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Abstract— Systems biology, that is, mathematical modelling
and simulation of biochemical reaction networks in intracel-
lular processes has gained renewed interest in recent years.
For most simulation tools and publications they are usually
characterized by either preferring stochastic simulation or rate
equation models. The use of stochastic simulation is occasionally
accompanied with arguments against rate equations. Motivated
by these arguments, in this paper we discuss the relationship
between these two forms of representation. Towards this end
we provide a novel compact derivation for the stochastic rate
constant that forms the basis of the popular Gillespie algorithm.
Comparing the mathematical basis of the two popular conceptual
frameworks of generalized mass action models and the chemical
master equation, we argue that some of the arguments that
have been put forward are ignoring subtle differences and
similarities that are important for answering the question in
which conceptual framework one should investigate intracellular
dynamics.

Index Terms— intracellular dynamics, generalized mass action
models, chemical master equation, Gillespie algorithm.

I. INTRODUCTION

M athematical modelling and simulation of intracellular
dynamics has gained renewed interest in the area of

systems biology [1]. For most simulation tools and publica-
tions they are usually characterized by either using stochastic
simulation (e.g. [2]) or rate equations (e.g. [3], [4]). While
there are good reasons for hypothesizing stochastic mecha-
nisms [5], [6], some authors have tried to argue their use of
stochastic simulation by suggesting differential equations were
not suitable. In the present paper we are going to provide a
critical discussion of some of these arguments and highlight
subtle differences and relationships which have been ignored
in some discussions. Towards this end we are going to inves-
tigate the mathematical basis and close relationship between
generalized mass action models and stochastic simulation.

The paper is organized as follows. In the following section
we introduce the two most commonly employed conceptual
frameworks for modelling intracellular dynamics: the gen-
eralized mass action approach, using rate equations and the
chemical master equation. This is followed by a derivation of
the key elements of the Gillespie algorithms in Sections III and
IV. In Section V we draw conclusions from the mathematical
derivation and discuss the arguments that have been used in
other publications. This is supported by a simulated example.
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II. RATE VERSUS MASTER EQUATIONS

We are considering a reaction network or pathway involving
N molecular species Si. A network, which may include
reversible reactions, is decomposed into M unidirectional
basic reaction channels Rµ

Rµ : lµ1Sp(µ,1) + lµ2Sp(µ,2) + · · · + lµLµ
Sp(µ,Lµ)

kµ

−→ · · ·

where Lµ is the number of reactant species in channel Rµ,
lµj is the stoichiometric coefficient of reactant species Sp(µ,j),
Kµ =

∑Lµ

j=1 lµj denotes the molecularity of reaction channel
Rµ, and the index p(µ, j) selects those Si participating in Rµ.

Assuming a constant temperature and that diffusion in
the cell is fast, such that we can assume a homogenously
distributed mixture in a fixed volume V , we consider gener-
alized mass action (GMA) models, consisting of N ordinary
differential rate equations

d

dt
[Si] =

M
∑

µ=1

νµikµ

Lµ
∏

j=1

[Sp(µ,j)]
lµj i = 1, 2, . . . , N (1)

where the kµ’s are rate constants and νµ denotes the change
in molecules of Si resulting from a single Rµ reaction. We
write

[S] = S/V and #S = S · NA ,

where NA is the Avogadro number. The units of [S] are mol
per liter, M=mol/L. In this context then, S denotes the number
of moles. GMA models have been widely used in modelling
biochemical reactions and metabolic engineering [7], [8]. The
mathematical representation (1) of a biochemical network does
not account for noise on the states, which would lead to
stochastic ODEs. Neither does it consider measurement noise,
and we may call the model ‘deterministic’. It is however not
deterministic in the sense that it models molecules in a phase-
momentum space and in fact it is rooted in the stochastic
setting of Boltzmann’s kinetic theory of gases and the [Si]
are thus most probable values. In modelling intracellular
dynamics, it has been argued that such “deterministic” models
are not suitable for processes with relatively low numbers of
molecules [9]–[12]. We are going to investigate this argument
in detail.

In a stochastic framework, we are looking at populations of
molecules and wish to determine for each molecular species
Si the probability Prob{#Si(t)=ni} that at time t there are
ni molecules. For N molecular species, let n denote the N -
dimensional state-vector, whose values are positive integers,
n ∈ Z

N
+ . νµ ∈ Z

N are the step-changes occurring for
elementary reactions indexed by µ. If S is an N -dimensional
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variable, we write Prob{#S = n} = Pn(t). Describing the
changes in random variable S, we consider the following two
state-transitions: a) from other states to state n, denoted

n − νµ

aµ(n−νµ)
−−−−−−→ n ,

where aµ(n − νµ) is referred to as the propensity of reaction
channel Rµ, that is the probability per unit time, of a change
νµ occurring, given that we are in state n − νµ. Secondly, b)
moving away from state n is given as

n
aµ(n)
−−−→ n + νµ .

From these definitions we arrive at the chemical master
equation (CME)

∂Pn(t)

∂t
=

M
∑

µ=1

[

aµ(n − νµ)P(n−νµ)(t) − aµ(n)Pn(t)
]

. (2)

The first term on the right-hand side describes the change
to state n, while the second term describes the changes
away from state n. The product of the propensity with the
probability should be read as an “and”. The multiplication
of a propensity and probability makes sense in light of
the derivative against time on the left, in that a propensity,
multiplied with dt gives a probability. Note that the CME
(and the therefore the Gillespie algorithm) does account for
individual reaction channels but not for individual molecules.
This issue was taken up, for example, in [11].

A major difficulty with the CME is that the dimension of
these sets of equations depends not only on the number of
chemical species N but for any possible number of molecules
of any species we have n differential-difference equations.
To avoid these difficulties, Gillespie [13]–[16] developed an
algorithm to simulate a CME model efficiently. The Gillespie
approach to stochastic simulation has in recent years become
popular in simulating intracellular dynamic processes [2], [6],
[10], [17]. Some authors have unfortunately confused the
simulation of a stochastic model with a stochastic model. The
Gillespie algorithm simulates the CME and, as we are going
to show, does this in most cases based on the knowledge of
the rate equation model. To argue a case for an alternative can
thus be mistaken. While a formal analysis of (2) is difficult,
it is possible to approximate the CME by a truncated Taylor
expansion, leading to the Fokker-Planck equation, for which
there exist some results [9], [18], [19]. Comparing (1) and
(2), we note that while rate equations are deterministic in the
sense that they employ differential equations, they are based
on a probabilistic description of molecular kinetics. On the
other hand, the CME is a stochastic formulation, but based
on differential equations, with probabilities as variables. One
should therefore avoid identifying differential equations as
synonymously with ‘deterministic’ representations.

In the next section we discuss the key elements of the
Gillespie algorithm with respect to the number of molecules
and possible approximations. This is followed, in Section IV,
by a derivation of the stochastic rate constant. The derivation
is going to highlight the relationship between generalized mass
action models and a stochastic simulation of the CME.

III. STOCHASTIC SIMULATION

The Gillespie algorithm determines for each iteration first
the propensity aµ for all of the elementary reactions Rµ

aµ = hµ · cµ µ = 1, . . . ,M (3)

where hµ defines the number of distinct combinations of Rµ

reactant molecules, which varies over time

hµ(n) =











Lµ
∏

j=1

(

np(µ,j)

lµj

)

for np(µ,j) > 0 ,

0 otherwise .

(4)

For example, let Rµ be defined as

2S1 + S2 + 3S3 → . . . ,

then Lµ = 3, lµ1 = 2, lµ2 = 1, and lµ3 = 3, such that

hµ =

Lµ
∏

j=1

(

np(µ,j)

lµj

)

=

(

n1

2

)

·

(

n2

1

)

·

(

n3

3

)

.

If np(µ,j) in (4) is large and lµj > 1, terms like (np(µ,j)−1) ,
. . . , (np(µ,j)−lµj +1) will not be much different from np(µ,j)

and we may write

hµ
∼=

Lµ
∏

j=1

(np(µ,j))
lµj

lµj !
=

Lµ
∏

j=1

(np(µ,j))
lµj

Lµ
∏

j=1

lµj !

. (5)

It should however be noted that this is an approximation,
which can effect results in studies that compare GMA models
with lµj > 1 and stochastic simulations for small molecular
populations. In fact, as we are going to show in Section IV,
it is misleading to compare a GMA model with stochastic
simulation as alternatives.

Akin to a rate constant kµ, Gillespie introduced the stochas-
tic rate constant, cµ, which only depends on physical proper-
ties of the molecules and the temperature of the system. cµdt
is the probability that a particular selected combination of Rµ

reactant molecules at time t will react in the next infinitesimal
time interval (t, t + dt). A reaction requires two separate
phenomena: a collision to occur and for the collision to be
reactive. In [20], [21], for bimolecular reactions, Gillespie
derived an expression for cµ that contains a probability that
a colliding pair of Rµ reactant molecules will chemically
react. This probability is generally unknown. For trimolecular
reactions the only relationship that can be derived from phys-
ical principles is the proportionality cµ ∝ V −Kµ+1, where
Kµ = 1, 2, or 3, and even this requires further unrealistic
assumptions as Gillespie admits in [21]. Since a physical
derivation for cµ is in general not possible, implementations
of cµ in algorithms are relying on other arguments. Such a
derivation will be the subject of Section IV. It turns out that
such derivations rely on the rate constants k in GMA models.
In [21] Gillespie also showed how the linear relationship
cµdt is justified on a mathematical basis. A consequence of
this derivation is that cµ must be analytical. This can, for
example, be achieved by keeping cµ constant. If we multiply
the probability cµdt, which applies to a particular selected
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combination of reactant molecules, by the total number of
distinct combinations of Rµ reactant molecules in V at time
t, we obtain the probability that an Rµ will occur somewhere
inside V in the next infinitesimal time interval (t, t+dt). This
leads us to cµ · hµ dt ≡ aµ dt as the probability that an Rµ

reaction will occur in V in (t, t + dt), given that the system
is in state S at time t.

IV. DERIVING THE STOCHASTIC RATE CONSTANT

In the present section we are going to present a novel
compact derivation for cµ, which is also going to provide a
means to discuss the relationship between rate equations and
stochastic simulation.

Using the following example for a chemical reaction

S1 + αS2
k1−→ βS3

k2−→ αS2 + γS4 ,

which is split into two reaction channels

R1 : S1 + αS2
k1−→ βS3 ,

R2 : βS3
k2−→ αS2 + γS4 .

(6)

When a reaction occurs, the changes to molecule populations
are

ν1 = (−1,−α, β, 0) , ν2 = (0, α,−β, γ) .

From (6) and from the definition of reaction velocity we have
the following relationships

[

[Ṡ1]

−1
=

[Ṡ2]

−α
=

[Ṡ3]

β

]

=k1[S1][S2]
α

,

[

[Ṡ3]

−β
=

[Ṡ2]

α
=

[Ṡ4]

γ

]

=k2[S3]
β

.

(7)

The rate equations are then easily derived as

d[S1]/dt = −k1[S1][S2]
α

d[S2]/dt = −αk1[S1][S2]
α + αk2[S3]

β

d[S3]/dt = βk1[S1][S2]
α − βk2[S3]

β

d[S4]/dt = γk2[S3]
β .



















(8)

Looking at the structure of (8), we recognize in this set of
equations the GMA representation (1). Substituting [S] =
S/V = 〈#S〉/(NAV ) in (1), gives

d

dt

(

〈#Si〉

NAV

)

=

M
∑

µ=1

νµikµ

Lµ
∏

j=1

(

〈#Sp(µ,j)〉

NAV

)lµj

,

which can be rewritten as

d

dt
〈#Si〉 =

M
∑

µ=1

νµikµ

(NAV )
Kµ−1

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj , (9)

where we made use of the fact that

Lµ
∏

j=1

(NAV )
lµj = (NAV )

Lµ
∑

j=1

lµj

= (NAV )
Kµ .

The differential operator is justified only with the assumption
of large numbers of molecules involved, such that near contin-
uous changes are observed. Let us now assert for the temporal
evolution of 〈#Si〉 a “particle-ODE”, :

d

dt
〈#Si〉 =

M
∑

µ=1

νµik
′

µ

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj . (10)

Comparing (10) with (9), we find

k′

µ =
kµ

(NAV )
Kµ−1

, (11)

This equation then describes the interpretation of the rate
constant, dependent on whether we consider concentrations
or counts of molecules.

To arrive at a general expression for the propensity aµ from
(10) it follows that

〈#Rµ〉 = k′

µ ·

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj dt (12)

gives the average number of Rµ reactions occurring in (t, t +
dt). Note that νµ has been excluded above since we would
otherwise have an expression for the number of molecules not
the number of reactions. Considering #Rµ, the number of
Rµ reactions, as a discrete random variable with probability
mass function prµ

= Prob{#Rµ =rµ}. The expectation value
〈#Rµ〉 is given by

〈#Rµ〉 =
∑

rµ

rµ〈prµ
〉 rµ = 0, 1, 2, . . . (13)

where

prµ
=











aµdt + o(dt) : rµ = 1

1 − aµdt + o(dt) : rµ = 0

o(dt) : rµ > 1 .

(14)

where o(dt) denotes a negligible probability for more than one
Rµ reaction to occur during dt. Since aµ is a function of n,
prµ

is randomly varying and hence the averaging 〈prµ
〉 over

the ensemble in (13). Equation (13) thus becomes

〈#Rµ〉 = 0 · p0 + 1 · p1 +
∑

rµ>1

rµ〈prµ
〉 .

From (13) and (14) we then have

〈#Rµ〉 = 〈aµdt〉 + o(dt) . (15)

Now, from (12) and (15) the propensity of Rµ reactions to
occur in dt is given as

〈aµ〉 = k′

µ

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj . (16)

To proceed, we consider another alternative expression for
aµ, by substituting (5) into (3), and considering the average

〈aµ〉 = cµ ·

〈

Lµ
∏

j=1

(#Sp(µ,j))
lµj

Lµ
∏

j=1

(lµj !)

〉

, (17)
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where #Sp(µ,j) denotes the random variable whose value is
np(µ,j). Note that this implied the assumption of a large num-
ber of molecules for all species Si and lµj > 1. Comparing
(17) and (16)

k′

µ

Lµ
∏

j=1

〈

#Sp(µ,j)

〉lµj
=

cµ

〈

Lµ
∏

j=1

(

#Sp(µ,j)

)lµj

〉

Lµ
∏

j=1

(lµj !)

.

Making the same notorious assumption1 of zero covariance as
in [21], gives

k′

µ =
cµ

Lµ
∏

j=1

(lµj !)

, (18)

which can be turned into an expression for cµ:

cµ = k′

µ ·

Lµ
∏

j=1

(lµj !) . (19)

Inserting (11) for k′

µ, we arrive at

cµ =

(

kµ

(NAV )
Kµ−1

)

·

Lµ
∏

j=1

(lµj !) . (20)

Equation (20) establishes a relationship between the stochastic
constant cµ and rate constant kµ and is used in most imple-
mentations of Gillespie’s algorithm. Note that if above we
substitute S/V in (1) for [S] instead of 〈#S〉/(NAV ), the
only difference to (11) and (20) is that the NA would not
appear in these equations.

The difference of our derivation to the one given by
Gillespie in [21] is that we introduced the average number
of reactions (12) to move from the general GMA represen-
tation (1), which is independent of particular examples, to
an expression that allows us to derive parameter cµ of the
stochastic simulation (20) without making reference to the
temporal evolution of moments from the CME. In [21], the
temporal evolution of the mean is derived for examples of bi-
and tri-molecular reactions. Taking the variance of #S(t) to
be zero to make it a ‘sure variable’, this equation is compared
to the GMA model to derive cµ.

Equation (20) is at the heart of the Gillespie algorithm
and its implementations. There are two conclusions from the
derivation. First, using the approximation (5) for hµ is valid for
a large number of molecules with lµj > 1. Although in most
practical cases this will not lead to significant differences, this
has been ignored by some authors. More important however is
the fact that the derivation of (20) relies on the rate constants
of the GMA model. In this respect, it does not make sense
to compare a GMA model and a stochastic simulation as
alternatives if the stochastic rate constant cµ is derived from
the rate constants of the GMA model.

1The assumption of zero covariance such that 〈#Si#Sj〉 = 〈#Si〉〈#Sj〉
means for i 6= j nullifying correlation, and for i = j nullifying random
fluctuations. The same assumption is required if one compares the temporal
evolution of the mean of the CME model with the GMA model. This then
demonstrates that a GMA model does not always arise as the mean of the
CME model [21] (page 363).

So how do we compare deterministic and stochastic mod-
els? First, we ought to compare models with models and
simulations with simulations. The advantage of the GMA
model (1) is that its terms and parameters have a precise
meaning, they are a direct translation of the biochemical
reaction diagrams that capture the biochemical relationships
of the molecules involved. For a formal analysis of the model,
as opposed to a simulation, rate equations are in virtually all
cases simpler than the CME. One might argue that for any
realistic pathway model a formal analysis is not feasible for
either model and a simulation (numerical solution) is the way
to go forward. In this case the Gillespie algorithm provides an
efficient implementation to generate realizations of the CME.
An advantage of simulations is furthermore that, in principle,
it is possible to vary temperature and volume over time.

V. DISCUSSION

As concentrations and the number of molecules becomes
small, the variability of molecular populations in biochemical
reaction networks increases. It is frequently argued that in
this case differential equation models do not account for the
observed variability and a stochastic approach should be pre-
ferred. To account for variability in chemical master equations
(2) and rate equations (1), for both conceptual frameworks the
identification of the model and its parameters requires a set of
replicate experimental time series over which to average and
estimate the moments of the distributions that account for the
variability. While there are indeed good reasons to hypothesize
stochastic mechanisms in intracellular dynamics (see [6] for a
recent overview), the arguments used for stochastic simulation
and against differential equations are occasionally misguided.

One ought to differentiate between a hypothesized principle
or molecular mechanism and the observations we make from
experimental data. While rate equations are deterministic in
the sense that they employ differential equations, they are
based on a probabilistic description of molecular kinetics. On
the other hand, the chemical master equation is a stochastic
formulation, but based on differential equations, with prob-
abilities as variables. The Gillespie algorithm, as is used in
most publications, realizes the chemical master equation but
thereby makes explicit use of the rate constants that define the
generalized mass action model.

A common argument is that if the concentration or the
number of molecules of the chemical species involved in a
biochemical reaction is low, a stochastic approach in form of
the chemical master equation is a more accurate representation
than rate equations [9], [10], [12], [17]. In case of [10],
[17] and [12] this discussion is not done on the basis of the
chemical master equation but using the Gillespie algorithm
for stochastic simulation. A question is what is meant by
“low concentrations” or the consequences of small numbers
of molecules? In [10] a figure of the order of less than a
few thousand is given. In [9] the copy number of proteins is
cited as less than a hundred. Since the number of molecules
for most reactant species reduces either to very small values
or increases steadily for others, we assume that authors,
speaking of ‘numbers of molecules’ refer to initial numbers
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Fig. 1. Single run of a stochastic simulation using Gillespie’s Direct Method
[14] for Example (6) in the text. The parameters used are V = 1 pL, k1 =
0.5 (nM · sec)−1, k2 = 0.2 sec−1, α = 1, β = 1, γ = 1, #S2(0) =
#S3(0) = 0.
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Fig. 2. Average over four realizations of a stochastic simulation of Example
(6), using the same parameters as in Figure 1. The GMA solutions have
been multiplied by NA · V · 10−9 to convert concentrations into a count of
molecules.

at time zero. Subject to approximation (5), Figures 1 and 2
compare realizations of the stochastic simulation of Example
(6) with solutions of the rate equations2. Figure 3 shows the
temporal evolution of aµ for a volume of 1 pL and initial
numbers of 10 molecules. The simulations demonstrate that
even for very small numbers of molecules single realizations of
stochastic simulations show steadily changing patterns that can
be modelled well using a continuous representation. The close
similarity between the numerical solution of the ODEs and the
stochastic simulation is no surprise since the rate constants
of the GMA model are also integral part of the stochastic
simulation, as shown by equation (20).

In fact, plots shown in those publications that argue for
stochastic simulation in case of small molecule populations,
are almost always displaying steady increases and decreases
that are well approximated by ordinary differential equations.

2MATLAB functions to simulate the GMA model (1) and the CME (2) are
available from www.sbi.uni-rostock.de
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Fig. 3. Example (6). Temporal evolution of the aµ. The parameters are the
same as in Figure 1. What is shown is an average of the aµ over realizations in
order to illustrate the overall trend, free of the variability in single realizations.
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Fig. 4. Data from western blot time course experiments.

Figure 4 shows typical experimental data as obtained from
western blot time course experiments to study proteins in
signal transduction pathways. While there surely is measure-
ment noise, it seems a reasonable assumption to believe the
concentration profiles follow roughly the linear interpolations
shown. If for the few time points that current experimental
practice generates, we were not observing steadily increasing
or decreasing pattern, and instead would argue for a truly
random process, we would have a hard time to validate such a
model from data like those shown in Figure 4. Figure 5 shows
random simulations of time series with only six time points.
How do we distinguish between random from deterministic
pattern in data?

Western-blot time series, like those shown in Figure 4,
are generated from a pool of about 107 cells although we
are trying to understand what is happening in a cell. We
could explain the deterministic pattern in experimental data
as follows. Looking at the population of molecules of species
Si, from each reaction channel a change νµi arises for when
the reaction channel Rµ is realized or active. The change νµi

is a random variable, and the total change of Si across all
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Fig. 5. Random simulations of time series. We can only start modelling by
assuming that these curves are not random. If they are, we could not test this
since there are not enough data points for a statistical test to be applicable.
We call this the WYSIWYM principle: What You See Is What You Model!

reaction channels is a sum of random variables

∆(#Si) =

M
∑

µ=1

νµi .

For more than one reaction channel, from the central
limit theorem, ∆(#Si) is approximately normal distributed,
∆(#Si) ∼ N (·, σ2

v). For any further averaging process with
say m elements, e.g., using 107 cells in immunoblotting, the
variance of measurements is of the order σ2

v/m. This means
that if we are not considering single-cell measurements we
are likely to observe relatively smooth patterns. If we do
consider single-cell measurements, we ought to have in any
case replicates to average out random variations.

If we are to consider a stochastic simulation and wish
to validate it with experimental data, we get the following
requirements for the experimenters. In Gillespie’s algorithm,
the time interval for the next reaction to occur is calculated as

τ = (1/a∗) · ln(1/r1) ,

where r1 is a random number in the unit interval and

a∗ =

M
∑

µ

aµ . (21)

Note that τ is a function of state n and thus implicitly also a
function of time. As #Si goes down, there are fewer reactive
collisions and the propensity aµ decreases. This means that
for all relevant reaction channels, (21) will also decrease. This
does however mean that the ratio aµ/a∗ changes little. Since
the probability of the next reaction occurring is given by [13]

P (µ|τ) = aµ/a∗ , (22)

this means that the resulting concentration levels are relatively
similar. However, since τ , i.e., the time for the next reaction
to occur is exponentially distributed,

P (τ) = a∗ · exp(−a∗τ) , (23)

with mean 1/a∗ and standard deviation 1/a∗, the variance
of τ increases more substantially. This in turn means, that

for a specified t the variance of the realizations will increase.
Figure 6 illustrates the dependence of the variability on the
initial number of molecules. A consequence is that for fewer
molecules, more realizations are required to obtain an accurate
picture through averaging across realizations. Also, the larger
the number of reaction channels, M , the smaller is the average
time to the next reaction τ , as shown by (23). However, at the
same time, the number of possible transitions from state n will
increase as can be seen from (22).

0 100 200 300 400
0

0.05

0.1

0.15

0.2

time  (sec)
no

rm
. s

td
.

# S
1
(0)=80

# S
1
(0)=40

# S
1
(0)=20

# S
1
(0)=10

Fig. 6. Example (6). Temporal evolution of the normalized standard deviation
σSi

(t)/(#S1(0)) over 50 realizations at t. α = β = γ = 1, k1 =

0.6 (nM · sec)−1, k2 = 0.1 sec−1. #S4(0) = 10, #S2(0) = #S3(0) = 0,
#S1(0) = 10, 20, 40, 80. Note that the normalization is necessary to make
the plots independent of the initial #Si and thereby make them comparable.

In considering mathematical modelling and simulation, most
important are the context and the purpose of modelling. Do we
wish to use a model to hypothesize a fundamental molecular
mechanism, or are we trying to model the observed conse-
quences of these molecular mechanisms? Is the phenomena we
observe an aggregate of a group of dependent subcomponents
(e.g. molecules or cells) that combine individual, discrete
responses into graded response at higher levels of organization
(e.g. in tissue and organs)?

In some cases, authors who wished to argue for their use
of stochastic simulation, have unfortunately missed some of
the subtleties of our foregoing discussion. Let us look at some
examples. In [17] it is argued that

“The availability of a huge amount of molecular data
concerning various biochemical reactions provoked
numerous attempts to study the dynamics of cellular
processes by means of kinetic models and computer
simulations.” (emphasis is ours).

To take western blot time course experiments as an example,
the problem we face for modelling is anything but one of
dealing with huge amounts of data. For a time series, usually
only six to ten time points are available and replicates are
the subject of hard fought negotiations between modellers
and biologists. For realistic pathway models, because of the
costs and time required, usually only a fraction of all pathway
proteins can be covered by experiments.

The authors of [12] clearly missed the mark:
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“There is also a problem of interpretation by users.
Systems of differential equations have a number of
parameters that must be fitted from experimental
data. However, the parameters may have no meaning
to the biologists, who are therefore unable to gauge
whether the values are appropriate.”

Quite the opposite is true. The parameters of GMA model
(1) have a very precise meaning, which can be fitted from
experimental data. We would argue the fact that, for GMA
models, we can identify parameters directly from experimental
data is an advantage. Although this is not a trivial task, there
are well established algorithms available for this purpose. Why
would the authors of [12] think the CME (2) is more intuitive,
and how would they validate their models?

Whether starts off with the GMA representation or the
CME, it is often not possible to obtain all necessary parameter
values from experimental data. For such practical reasons but
also in order to simplify the mathematical analysis it is often
desirable to make use of the quasi-steady-state assumption
(QSSA) [22], [23]. The QSSA implies that for the time scale
of interest the instantaneous rates of change of intermediate
species are approximately equal to zero. Modelling signal
transduction pathways, the consecutive activation of kinases
is commonly described through phosphorylation and dephos-
phorylation steps, equivalent to enzyme kinetic reactions.
Assuming the concentration of kinase-substrate complexes is
small compared with the total concentration of the reactants,
phosphorylation is modelled as a bimolecular reaction and
assuming that the concentration of active phosphatase is
constant, dephosphorylation can be modelled as a first order
reaction. Such assumptions allow a formal analysis of various
important aspects of cell signalling rooted in GMA models.
See [24] for an outstanding example of such an analysis.
These simplifications do of course also simplify the stochastic
simulation since the k’s of the rate constants are implicitly
used in the simulation. Alternatively, one considers the QSSA
for the CME as discussed in [25].

We conclude that one should not argue the case for either
rate equations or stochastic simulations with the numerical
accuracy of a representation or physical realism but whether
a biological principle is reflected by the model. Whether we
are using the GMA or CME representation we make various
assumptions about the physical context, including for example
a constant volume, temperature, rapid diffusion etc. While
these assumptions may seem outrageous in light of what
we know and observe about intracellular dynamics, we are
reminded of Box’s dictum: “All models are wrong, but some
are useful”.
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