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A method is presented for the study of rare events such as conformational changes arising in activated processes
whose reaction coordinate is not known beforehand and for which the assumptions of transition state theory
are invalid. The method samples the energy landscape adaptively and determines the isoprobability surfaces
for the transition: by definition the trajectories initiated anywhere on one of these surfaces has equal probability
to reach first one metastable set rather than the other. Upon weighting these surfaces by the equilibrium
probability distribution, one obtains an effective transition pathway, i.e., a tube in configuration space inside
which conformational changes occur with high probability, and the associated rate. The method is first validated

on a simple two-dimensional example; then it is applied to a model of-sstitid transformation of a condensed
system.

1. Introduction tors 1617 or the action based methods introduced by Elber and
) ) . collaborators; deal with the true dynamical trajectories, except
Activated processes such as nucleation events during phasenai the methods only sample trajectories that hop from one
transition, conformational changes of macromolecules, or atiastable set to another. This way, these methods cleverly
chemical reactions usually occur on a time scale that is much manage to observe these trajectories precisely during the
larger than the microtime scale in the system. The reason is,indows of time when a transition happens.
that these processes require an unusually large thermal fluctua- 5, the other hand, very often the dynamical trajectories
tion to drive the system over some energy barrier separating;\oived in the hopping events from one metastable set to
th cpnformgtions. Because qf the wide separation of time Sf:a'esanother are quite complicated objects in complex systems, and
it is impossible to study activated processes by conventional ye information they provide on the mechanism of the transition
molecular dynamics simulations. is very indirect. Arguably, the best reaction coordinate to
David Chandler has been instrumental in the development describe this mechanism consists of the isoprobability surfaces,
of alternative techniques for determining transition pathways or committer surface®$:17 By definition, on these surfaces, the
and rates in complex systems. In most of these techniques, ongyrobability that a trajectory reach one metastable set before the
manages to introduces an appropriate bias on the dynamicspther is uniform. For instance, the committérsurface defines
which greatly enhances the probability of observing the portion the transition state since it is the surface such that a trajectory
of the trajectories during which they perform a transition from |aunched anywhere on the surface has probability half to go
one metastable set to another. For instance, in the Bennett fjrst to one set and half to go to the other. In addition, weighting
Chandler two-step procedutéwhich builds on transition state  these surfaces with the equilibrium Gibbs distribution allows
theory (TST);"#*the rate is computed by launching trajectories one to determine where the transition trajectories are most likely
and running them both backward and forward in time from an to pass through the surface, since by definition there is no bias
appropriately chosen dividing surface between the sets ratherin the way switching and nonswitching trajectories hit these
than from the sets themselves. If the dIVIdlng surface is well surfaces (more precise|y: by definition, a trajectory h|tt|ng the
chosen (Wh|Ch can be done when the mechanism of transitionsurface anywhere has a uniform probabmty to either be a
is known beforehand), the trajectories started from the surfacetransition trajectory or be a trajectory that returns to the set it
have a relatively high probability to go to one set forward in  comes from).
time and to the other backward in time, meaning that the  Therefore, it is desirable to identify these isoprobability
procedure allows one to observe true dynamical hopping syrfaces to describe the transition. However, this is not easy to
trajectories between these sets. do from the dynamical hopping trajectories. Indeed, these are
More recently, other techniques using biased dynamics haveby definition parametrized by time, which is not a good indicator
been introduced which require no a priori knowledge of the of the advancement of the reaction. In general, two trajectories
mechanism of transition. These are based on Pratt$ddga  |eaving a set at the same time will hit an isoprobability surface
sampling dynamical trajectories conditional on them making a at different times. Even worse, a single hopping trajectory may
transition from metastable set to the other. For instance, thehit an isoprobability surface many times during a transition.
transition path sampling technique of Chandler and collabora- The method we propose in this paper allows one to identify
the isoprobability surfaces directly, i.e., without the intermediate
T Part of the special issue “David Chandler Festschrift”. step of determining the hopping trajectories first. The method
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Figure 1. Multiscale two-dimensional potential used in the illustrative
toy example. At a suitable temperature, the two dark blue regions are
metastable states in which the process spends most of its time; yet
transitions occur infrequently, mostly via the light blue/yellow charnel
see Figure 2.

Figure 2. Metastable sets (regions within the green curves), the mean
transition pathy (center red curve), and the boundaries of the effective
switching tube (external red curves) shown on the isolines of the

; : . potential in Figure 1. Also shown in blue are two dynamical paths by
builds on standard results from stochastic process theory WhIChwhich the system switches from the left metastable set to the right one

characterizes the isoprobability surfaces. From an implementa-ang conversely. Here the thermal energy is on the order of the small-
tion viewpoint, the method is a direct extension of the zero- scale features in the potential, and the notion of minimal energy path
temperature string methddsxcept that the potential forces are  (MEP) is insufficient; instead, the rather complicated dynamical
replaced by some constrained thermodynamic averaged forcesswitching paths lie within the much simpler switching tube, which is
The method performs a constrained sampling of the equilibrium identified by the finite temperature string method.

distribution of the system in a collection of hyperplanes
parametrized by a string which is updated self-consistently unti
it approximates locally the isoprobability surface. The region
in these planes where the equilibrium distribution is concentrate
determines a transition tube in configuration space in which
transition takes place with high probability. The method only
uses constrained simulations where every trajectory is statisti-
cally significant, and it remains efficient even in the absence
of a dividing surface with low recrossing rate.

| transition events are very complicated, they are very likely to

go through the region between the two red curves in Figure 2
d(which is roughly the yellow-blue channel in Figure 1); for
obvious reasons, we shall refer to the region between the two
red curves as the effective transition tube.

The simplicity of the metastable sets and the effective
transition tube compared to the dynamical trajectories suggests
that the system effectively experiences a thermally averaged
energy landscape, much smoother than the one shown in Figures
2. An lllustrative Example 1 and 2. Indeed, at the given temperature where we study (1),

) ) ) most energy barriers are smaller than or on the orddgof

The methodology we propose is best illustrated first on a toy ang they are therefore mostly irrelevant for the conformational
example which, while simplistic, retains some of the nontrivial changes since the system can easily hop over these small
features displayed by more realistic systems. The examplepgyriers. Only a few barriers bigger th&gT actually confine
consists of a two-dimensional system whose dynamics is the system for long times in separate regions in configuration

governed by the Langevin equation space and thereby define metastable states. Similarly, the
_ effective transition tube is also determined by large scale features
ya=—vVv(a) + 50 @) of the energy landscape. The green and red curves in Figure 2

were produced by the finite temperature string method, which
also gives the following estimates for the tefight and right-
left mean transition times (i.e., the inverse of the rates) to switch
between the regions inside the green curves in Figure 2:

Herey is the friction coefficients(t) is a white noise with;-
(1)&(0)= 2yksTowo(t), andV(q) is a multiscale potential with
a very large number of critical points (minima, saddle points,
etc.) whose three-dimensional plot and isolines are shown
respectively in Figure 1 and Figure 2. We assume that 1
and takekgT = 1, which is about the size of the small energy tLg=27x10°, tz =4.4x10 ()
barriers in the potential, but lower than the big energy barriers
(for instance, the ye”ow_blue channel is about 5 energy units In this Slmp|e examp|e, these times can also be estimated dlreCﬂy
above the two dark blue regions). At this temperature, we Dy simulating (1); from observing about ACeft—right and
observe the following from the direct numerical simulations of rght—left transitions, one obtains the following:
():
1. The two regions within the green curves in Figure 2 (which t_n=29x10° ty, =4.4x10 (©)]
are roughly the two dark-blue regions in Figures 1) are
metastable sets, in the sense that the solution of (1) spends mosthese are in very good agreement with the times in (2) since
of its time in these two regions. Notice that the details of the both (2) and (3) are tainted with statistical errors and the string
trajectory (two portions of which are shown in blue in Figure method relies on the assumption that the isoprobability surfaces
2) within these sets is very complicated. are planes, which is only approximately satisfied in the example.
2. Transitions between these two metastable sets are rare bult shows that the string method is able to extract the essential
they do occur. While the details of the trajectories of these features of the energy landscape which determine metastable
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ZkBdekd(t) ifa=a
0 otherwise

S(or)

" (, i (', 0)= { (%)

The scalar field = r(a, t) is a Lagrange multiplier term added
in (4) to preserve some particular parametrization of the string
@ chosen beforehand. For instance, a simple choice is the
parametrization by normalized arclength. In this case, (4) must
be supplemented by the constraigiy), = 0 which determines
r. Other parametrizationgfor instance by energy-weighted arc
length—can be straightforwardly implemented by modifying this
constraint, as in the zero temperature string mefiod.

It can be checked that the equilibrium density function for
(4) is given by

Figure 3. Schematic representation of a situation with three metastable
sets By, B, andBs. The isoprobability surface for the transition between — 71 —BV(q)

B, andB; are the dashed surfaces. The equilibrium distribution restricted p(d, @) =Z H(a)e 55@)(‘1) (6)
to these surfaces is peaked in small subsets, the collection of which is . . L

the region inside the dotted curve: this is the effective switching tube, Wheredgq(a) is the Dirac distribution concentrated &a),

i.e., the tube inside which dynamical transition paths betwieand andZ(o) = [se € #V@do is a normalization constant. (6) allows

B, lie with high probability. The center of the tube ¢ga) and it is us to characterize the effective transition tube, the free energy
assumed that, inside the tube, the hypersurfaces associated with thef the metastable states, and the associated transition rates.
reaction coordinate can be approximated by hyperplanes sugfas 1. Effective Transition Tube. By definition, the center of

The equilibrium distribution restricted to the portion $f) relevant

to this transition tube is peakedB{a) (tick black segment). The portion
of Sa) out of the tube is irrelevant; in practice, this external portion is
not sampled anyway, because going ouB@f) by definition requires () =Z Ya) f qeﬁﬁv(q) do @)
crossing barriers of a couple kT at least. This guarantees that other Sw
switching tubes (like the one connectilly and B, centered around . L I S
the pathe(a) shown in gray) do not pollute sampling within the tube Slnc_ep(q, a) is simply the equilibrium dlstr|but|on_ of the_ system
under consideration (since, if they did, the two tubes should really be restricted to the plan&(a), one sees that the stringo) is the
considered as a single one at this temperature). For the situation asaverage position of the system within this plane. The width of
depicted, the method requires sampling successively the two effectivethe effective transition tube itself can be characterized by a few
switching tubes associated with the transition betwBgandB,, and times the variance af aroundg(a); i.e., its local radius square
the one associated with the transition betw@&zrand B; (centered can be defined as

around the other patf(o)) shown in gray).

the transition tube is given by

_ 251 _ 2,-pV(9)
sets and effective transition tubes without having to resolve all Rz(a) =4z (o) f S(a) g — g(a)l’e do (8)

the very complicated but mostly irrelevant details of the

trajectories in the system. where/ is a number of order unity (the effective transition tube

in Figure 2 was defined with = 3). The integral ofo(q, ) in
the ball of radiuR(a) centered around(a) (denoted byB(a)
in Figure 3) gives the probability that a dynamical trajectory
involved in the transition event crosses the pl&ie) within
this ball.

2. Free Energy.The planes(a) (or more appropriately, their

3. The Method

We now introduce our method leaving the question of its
theoretical justification to the next section. The method basically

s a finite temperature generalization of the string method subset®(a)) are local approximations of the reaction coordinate

developed in refs 6 and 7. For simplicity of presentation, we for the conformational change. Therefore, the associated free
assume here that there are only two metastable sets connecteé’

) . i . . nergy is given b
by a single effective transition tube. Extending this to more ayisg y
general situation with multiple metastable sets and tubes is rather _ V(Q)
straightforward and will be explained later (see also the caption F(o) kgTIn f ) e’ do ©)

in Figure 3). The free energy necessarily has a minimum within each of the

Let ¢(a) be a curve in configuration space parametrized by metastableset; and B, (because these are regions of high
o = [0,1] whose end pointsp(0) andg(1), belong to the two  yropability by definition), and at least one (sometimes more)
metastable sets (see the schematic representation in Figure 3)naximum in between, whose value must be at least a couple
We wish to evolvep(o) so that it converges toward the center of kT above the free energy at the metastable states (otherwise
of the effective transition tube. To this end we introduce an the transition would not be rare). Notice also that the free energy
ensemble of realizations (or replicgg)”(a)} whose mean is  differences along(o) depend on the relative width of the tube,

defined to be the string, i.elp?(a)0= ¢(a), and let these i.e., the variation in its radiuR(a), which indicates that our
variables evolve by method fully accounts for entropic effects a high potential
energy barrier around which the energy is rather flat may
¥ =—(VW(g") "+ (") + 1t (4) produce a lower free energy barrier.

In practice, (9) can be determined by standard thermodynamic
integration® Using the identity/ F'(a) do. = F(at), we obtain

~ — . . 0O —
Heret = ga/|@q| is the unit tangent vector along anda from (9) after integration by parts

a — (t-a)t is the projection of the vecta in the hyperplane

normal to the stringp(a), which we denote by§a).  is a _ _ (02 s 1.
white noise with covariance Fop) = Floy) = fal [@©-YV) (t9)e — torg)tda. (10)
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This expression was first derived in ref 10. It is rather simple Indeed, by definition this region is also the one which contains
because we use the plare); this eliminates the complicated the isoprobability surfaces with probability close #o. It is
Jacobian which arises when the sampling is performed in very important to notice that the transition state region may be
nonplanar surfaces. quite wide, in which case the transition state théb#y will
3. Rates.In the high friction limit, the transition ratek; » not apply. For instance, in the example considered before, the
andkz 1 from B; to B, andB; to By, respectively, are given by  entire light-blue/yellow channel is the transition state region.
A wide transition state region is related to a high recrossing
Kio= (ZyﬁNllc)*l, Ky, = (2;/[3N21c)71 (112) rate of any dividing surface.
C3. Among all possible choices, the patio) satisfying (7)
Here minimizes the transition rates. Equivalently, it maximizes
given in (13). This characterization @f(c)) (or equivalently,
N, = [ e MPdg, N,= z* e MAdq (12) of the planeS(0), i.e., the reaction coordinate) is not really
1 2 .. . . . .
surprising. A similar feature is observed in the context of PST,
with Z = fze e dq, are the equilibrium probabilities within ~ where the dividing surface can actually be optimized by

the setsB, andB,, respectively, and minimizing the TST rate it produces (this property was used in
ref 10 to identify an optimal dividing plane). Of course, the
= fo eﬁF(O‘)|(pa| da (13) present rate minimization principle is much more general than

the one arising in TST because the expressions in (11) have a

and (11) are further discussed below; these are the standard’vIOIer range .Of valldlty.as we already _madg clear. This last
characterization ofp(a) is not used explicitly in our method,

expressions for the rates of a one-dimensional diffusion process” . . X o
but it may be taken as a starting point for generalizing our

moving in the free ener otentik(o). . . A .
9 9P (@) method if necessary (for instance by considering reaction
coordinates which are not locally planar if this approximation

were to break down).
We now provide some theoretical background for the method

proposed in the previous section. To this end, we characterizes Numerical Implementation
the effective transition tube in three ways, listed as C1, C2,
and C3 below, which are equivalent but highlight different ~ In practice, (4) is solved by considering M realizations of
aspects of the method. We keep the discussion at a qualitativep”, { ¢} ,-M=l, and approximating the string as
level here; the mathematical details have been presented
elsewheré. Mo
C1. The curve at the center of the effective transition tube is p=M" Z ¢ (14)
the mean position of the system in the planes perpendicular to =
this curve. This follows from (7). Notice that C1 can be used
as a definition for the minimum energy path (MEP) in a smooth To integrate (4) we use a time-splitting scheme which takes
energy landscape in the limit of zero temperatyfieo{ «); this advantage of the intrinsic description of the string. Eatlis
can be easily seen by evaluating (7) by the Laplace method. Ofdiscretized into a number, sal, of points which move
course, we are not interested in smooth potentials and do notaccording to the first two terms;(VV(¢®))” + ()", at the
take the limit a8 — o, and C1 has to be thought of as the right-hand-side of (4). After a number of steps determined by
appropriate generalization of the MEP for dynamics over rough the accuracy requirement for the constraift()a = 0, a
landscapes at finite temperature. reparametrization step is applied to reinforce this constraint. This
C2. The hyperplane % is a local approximation around  COstsO(N) operations. At the reparametrization step, it is also
@(a) of the isoprobability surfaces of the transition. Recall that convenient to changl according to the accuracy requirement
if B; andB; are the metastable sets (corresponding, e.g., to thefor the representation of the string. Ongehas converged to
regions inside the green curves in Figure 2), the isoprobability its steady-state value, no reparametrization step is necessary
surfaces of the transition are surfaces identified according to @anymore and, using ergodicity, one can supplement the ensemble
the following criterion: every trajectory initiated on one of these average by a time average usipg= (M'D—lzj“il fg @l(t) dt to
surfaces has the same fixed probability to reBglbeforeB,. obtain better statistics. Other averages such as (10) are evaluated
As already noted in refs 16 and 17, these isoprobability surfacessimilarly. Notice that once the string has converged and the
contain the correct information about the dynamics. They alone hyperplanes do not need to be updated, the method becomes
allow one to describe the dynamics of the rare transition eventsvery similar to a standard sampling of blue moon type.
betweenB; and By, i.e., these surfaces constitute the right A major advantage of the method is that it uses as a subroutine
reaction coordinate for these transitions. Furthermore, becauseanysolver for the original equations of motion in the system;
our method identifies the effective transition tube, i.e., the ball the additional steps are to compute the tangent along the string
B(a) within Sa) which has a significant probability to be and restrict the force field to the hyperplane perpendicular to
traversed by the trajectories involved in the transition, it string and from time to time to redistribute the images along
automatically identifies the local portions of the isoprobability the string to preserve parametrization. Therefore, the overall
surface that are relevant because they have a high probabilitycomputational cost scales almost linearly with the number of

4. Theoretical Background

to be visited (recall that while the probability to read8hbefore imagesM x N, used to represent the string and the ensemble,
B, from any point on the surface is constant by definition, the and the computation can easily be parallelized. Notice also that
probability to get to a point on this surface from eitlBzror B, the method can be used in an adaptive way where a small
is not uniform). number of images is used at the beginning of the calculation,

The effective transition tube allows us to identify the transition then progressively increase the number of images as the string
state region to be the region on the tube where the free energyconverges toward its final steady value. This procedure saves
is within kgT of the maximum free energy along the tube. computational cost at the early stages of the calculation where
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Initial (left) and final (right) states of the two-dimensional
crystal. The diagonal line is the twin boundary which separates the
two martensitic phases in the final state.

Figure 4.

the string (and the associated hyperplanes) have not yet
converged to the actual reaction coordinate of the transition.
For situations with more than one effective switching tubes
between twometastable sets, each of these tubes must be
obtained separately for a complete description of the transition

events between these sets. In practice, this can be done by using™

an annealing procedure. The simulation is started at an
artificially high temperature where the various effective switch-
ing tubes have clustered into a single one. The temperature is
then slowly decreased, and the relevant tubes are identified as
they become distinct. It is worth pointing out that, in the later
stage of the computation where the temperature is back to the
physical temperature, the presence of different switching tubes
do not lead to practical difficulties as far as sampling is
concerned, in the sense that they do not pollute each other.
Indeed, along the reaction coordinate, these tubes are by
definition separated by energy barriers of a coupleégdf at

least (since, otherwise, they should really be considered as a
single tube); therefore, when one samples within the sug{sgt

in the planeS(a) as defined earlier, one almost never observes
a transition alond(a) to other regions where the plane may
intersect another tube (see Figure 3), and in any case, these
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spurious transitions withi§(o) can be rather easily disregarded

by monitoring the simulation. Figure 5. Upper panel: Snapshot of the crystal during transformation.

The color bar shows the scale of the local energy of each atom; the
region with higher energy corresponds to the twin dislocation. Middle
panel: The free energy experienced by the crystal at finite temperature
when the twin boundary moves by one atomic distance along the
This example illustrates the complex energy landscapes for diagonal (black curve). Also shown for comparison is the potential
systems in condensed phases. We consider a two-dimensionatnergy along one particular MEP (blue curve, at zero temperature)
crystal of 20 x 20 arrayof atoms interacting via a pairwise Which shows the features of the potential associated with the transfor-
potential which has three minimaat= 1, r, = 1.2, andrz = mation of individual atoms along the twin boundary. Notice how much

J— ] ) lower is the free energy barrier compared to the potential energy barrier,
1+1.2%. Assuming that the left and bottom sides of the which can be attributed to the importance of entropic effects in this

crystal are fixed to some substrate, the two basic equilibrium model. Lower panel: The energy landscape after the crystal is half
states for this system are shown in Figure 4. These two statesiransformed. Notice the appearance of three scales on the energy
can be considered as the two variants of the martensitic phase!2ndscape.
and we are interested in transformation from one variant to the largest scale associated with the position of the twin boundary,
other. an intermediate scale associated with the propagation of the twin
The finite temperature string method was used to analyze boundary by one atomic distance, and a small scale associated
this transformation (see Figure 5). A movie of the transformation with the twin dislocation propagation. We chookg to be
can been seen ¢d.From the atomic configurations along the between the energy barrier for twin dislocation propagation and
string, i.e., the center of the effective switching tube, one seestwin boundary propagation. At this temperature, the barriers
that the crystal transforms by propagation of a twin boundary; associated with the motion of the twin dislocation are irrelevant,
the motion of this twin boundary by one atomic distance involve and the metastable states along the way toward full transforma-
the motion of a twin dislocation associated with the phase tion are the 20 states corresponding to the possible positions of
transformation of individual atoms (upper panel in Figure 5). the twin boundary, and no dislocation along it; the transition
This transition path is preferred because the energy is concen-state between two successive metastable states where the twin
trated for the most part at the dislocation (see the scale at theboundary has advanced by one atomic distance is a wide region
right of the upper panel in Figure 5). The energy landscape in phase space, where the twin boundary presents a dislocation
exhibits three scales (middle and lower panels in Figure 5). The along itself (the main energy barrier corresponding to creation

6. Example of Solid—Solid Transformation
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of such a dislocation). Notice that this region is not only wide for instance if the effective transition tube is highly curved in
along the string, but also in the direction transverse to it (i.e., configuration space. For such situations, the finite temperature
the effective transition tube is wide); this can be deduced from string method will have to be modified. A possibility is to use
the fact that the free energy barrier is so much lower than the C3 above as a starting point for determining self-consistently
energy barrier between two successive positions of the twin nonplanar reaction coordinates, but this will definitely constitute
boundary; i.e., relative entropic effects are important (see the a formidable numerical challenge. On the other hand, less
middle panel in Figure 5). ambitious solutions may be found for this problem on a case
To obtain these results, the simulation was initiated with a by case basis. It may amount for instance, to appropriately
string which interpolates linearly between the initial and final redefining the problem in curvilinear coordinates in which the
states shown in Figure 4. The calculation is started with few reaction coordinate is locally planar again, or applying the
images, then refined along the way. At the end, 101 realizations method to a smaller sets of coarse-grained variables suitably
were used, and 40 discretization points per motion of the twin defined. The latter solution may also render the method practical
boundary by one atomic distance were necessary. For compariin larger systems where a full computation with the original
son, we also computed one MEP associated with this transitiondegrees of freedom is too expensive.
using the zero temperature string method; this required 400
discretization points permotion of the twin boundary by one  Acknowledgment. We thank David Chandler for his sug-
atomic distance. This example therefore makes apparent severagestions to improve the presentation of this paper. We are also
advantages of the method. It only requires sampling the grateful to Giovanni Ciccotti and Bob Kohn for helpful
equilibrium distribution of the system in appropriate subsets in discussions. The work of W.E is supported in part by NSF Grant
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barrier in each of the sampling windows guarantees that the Supporting Information Available: A movie of the mar-
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completely any unconstrained dynamical simulation which is of charge via the Internet at http://pubs.acs.org.
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