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Recently, Gillespie introduced theleap approximate, accelerated stochastic Monte Carlo method
for well-mixed reacting systenisd. Chem. Physl15 1716(2001]. In each time increment of that
method, one executes a number of reaction events, selected randomly from a Poisson distribution,
to enable simulation of long times. Here we introduce a binomial distributiteap algorithm
(abbreviated as BD- method. This method combines the bounded nature of the binomial
distribution variable with the limiting reactant and constrained firing concepts to avoid negative
populations encountered in the originaleap method of Gillespie for large time increments, and
thus conserve mass. Simulations using prototype reaction networks show that thenBfbed is

more accurate than the original method for comparable coarse-graining in tim200®American
Institute of Physics.[DOI: 10.1063/1.1833357

INTRODUCTION distribution (see Ref. 11 for details and belpw\Ve refer to
the original ~leap method of Gillespie as the Poisson distri-

The foundations of microscopic or exact Monte Carlopution basedrleap method(the PD+ method. The mid-
(MC) simulation, termed also as stochastic simulation algopoint ~leap* and the implicit ~-leap methot? attempt to
rithm (SSA), for well-mixed, chemically reacting systems improve the accuracy and robustness of the original method.
were laid down several years ago by GillespfeSince then, The PD+ leap method and its variants partially sacrifice
SSA has become one of the most widespread computationgtcuracy for greater speed by enabling molecular “bundles,”
tools in chemical sciences. Yet, its microscopic nature, i.e.j.e., a large number of firings, sampled from the Poisson
the execution of one reaction per SSA time increment, hagistribution to react over coargmesoscopictime intervals.
severely limited SSA to relatively short time scales and smalSeveral examples studied using the PI2ap method have
and fairly similar size populations. In order to accelerate thesvidenced that it is a significant advancement over the exact
exact stochastic simulation, the next reaction method wagsA in terms of computational requirements while providing
recently proposedin addition, several approximate methods nearly the correct noise when the time leaps are not as large.
that capitalize on separation of time scales have been prorhis is in contrast to most other acceleration methods men-
posed to accelerate the exact SSAFinally, separation of tioned above. Since inclusion and understanding of noise is a
time scales based on the master equation has also been exain reason for performing a stochastic simulation at the
plored to deal with the inherent stiffness of chemicalfirst place, the PDrleap method, along with its variations, is
kinetics®° A review of the various acceleration MC methods the most promising single acceleration technique. It is not
is given in Ref. 10. A major limitation of most acceleration then surprising that despite its short life time, the P2ap
MC methods is that usually the noise is either amplified ormethod has already been employed in various, mainly bio-
reduced substantiallisee Ref. 10 for a comparison of vari- |ogical, studies®**
ous methods A problem with the PDr leap method is that physically

The rleap method was recently introduced by unrealistic negative populatiorsoncentrations in the con-
Gillespie' for approximate, accelerated MC simulations of tinuum terminology may result, arising from the unbounded
chemical kinetics in well-mixed reacting systems. The es{oisson random variable and the fact that reaction firings are
sence of ther-leap method is that instead of executing oneindependent. In fact, this problem occurs with probability 1
reaction in every microscopic time interval and changing thegiven a sufficient long computation. In our experience, this
participating species by stoichiometric populations, one seproblem is encountered when molecular population sizes are
lects a coarse-time increment,which is usually larger than  small and/or the time leaps are large. The work of Ref. 14
the microscopic one. In this coarse time increment, oneighlights this problem of the~leap method that in their
“fires” each reaction multiple times and updates the popula<case limited the acceleration of hybrid multiscale simulation
tions after each time step accordingly. The number of timef complex reaction networks.
each reaction is fired is selected randomly from a Poisson |n order to overcome the negative populations resulting
in the PD+ leap method encountered in moderately large
aAuthor to whom correspondence should be addressed. Electronic maiV@lues ofr, in this paper we introduce the binomial distribu-
vlachos@che.udel.edu tion basedrleap methodabbreviated as BBG-method. In
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this new method, aside from choosing the random variablén taking as large changes in population as possible to in-
from the bounded binomial distribution, motivated from our crease the time steps and reduce the CPU. In doing that, the
recent work on spatially coarse-grained MC simulafioit!  leap condition is violated, i.e., the propensity functions,
the limiting reactant and constrained firings concepts are alswhich are kept constant during a time step, actually change
invoked to ensure mass conservation. In a mathematical corwonsiderably because of changes in population via the same
text, mass conservation ensures that a well-defined Markoreaction and other reactions. Violation of the leap condition

process can be written for the populations in the system; thisnavoidably leads to some error and possibly to negative

step is crucial in obtaining eventually rigorous numericalpopulations.

analysis results for the-leap method. Prototype reaction ex-

Negative populations are avoided in the BDleap

amples are employed to illustrate the performance of thenethod by placing an upper bound on the numbes,ahol-
methods. Numerical examples indicate that for comparablecules, &i<N, consumed in the time intervat,t+ 7). In

coarse-graining in time, the BB-method is more accurate
than the PDr leap method.

THE BD-7 LEAP METHOD ALGORITHM AND ITS
MATHEMATICAL RATIONALE

A well-mixed reacting system dfl molecular species is
considered. The state vectd(t) =(X4(t),...,Xy(t)) con-
tains the number of moleculépopulation sizg X;(t) of all
species Sat time t, 1<i<N. Species participate iM
chemical reactions denoted B, j=1,2,...M, with a pro-
pensity function(or transition probability per unit timea; .
Herea;dt is the probability that one reactid® will happen
in the infinitesimal time intervdlt,t+dt) (see discussion in
Ref. 11 on propensity functiopandv;; is the stoichiometric
coefficient of specie§; in reactionR; .

The original PD- 7 leap method

A brief outline of the PDs leap method is first given. In
each time leap of the original PD+s leap method one selects
the numbek; of each reactio; to be executedalso called
“firings” ) from a Poisson distribution

Car
PPD(kj ;a.jT): F(ajT)ki.

D

In the case of a single reaction, the problem with such

selection step is thd; may exceed the available population
size of one or more chemical species, resulting in negative

populations. Furthermore, in the Pbleap method the fir-

ings of all reactions are independent random numbers. Thug;
even though eack; may not lead to negative populations
per se the simultaneous execution of all reactions in a reac
tion network may do so. In simple words, one needs to con
straink; to conserve mass at all times. Next we describe a

algorithm that is capable of doing that.

The proposed BD- 7 leap algorithm

An important conceptual assumption in alleap meth-

the BD-r leap method, molecular bundles for each of khe
reactions are allowed to fire sequentially in a given order in
[t,t+ 7). The maximum number of firingkl), for reaction

R; is determined by the limiting reactant, i.e., the species that
can be consumed completely if the reaction were to go to
completion. The elementary chemistry concept of limiting
reactant is required for bimolecular and trimolecular reac-
tions only. The identification of the limiting reactant is a
crucial step that ensures that the number of firings of each
chemical reaction does not lead to negative populatiorgs in
single reactionfor any chemical species participating in this
reaction.

Given that out oY, maximum firings a; 7 fire on the
average, and the leap condition is satisfied, we will approxi-
mate the true microscopic dynamics by assuming that each
R; firing has a probabilityp= a; T/k%)ax of happening and a
probability (1—p) of failing to occur. It can be mathemati-
cally shown that the number of firinds of R; then belongs
to the binomial distribution,

() )
B (j)
Peo(k; ;p. ki) = —————pki(1—p)kmac ki (2)
PTG (K Ky

ésee for example the binomial distribution generated as sum

of coin-tossings in Ref. 18

Introducing kf,?ax alone is insufficient of ensuring mass
conservation of an entire reaction network. Ok¢és deter-
ined from Eq.2), the number of molecules left to react via

e remaining reactions has been reduced. To account for
this, we introduce the vectot that tracks the currently avail-

able reacting population size during a time leap. At titne

[{before execution of any reactipnX(t) =X(t). After ex-

ecuting thgth reaction X is updated by subtracting the num-
ber of reactant molecules of all species consumedR;in

This update also modifie' V) for the next reaction. This
step ensures that the maximum allowed firing%., left

over in executing the subsequent react®n ; would not

ods is thatr must be sufficiently small so that the change inexceed the actually available populations and ensures mass
the state vectoK(t) and consequently in the propensities is conservation of an arbitrary compleseaction network
negligible. This condition was termed the leap condition inwhich is the main objective of this paper.

Ref. 11. When the leap condition is approximately satisfied, Finally, once allM reactions are allowed to trigger, the
the reaction firings of reactioR; can be assumed to be sta- populations of all species are updated based on the stoichi-
tistically independent from one time step to the next and als@metry of the chemical reactions. From an efficient imple-
of firings of other reaction®;,, j'=1,..M, j'#] during  mentation point of view, updating of populations can be done
each time step. Furthermore, the propensity functions wouldnly locally, as suggested in Ref. 3, and is well known in the
be nearly constant during,t+ 7), wherea;=a;(t) is com-  molecular simulation literatur®,i.e., update only the species
puted based oX(t). In practice, of course, one is interested participating in a certain reaction.
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Summarizing, the BDralgorithm consists of the follow-
ing steps:

(1) Obtain the stoichiometric coefficients;;, the initial
population sizexX(0), and the rate constantsneeded in
computing the propensities.

(2) Initialize the time,t:=t,.

(3) Repeat steps 4—6 until a maximum timgy.y, IS
reached.

(4) Compute the propensitieg (X (t)) using the population
X(t) and setX:=X.

(5) Selectr (see text beloyvand update time according to
ti=t+ 7.

(6) Forj=1 toM reactions ~
(a) Find kgjq)afmini(iifokl(int(xi/|vij|)), where inf ) is

the greatest integer function.
(b) With p defined asp=a;7/k®,,,
binomiaLI dislribution Eq(2).
(©) SetX=X+vjk; fori=1,..Nif »;<0.
(7) (d) Go to step 6a.
(8) Update population:=X;+ v;jk;, fori=1,..N.
(9) Go to step 3.

samplek; from the

Steps 1 and 2 initialize the state of the system, and step

computes the propensities for the nexeap. Step 5 updates

the time, while step 6 randomly selects the number of firing
for each reaction in the reaction network. These steps occ

in every MC simulation.
Note that ifa; 7>k, , j=1,2,...M, we setp=1. Thus,
all available molecules of the limiting reactant®j react. As

J. Chem. Phys. 122, 024112 (2005)

populations predicted by the PBmethod and the exact SSA
match. Furthermore,

()

firings of reactionR; are triggered inr. On the other hand,
for the BD-r method one has from E@2) that

ajm+ (a;7) YA 1—a k(L)Y (4)

fiings are expected in7, where a;r and (@;7)"4(1
—a;7/k!),)2 are the mean and standard deviation of the
binomial distribution, respectively. Whenis microscopic,
QT ko 1=1,...M, the correct zeroth and first moments
are also obtained for the BBmethod. While in the infinite
size limit the binomial distribution in Eq2) and the Poisson
distribution in Eq.(1) yield the same asymptotic behavior,
for finite sizes the noise of the BRmethod is less than that
of the BD-r method. This feature has important ramifications
regarding the accuracy of the BBbleap method, as numeri-
cal examples below demonstrate.

The higher computational cost of generating random
variables for the Poisson or binomial distributions in com-
parison to a uniform distributiofneeded in the exact S$A
renders the approximate methods inefficient whé&micro-
icopic or nearly s¢see comparison of CPU in the next sec-
tion). Thus, in practice one is interested in taking large time
leaps where the leap condition is satisfied approximately. At

aj T+ ajT

Shis point one may wonder about the effect of sequential
Yrder of reactions in computing andkY,.. The average

number of firingsk;=a; 7 is unaffected byk{),. However,
the noise §;7)Y(1—a;7/kY,)? is affected byk{),, and,

max
thus, the sequentidin a deterministic orderexecution of

a result, no more molecules than the available population capactions could affect the noise of the solution. Numerical
ever be consumed. However, in the results presented belo‘é’omparison between the exact SSA and the approximate
we have never encountereqr> ki.x despite taking large methods(see next sectignfor several reaction networks
time steps. In case thptapproaches 1, the time increment is demonstrates that the accuracy of the solution obtained via
already too large to provide good results and it should beoth the PDs and BD-~ method is lostdue to serious vio-
reduced, i.e., the conditiop=1 can be viewed as an upper |ation of the leap conditionbefore biased solutions can be
bound for the time increment of the leap methods. Finallynoticed. Alternatively, the bias in the noise could potentially
note that the choice of reaction firings rather than speciebe improved by randomly choosing the execution ofMll

population and the continuous update of the veetoafter

reactions. An example using this approach is also presented

each reaction has been executed are judicious. Specificallpelow.

by choosing species population from a Binomial distribution,

i.e., carry out the loo6) over species, instead of chemical EXAMPLES COMPARING THE PD- 7
reaction firings proposed above, it would be nearly imposAND BD-7 METHODS

sible to ensure mass conservation for complex reaction net-

The two 7-leap methods are numerically compared for

works where many species are shared between multiple refifferent prototype reaction networks. In all reaction net-

actions.

Implications of constrained firings
in the new algorithm

works the magnitude of varies from small, to satisfy the
leap condition and numerically validate the BDileap
method, to large, where the leap condition is violated in or-
der to observe the effect of coarse time intervals on the so-

The departure of the new methodology from the originaljion. n all results below reactions are picked sequentially,

PD-r leap method stems frorta) the binomial distribution
which provides a bounded random variable, &@ndthe fact
that thefirings of reactions are coupled or constrainby the
availability of speciesthroughk!,,,) during the execution of
a r-leap.

As mentioned in Ref. 11, when the time intervalis

as indicated in the loofstep 6 of the algorithm, except for
one example where reactions are randomly ordered in each
time leap.

The following reaction network of first-order reactions is
first considered with rate constants indicated

2 1
microscopic(i.e., of the order of the average time increment g .—>g =g,
of the exact SSA, M;a;) the time trajectories of species 1 2
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FIG. 1. Equilibrium probability density functiofpdf) for species popula-
2 1

tions S; (top) and S, (bottom) in the reactionS;=S,=S;, using SSA
1 2

(solid lineg and the BDs and PD+ methods with an initial population of
X4(0)=20000, X,(0)=X4(0)=0. Coarse-graining factors aré=10°
(circles, 10" (crossel and 1.8<10* (diamond$. The BD-r gives more

accurate results than the PBmethod.

J. Chem. Phys. 122, 024112 (2005)
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FIG. 2. Comparison of equilibrium probability distribution functiofglf)
2 1

for all species in the reactio8,—=S,=S; using the BD+ method with
1 2

sequentialcircles and randon{crossesexecution of reactions. The coarse-
graining factor isf =1.8x 10*. For this example the noise is slightly better
when reactions are executed in random order.

coarse-graining factofwe choosef>1). Besides allowing
control of temporal coarse-graining in a simple, transparent
way, Eq.(5) ensures nearly the samefor both BD-r and
PD-7r leap methods and thus enables a direct comparison of
accuracy and CPU requirements of the two methods. Obvi-
ously, this is not an optimal way of time stepping but is
sufficient for method comparison.

Initially only speciesS; is assumed to be present, with
X1(0)=20000 moleculesX,(0)=X3(0)=0. The equilib-
rium probability density functioripdf) for speciesS; andS,
using the exact SSA and the Bband PD+ methods is
plotted in Fig. 1 for different values of Note that in all
figures the normalized populatiorﬂi=<Xi>/EJN:1XJ-(0), is
graphed. For smafl(such asf =10% the equilibrium pdfs of
all methods overlap. For larger values bfe.g., 1¢ and
1.8x 10%) the mean population size is correct. The noise of
the BD-ris fairly close to the exact SSA, whereas that of the
PD-r methods is substantially overestimated. For even larger
values off, negative populations result in the Pbmethod,
whereas the BDr method does not give negative popula-
tions.

Simulations for this first reaction system indicate that the
new BD-r leap method is potentially more accurate than the
PD-7r leap method for similar acceleration while preventing

Since these are unimolecular reactions, the limiting reactarfeqative populations. The latter aspect permits use of larger
proble.m is trivially fulfilled. The ch0|ce.of thlsf sllghtly more  time steps, and thus further acceleration, that cannot be real-
complicated example compared to a simple isomerization r§ ¢ \ith the PD+ method. The difference in noise between
action stems from our intention to have a single speciesyq pp.r and PD+ methods observed in Fig. 1 can be ratio-

namelyS,, participating in several reactions so we illustrate

nalized in terms of the mean and the standard deviation of

how the new method overcomes the problem of negative,q probability distributions of Eq¢1l) and(2). Specifically,

populations via coupled or constrained firings. The time in

each MC iteration is updated with time increments

M
T:f/ z aj
=1

for both the BD+ and PD+ methods. Here E/JM:laj is the
averaged microscopic time increment of the SSA &isla

according to4), the noise in the BDrleap method is lower
than that of the PD- method because of the term (1
—ay/k{),)"2 In the limit of large populationsx;— =, this
term is equal to 1, and the twsleap methods give identical
solutions.

Figure 2 compares the pdf for all three species for the
above example obtained by sequentially sampling the six
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FIG. 3. Single trajectories usin@ BD-7and(b) PD-r methods. Deviations
of the BD-r and PD+ transient solutions from those of SSA occur only for
large time increments. (c) Corresponding changes in populati¥i per
time leap versus time. Other parameters are those of Fig. 1.

D

PD-1 o7 U/t
elementary reactions in a deterministic mannge {,..M 101+ /
=6) and by randomly ordering the reactions at each time ~ g
leap. It is clear that while the means of the pdf are not af- e
fected by how the reactions are picked, the noise of species 109

S, and S; improves whereas that &, remains relatively

unaffected, when random selection of reactions is imple-

J. Chem. Phys. 122, 024112 (2005)

0.007 —SSA BD-t O PD-1
0.006 % 8
0.005 | &% 5
Q&w4—§ﬁ ﬁqgg‘ =102
S’ : % -
0003 ) £ o
&
5 g f=10¢
o @ o]
H
0.001 o g
E )

0.000 B

6000 7000 7500 8000
X

6500

FIG. 4. Probability density functiongdf) for species populatiors, att
=0.75 time units. SSA is denoted by solid line, and the BBad PD+
results are denoted by dotted lines and squares, respectively. Deviations in
pdf are observed in both BB-and PD+ for large coarse-graining factofs
Other parameters are those of Fig. 1.

Figures 3a) and 3b) show single trajectories obtained
with the two7-leap methods and the exact SSA, and Fig) 3
shows the corresponding change in the population Xize
per MC iteration as a function of time. Note that the molecu-
lar bundles of the twa-leap methods follow each other rela-
tively closely, so CPU comparisoidiscussed belowis
meaningful. For relatively small values &f the transient,
single trajectory solutions of the approximate methods agree
well with the solution of the exact SS&igs. 3a) and 3b)].

On the other hand, fof =10* too many firings occur, and
deviations are visible at short times. These errors at short
times for large values of persist upon ensemble average
over 10 trajectories as shown in Fig. 4 for a chosen time,
i.e., these are not an artifact of examining the single trajec-
tories displayed in Fig. 3. While at short times the accuracy
can be improved by taking lower valuesfdkee pdfs in Fig.

104

SSA

~. " BD-t

CPU (scaled)
S

10! 102 103 104 105
Coarse-graining factor, f

mented. This change in noise stems from the constraint fir-
ings and the fact that the noise dependk® for relatively

large time leaps. Based on limited examples, it appears th%

FIG. 5. CPU comparison between various methods for parameters of Fig. 1.
pe maximum error in noise is set as 40%. The Biethod is twice as
ow as the PDr method for the same value é6but larger values of are

!’andom sampling may perform b_ett_er- However, further Workpossible for the former method. Significant acceleration compared to the
is needed to fully understand this issue.

exact SSA is found for large-leaping. Other parameters are those of Fig. 1.

Downloaded 23 Feb 2007 to 158.130.148.33. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



024112-6 Chatterjee, Vlachos, and Katsoulakis J. Chem. Phys. 122, 024112 (2005)

0.10
—_— (2)
0.12 S5A A
0.08
0.06
~0.08 = | &
o £
= 0.04

0.02

0.0 e S
0.00# ¥ 5% 0.1 0.2 0.3 0.05 0.150.150.250.35
253035 95 105 152025 9, 6, 6;
1 X2 X3
— SSA o f=10
0.12+ - -
~0.08F - -
o)
[aW) L L I
0.04} - :
L 4 PD- L L
§ (®) 2 : :
000 1 1 1 1 L L | 1 ! 1
253035 95 105 15202 FIG. 7. Equilibrium probability density functiofpdf) for species popula-
1 Xz X3 tions in the complex reaction network using S&alid lineg and the BD+

o - ) ) ) and PD+ methods with an initial population aX;(0)=100, X,(0)=75,
FIG. 6. Equilibrium probatl)lllty density functiofpdf) for species popula-  x,(0)=25, andX,(0)=0. Coarse-graining factors are=0.1 (circles, 0.2

tions in the reactiors, + S,=S,, using SSAsolid lines and (a) the BD-r (squarey and 0.5(crossep The results of the BD-method forr =0.1 are
150 indistinguishable from SSAnot shown for clarity. Negative populations

and (b) PD-r method with an initial population ofX;(0)=50, X,(0) are encountered using the PDrethod forr >0.2 (not shown, whereas the
=120, andX;3(0)=0. Coarse-graining factors afe=10 (circles and 15 BD-7 method still gives reasonable results fer 0.5.

(squares Negative populations are encountered using therfiethod for

f>13 (not shown.

1
S +S,=2

150
3 for various values of), comparison of Figs. 2 and 3 clearly ith an initial population ofX,(0)=50, X,(0)=120, and
indicates that adaptiveor r-leap strategies are highly desir- x (0)=0 was also studied. This example tests the species
able. Some such strategies have already been propdSed constraint arising from the presence of a limiting reactant.
and an alternative approach is proposed in the conclusionsthe results, shown in Fig. 6, are qualitatively similar with

Figure 5 compares the CPU time of the Bland PD+  the previous example.

methods for advancing the same real time at equilibrium  Finally, a more complex, nonlinear, stiff reaction net-
with a maximum allowable error in noise of 40%. The CPU work is considered
decreases inversely proportional with increasingnd sig- 0.02
nificant savings occur uportleaping compared to the exact 25,2 S,
SSA. We have found that the higher cost of the BDem- 1
pared to the PDris associated with the specific implemen- 1
tation of random number generation, that here is done fol- S;+S,=22S;
lowing Ref. 21. This comparison may change if different 1

algorithms of random number generation are followed. Fi- 0.05
nally, larger time steps can be realized with the Blap S3+5,= 5
method, since mass is always conserved and the method ap- !
pears to be more accurate. Larger time increments may allow 1
for lower computational cost when the Bbleap method is $=5,
used. !
In addition to the above example, the reversible recomwith initial conditions X;(0)=100, X,(0)=75, X5(0)=25
bination reaction and X4(0)=0. The equilibrium population sizes are rela-
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tively small, namely(X;)=46.2, (X,)=21.3, (X3)=44.6, in time leaping analogous to well-established techniques em-

and(X,)=20.9 molecules. In this specific example, we haveployed in ordinary differential equations. These points will

explored an alternative method of choosinpat is based on be explored in future work.

small changes in the instantaneous conversion of all reac- Numerical examples indicate that the BDmethod is

tants, namely using= min;(rX; /E}\":1| vjla;), s.t. 0<r<1, more accurate than the PPmethod for comparable time

v;;<0. The coarse-graining scaled factaraptures the mag- increments. Several extensions of the Bbrethod are pos-

nitude of propensities. Note that this selection is simply possible for future work. As an example, in analogy to the im-

tulated (it has been found to work well for all reaction net- plicit ~-leap method based on the Poisson distribution of Ref.

works tested herejnand, as noted in Refs. 11 and 20, 12, an implicit BD scheme is possible. As another exten-

efficient adaptive criteria should further be researched. sion discussed in Ref. 10, combination of the Bbnethod
Figure 7 shows the equilibrium pdf of selected specieswith spatially coarse-grained MC methods!’ is also en-

for different values of the coarse-graining factorQualita-  tirely possible.

tlvely_, the same cor_lclusmns are reached as f(_)r the Slmple&CKNOWLEDGMENTS

reaction networks discussed above, with the differences be- ] _
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