale CGMC
coarse lattice is compared to the entire lattice of KMC,
CGMC-MF, and CGMC-QC methods. In actual applications,
orders-of-magnitude larger ¢ and N could be used in the
CGMC methods. Such an example is presented in Sec.
VII C. The multiscale CGMC simulations use a value of
r=0.1 [in the r criterion, Eq. (47)] for the binomial 7-leap
method. The separation of time scales in the physical process
is chosen to be only about two orders of magnitude. While
this is large enough to make the accuracy of the multiscale
CGMC good, it is not representative of the much large stiff-
ness encountered in physical systems, but KMC becomes
prohibitive to use for stiffer systems than the one chosen here
(see Sec. VII C for a much larger separation of time scales).
The transient behavior is studied based on a single trajectory.
Time-averaged equilibrium properties are obtained from a
single trajectory over a long time window.

Figure 3 shows the average lattice coverage and the
Hamiltonian versus time for the parameter values indicated
in the figure. Five KMC trajectories with the same initial
conditions but different seeds of the random generator are
plotted as gray lines to aid visual comparison with CGMC
methods in the presence of thermal fluctuations. A single
trajectory is plotted for the CGMC-MF (dotted line), the
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FIG. 3. (Color online) Comparison of the (a) time-dependent average lattice
coverage and the (b) Hamiltonian of various methods. Parameters are men-
tioned in the figure. Snapshots of the coarse lattice (m=10 X 10 coarse cells)
and the microscopic lattice (g,,=40X40 lattice sites) from the multiscale
CGMC simulation at time =10 s are shown.

CGMC-QC (circles), and the multiscale CGMC (dark line)
methods. Strong NN attractive intermolecular interactions re-
sult in a significant error in both transient and equilibrium
solutions of the CGMC-MF method. On the other hand, both
the CGMC-QC and multiscale CGMC methods are in good
agreement with the KMC results.

A snapshot of the coarse lattice of the multiscale CGMC
method at time =10 s is also shown. Each coarse cell has a
different number of particles, as shown by the shaded bar
depicting the effect of fluctuations at the coarse-grid scale. A
snapshot of the microscopic lattice embedded in one coarse
cell of the multiscale method is also shown in Fig. 3. Inho-
mogeneity in the distribution of particles on the fine grid
underscores the effect of spatial correlations caused by inter-
molecular forces within a coarse cell. Only the multiscale
CGMC retains that correct spatial distribution of particles
inside a coarse cell.

As mentioned earlier the microscopic lattice can be ini-
tialized in different ways before equilibrium statistics is ob-
tained. Figure 4 shows the evolution of the Hamiltonian of
the microscopic lattice during the equilibration process start-
ing from two different initial configurations at =10 s. In the
first initialization approach, 7,,=int(q,,7,) particles are ran-
domly placed on an empty microscopic lattice at #,,=0. The
second approach follows Sec. VI B, wherein particles are
added/removed from the last equilibrium configuration of the
microscopic lattice. Note that both approaches yield the same
pdf. However, as evident from Fig. 4 the second method
requires fewer MC events and is thus more economical. In
fact, by using a microscopic state from the previous macro-
scopic time step, the system is already close to equilibrium
despite 7 leaping. Thus, it may be possible to maintain the
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FIG. 4. (Color online) Hamiltonian on the fine grid vs time toward equilib-
rium by fast diffusion at macroscopic time =10 s for two initializations (see
text) of the microscopic lattice in the multiscale CGMC simulation of Fig. 3.
Random placement of particles needs some time for equilibration. Using a
microscopic configuration from the previous macroscopic time step results
in faster relaxation.

same pdf even for more than one 7 leap, resulting in further
time acceleration. On the other hand, an initial random dis-
tribution of particles forms clusters (relaxes) over a longer
period of time. It is important to note that the time scale for
equilibration is much shorter than that of the coarse time
scale shown in Fig. 3. This is a direct result of the separation
of time scales between fast and slow processes and high-
lights the time acceleration of the multiscale CGMC method
(albeit relatively moderate for our choice of parameters).
Figure 5 shows the total number of particles adsorbing
and desorbing on the coarse lattice per time leap for the
multiscale simulation depicted in Fig. 3. As shown in Fig. 5,
initially no desorption events occur on the empty lattice,
whereas at equilibrium the adsorption and desorption bundle
sizes match. Unlike the one process per time step of a KMC
algorithm, the binomial 7leap method allows several pro-
cesses to simultaneously occur over the entire lattice in a
single but larger time leap. This 7-leaping feature makes the
multiscale method more economical. We have shown before
both theoretically and via simulation that the binomial 7-leap
method becomes very advantageous as the cell size and the
lattice size increase.”’
While comparison of single trajectories shown in Fig. 3
is a good starting point, pdfs of various quantities provide a
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FIG. 5. Number of adsorption and desorption events (i.e., the bundle size) in
a single time leap in a coarse cell with the binomial 7-leap multiscale
CGMC method vs time for the simulation depicted in Fig. 3.
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FIG. 6. Probability distribution function for (a) the average lattice coverage
0 and (b) the Hamiltonian at time =10 s from different methods for the
simulation depicted in Fig. 3. The KMC and multiscale CGMC method pdfs
are statistically indistinguishable.

more strict comparison of stochastic methods. Using averag-
ing over 1000 trajectories with the conditions of Fig. 3, we
have determined the pdfs of the coverage and of the Hamil-
tonian of the various methods. These pdfs are compared in
Fig. 6. The presence of spatial correlations makes compari-
son of the Hamiltonians of different methods a more strict
measure compared to coverages. The CGMC-MF method
underpredicts the average lattice coverage and the Hamil-
tonian, whereas the CGMC-QC method over- (under-) pre-
dicts the coverage (Hamiltonian). The deviation from the
correct average lattice coverage is nearly the same for the
two methods. On the other hand, the KMC and multiscale
CGMC pdfs are statistically indistinguishable.

The error of various methods with respect to the exact
KMC as a function of the equilibrium average lattice cover-
age 0 is plotted in Fig. 7. 6 is varied by changing k,P/K,,.
Other parameters are the same as in Fig. 3. The error in the
CGMC-MF solution can be up to eight times larger than the
corresponding one of the CGMC-QC method. The error of
the multiscale CGMC method is statistically insignificant.

When small length scale features, such as boundaries,
interfaces, and sharp grz:1dients,44’45 are present and demand
microscopic resolution, CGMC can become computationally
demanding. In such cases, adaptive (nonuniform lattices)
CGMC simulations®®*® should be used. Extension of the
CGMC-QC and multiscale CGMC methods to nonuniform
lattices is straightforward but these techniques should be ap-
plied only in large coarse cells beyond a certain cutoff cell
size. For example, Fig. 8 shows the error in CGMC-MF and
CGMC-QC equilibrium coverages as a function of the
coarse-cell size g. The CGMC-MF and CGMC-QC errors
show opposite trends. The CGMC-MF (CGMC-QC) error
increases (decreases) with increasing cell size g. There is a
crossover point at g=40 above which the CGMC-QC
method is more accurate than the CGMC-MF method. By
construction, the CGMC-MF method reduces to the KMC
when ¢=1 and approaches the global MF theory when
q— . As a result, the error in the CGMC-MF method ap-
proaches an asymptotic limit as the coarse-cell size varies.
On the other hand, information loss theory indicates that the
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FIG. 7. (Color online) Error in (a) the average lattice coverage and (b) the
Hamiltonian of different CGMC methods in comparison to the KMC
method. The error reduces in the following order: CGMC-MF, CGMC-QC,
and multiscale CGMC methods. The adsorption prefactor k,P is varied to
achieve different average lattice coverages, 6.

error in CGMC-MF scales as O(q/ Lp).lg’27 For short-ranged
interactions, such as Lp=1, this error is “large” even when
g=2. Since the method is exact at g=1 and ¢ is an integer
number, a discontinuous (abrupt) increase in the error occurs,
as shown in Fig. 8 (here results are depicted for ¢ starting at
4). The large errors in the CGMC-QC method for small val-
ues of ¢ result from the QC approximation being valid for
q— . In fact, when ¢ is small, one hardly has enough pairs
for the bulk statistical-mechanics equations to hold. It ap-
pears that the MF closure of random distribution of particles
is a better approximation than the QC one when coarse cells
are small in size.

B. Simulations in a uniform pressure field at low
temperatures

The above simulations are carried out when the isotherm
is single valued, i.e., at sufficiently high temperatures. Figure

0.30

kP=0.134s", k =105

0.25 -
T =10s!
_(E) 0.20 - B1=3.5,L=1
< g1s) 8, =0-294
o
0.10 - CGMC-QC

20 40 60 80 100
2D coarse cell size, q

FIG. 8. Error in the average equilibrium lattice coverage 6 of the
CGMC-MF and CGMC-QC from the KMC method as a function of the cell
size g for the parameters indicated. For these parameters KMC gives an
average lattice coverage of Og\c=0.294. The error in the CGMC-QC be-
comes smaller than that of the CGMC-MF method after roughly ¢g=40.
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FIG. 9. (Color online) Adsorption isotherms of various methods for low
temperatures (3J,=8). The adsorption isotherms using the global QC theory
[Eq. (22)] and the global MF theory are denoted as QC and MF, respectively
(wider multiplicity regimes). Excellent agreement is observed between the
multiscale CGMC and KMC simulations.

9 shows the adsorption isotherms of various methods for a
temperature (3J,=8) that is lower than the critical tempera-
ture. Under these conditions multiplicity in the adsorption
isotherm occurs. In this case it is important that the coarse
KMC simulator samples from the appropriate pdf of the cor-
responding microscopic states so the correct branch of the
isotherm is obtained. More importantly, calculation from an
average state could lead to a single-valued, nonhysteretic iso-
therm especially if the microscopic lattice is too small to
allow multiple transitions between the two branches.

The global MF approximation results in the widest mul-
tiplicity regime with the global QC theory [Eq. (22)] giving
results closer to those of the KMC method (a well-known
fact). Due to thermal fluctuations, the CGMC-QC isotherm
(open circles) has a smaller multiplicity regime than that of
the KMC method. In contrast, the multiscale CGMC method
gives results similar to the KMC method (within statistical
difference).

C. Simulations in a nonuniform pressure field

Finally, numerical simulations are carried out for a
0.5-mm X 5-um-sized lattice containing 10'° microscopic
lattice sites (with a lattice constant of 5 A) to assess the
computational requirements of the various CGMC methods.
These calculations are carried out in a nonuniform pressure
field, a situation that is more realistic of physical systems.
Specifically, the adsorption prefactor k,P varies linearly, as
shown in Fig. 10(b), along the long dimension of the lattice
(denoted as x axis) and is uniform along the perpendicular y
axis. The other parameters are k,=1 s, I',,=10° s~!, and
BJy=3.5. The resulting time scale separation of O(10°) is
comparable to the stiffness encountered in realistic systems.
The coarse lattice contains 100 initially empty coarse cells
and each coarse cell consists of 10* X 10* microscopic sites.
Simulations were performed on a single 1.8 GHz Pentium
Xeon processor.
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FIG. 10. (Color online) Transient, average lattice coverage and (b) steady-
state coverage in the presence of adsorption and desorption and 10° times
faster diffusion on a 0.5 mm X5 um lattice with 10'° microscopic sites. A
nonuniform adsorption prefactor [k,P shown in (b)] results in a nonuniform
coverage along the lattice. Only the multiscale CGMC method can resolve
the correct coverage profile for short potentials.

The lattice uptake and the steady-state coverage profile
are plotted in Figs. 10(a) and 10(b), respectively, for various
methods. After 3 h of CPU the CGMC-MF simulations cap-
tured only 0.12 s of real time, and this method was not fur-
ther pursued. Longer time scales was accessed only by si-
multaneously coarse graining space and time. The
CGMC-MF method combined with the binomial 7-leap
method*? captured 40 s real time in a 20-s-long simulation
(dashed line in Fig. 10). The multiscale method is computa-
tionally more expensive than the CGMC-MF method, due to
the microscopic KMC simulator, and required 5-8 h for
L,=1 and 8 for capturing 40 s of real time. Note that the
corresponding KMC simulation is estimated to take g=10%
times longer, i.e., 34 000 years long.

The CGMC-MF method gives identical results for both
short- (L,=1) and longer- (L,=8) ranged interactions given
that the coarse-grained cell is much larger than L, so effec-
tively the range of the potential plays no role (mean-field
behavior is established with negligible cell-cell interactions).
As mentioned earlier the CGMC solution matches asymptoti-
cally with MF results in the limit of infinitely long-ranged
interactions. This practically happens for relatively medium-
range potentials when the dimensionality of the system is
high (here 2D). Consequently, both the multiscale CGMC
(open circles) and CGMC-MF solutions are in good agree-
ment when L,=8. On the other hand when L,=1, only the
multiscale CGMC method (solid line) gives the correct solu-
tion [this is more easily discerned in the steady-state profile
of Fig. 10(b)]. The differences in accuracy are not that dra-
matic for this relatively high temperature.

The microscopic lattice inside each coarse cell in the
multiscale CGMC method simulations contains 40 X 40 mi-
croscopic sites. Length and time scales of the order of 10 nm
and 10 us were accessed on the microscopic lattice, whereas
the corresponding scales on the coarse lattice are 0.1 mm and
100 s (see Fig. 11).

J. Chem. Phys. 124, 064110 (2006)
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FIG. 11. (Color online) Length and time scales accessed by the microscopic
and coarse lattices of the multiscale CGMC simulations of Fig. 10. The
microscopic simulator operates over short length and time scales (of the
order of 10 nm and 10 us) to obtain the cluster pdfs. These pdfs are used in
coarse simulations to reach length and time scales of the order of 0.1 mm
and 100 s.

VIil. CONCLUSIONS

In this paper, the previously introduced coarse-grained
Monte Carlo (CGMC) method, which was based on a local
mean-field (MF) stochastic closure, for performing spatial
MC simulation was revised. The CGMC methods provide a
general nonequilibrium statistical-mechanics framework to
coarse grain space and time in a discrete probabilistic KMC
model. The method is applicable when two conditions are
satisfied. First, there should be a clear-cut time scale separa-
tion, so that fast processes attain local equilibrium over very
short time scales in comparison to the slow processes. Sec-
ond, the simulated domain should be very large, so that sig-
nificant spatial coarse graining is possible.

Given large time scale separation, it was proposed that a
hierarchy of stochastic closures can be employed to account
for higher moments of the cluster probability distribution
function (pdf) and improve the accuracy of the CGMC
method while obeying detailed balance. One approach en-
forces stochastic closure by employing analytical expres-
sions of higher-order approximations of the cluster pdf. A
derivation was presented for one such approximation,
namely, the quasichemical (QC) approximation, and it was
numerically shown that the resulting CGMC-QC method is
more accurate than the CGMC-MF method for first nearest-
neighbor (NN) interactions. The time requirements with the
CGMC-MF and CGMC-QC methods are nearly the same.
However, the QC approximation is applicable only to isotro-
pic potentials with NN interactions. Furthermore, at low tem-
peratures, strong interactions, and short-ranged potentials, a
large number of moments of the underlying pdf is needed.
This is a daunting task for multicomponent systems with
complex chemistry. In order to overcome these obstacles, a
second computationally based approach, namely, the multi-
scale CGMC method, was introduced. The multiscale
CGMC method operates at two lengths and two time scales
(extension to more scales is straightforward), similar to hav-
ing two coupled integrators, one for the stiff problem and
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one for the nonstiff problem. A coarse grid is used to advance
the slow processes over long time scales with time incre-
ments that account for firing of multiple processes over the
entire lattice (7 leaping). This consists the macroscopic inte-
grator. A microscopic KMC simulation is carried out on a
small, fine-grid lattice embedded within each coarse cell for
short periods of time. This fine-grid/short time scale KMC
consists the microscopic integrator. It estimates numerically
the cluster pdf and coarse transition probabilities of the
coarse integrator. In turn the coarse integrator provides the
coarse variables under which the microscopic KMC must be
conducted at each coarse cell. The mathematical underpin-
nings of the method for correctly coupling scales were given.
Results from the exact microscopic KMC and multiscale
CGMC simulations have been found to be statistically indis-
tinguishable. Its multigrid nature renders the multiscale
CGMC method reminiscent of a microscope with variable
resolution (see Fig. 3).

The multiscale CGMC method is generic and provides
accuracy but at increased computational cost compared to
the analytically based CGMC methods. Currently, it is the
only spatial coarse-grained Monte Carlo method that pro-
vides accuracy and efficiency, no numerical instabilities, and
ensures correct noise passing between scales. The method
has been employed successfully in well-mixed systems con-
taining multiple molecular species and reaction processes in
Ref. 25, capitalizing on time scale separation only. Extension
of CGMC to complex systems, including multicomponent
species, an arbitrary lattice with multiple types of lattice
sites, and many molecular processes, is entirely possible.
Possible applications of multiscale CGMC methods include
catalysis, epitaxial growth, diffusion in microporous mem-
branes, atmospheric science, and biology. Future work will
focus on such applications of complex systems.
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APPENDIX: SINGULAR PERTURBATION ANALYSIS
FOR THE LATTICE MODEL

One starts with the difference-differential equation [Eq.

(©6)]
do, =T ,(0)dt -T,v)dt+ 2 (Tpu(v’ — v)dt

!
v eB,

—[hig(v —v")dt), v ey, (A1)

where B, is the set of sites around v to (from) which diffu-
sion from (to) site v can occur. For example, B, may contain
the first NN sites. Adding the ensemble-averaged transition
probabilities per unit time on all sites in a coarse cell Cy
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one gets

d2 (o)=dt >

veCy veCy

kaP(l - <0-u>) - kd<0-ve_BUv>

$2 S (o 1- o))

!
v eB,

~(oy(1 = a,)ePl)) (A2)

Let max(k,P,k;)/T',=e<<1. For illustration we take
kq/k,P=w~1 and set k,P/T",,=&. We first focus on the short
time scales. Introducing the dimensionless fast time scale 7;
=I',t, Eq. (A2) becomes

e(1-(a,)) — exa,e )

d 2 (o,)=diy 2

veCy veCy

7 3 (=)t

U,EBU
- <0-v] - O-U’)e_BUU» (A3)
that gives us e —0
_ 1
d 2 (o) = Zd?} 2 2 (op(l-a)e )
veCy UECkU’EBv
—(o,(1 = a,)eP%)). (A4)

The configuration space at short time scales evolves due to
fast processes (in our case diffusion) according to Eq. (A4).
During short time scales, the slow variables remain fixed but
the values of slow variables constrain the dynamics of fast
processes. More explicitly, diffusion within a coarse cell oc-
curs at a specified coverage provided by the slow processes
of adsorption and desorption.

Next, introducing the dimensionless slow time scale
1,=k,Pt, Eq. (A2) becomes

d > (o) =di, 2 { (1-(a,) - afo,eP)

veCy veCy

+ S (ol = ay)e Py
de

r
v eB,

—(o,(1 = a,)e %)) (AS)
Since ¢7'> 1, from Eq. (AS) one gets
d 2 (o,@)=di; 2 (1-(0,)) - afo,e ) (A6)
veCy veCy
subject to
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E E (<O-v’(l - o-v)e_BUU,> - <o-v(1 - O-v’)e_BUU» =0.

veCy U,EBU

(A7)

Equation (A6) is obtained when Eq. (A4) reaches local equi-
librium. The configuration space at long time scales evolves
due to the slow processes according to Eq. (A6) while satis-
fying Eq. (A6) due to the fast processes. In other words, the
underlying pdf within a coarse cell is slaved to the slow
variables.
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