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Regulation of Protein Mobility via Thermal Membrane Undulations

Frank L. H. Brown

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510

ABSTRACT The in-plane diffusivelike motion of membrane bound proteins on the surface of cells is considered. We suggest,
on the basis of theoretical arguments and simulation, that thermally excited undulations of the lipid bilayer may serve as
a mechanism for proteins to hop between adjacent regions on the cell surface separated by barriers composed of internal
cellular structure (e.g., the cytoskeleton). We specifically investigate the mobility of band 3 dimer on the surface of red blood
cells where the spectrin cytoskeletal meshwork defines a series of “corrals” on the cell surface known to hinder protein motion.
Previous models of this system have postulated that the cytoskeleton must deform to allow passage of membrane bound
proteins out of these corral regions and have ignored fluctuations of the bilayer. Our model provides a complemen-
tary mechanism and we posit that the mobility of real proteins in real cells is likely the result of several mechanisms acting in

parallel.

INTRODUCTION

Proteins that span the cell membrane mediate communica-
tion between the cell and its surroundings (Lodish et al.,
1995). Here we define communication in its broadest
possible sense to include the exchange of information,
materials and/or energy. A complete picture of how cells
function and interact with their immediate surroundings
requires a detailed understanding of how these membrane
bound proteins function, not only as single protein units, but
also as dynamic components of the membrane environment
where they reside.

One fundamental, and easily studied, property of
membrane bound proteins is protein mobility in the plane
of the membrane surface. Such mobility has consequences
for cellular functioning (Lauffenburger and Linderman,
1993; Giancotti and Ruoslahti, 1999; Berg and Purcell,
1977) and, interestingly, even such a simple observable can
exhibit vastly different quantitative and qualitative behaviors
depending on the specifics of the cellular system being
studied (Saxton and Jacobson, 1997). Many proteins exhibit
diffusive motion on the surface of the cell, which is
consistent with the simplest traditional models of the cell
membrane, e.g. the fluid mosaic model (Singer and Nicolson,
1972; Saffman and Delbruck, 1975). Some systems display
other forms of motion however. In extreme examples,
membrane bound proteins may show no motion on ex-
perimental time and length scales (Webb et al., 1981) or may
exhibit ballistic motion with a well defined velocity (Wilson
et al., 1996). Quite often it is impossible to characterize
protein motion as simply being stationary, diffusive or
ballistic (Saxton and Jacobson, 1997; Feder et al., 1996). In
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these cases the motion is often referred to as being
anomalously diffusive, which simply means that the mean
square displacement of the protein grows with a nonintegral
power of time between 0 and 2. Many different models can
be invoked to explain these various dynamical behaviors for
membrane proteins (Jacobson et al., 1995; Saxton and
Jacobson, 1997). Quite generally it is necessary to know
something about the internal structure and biochemistry of
the cell to have a hope of understanding what factors
contribute to the observed mobilities.

The cellular cytoskeleton is often linked to the mobility (or
lack thereof) of proteins spanning the membrane surface
(Fleming, 1987; Saxton and Jacobson, 1997; Winckler et al.,
1999; Saxton, 1990b). Erythrocytes and, in particular, band 3
protein on the surface of erythrocytes have been particularly
well studied in this context (Cherry, 1979; Schindler et al.,
1980; Sheetz et al., 1980; Koppel et al., 1981; Sheetz, 1983).
The dense regular network of spectrin filaments attached to
the red blood cell membrane creates a series of corrals in
which proteins exhibit bound diffusive behavior (Fig. 1).
Occasionally, a protein may escape from its corral to a
neighboring corral and this infrequent hopping from corral to
corral to corral defines a random walk on a much slower time
scale than the diffusive motion observed within the confines
of the corral. This model for protein mobility where two
diffusion constants coexist (a microscopic diffusion constant
for motion within a corral and a macroscopic diffusion
constant for global motion over the surface of the cell)
because of the interference of the cellular cytoskeleton has
become known as the ““matrix’’ (Sheetz, 1983) or *‘skeleton
fence” (Kusumi et al., 1993) model.

Though the basic picture of the skeleton fence model
seems to have held up to increasingly stringent experimental
tests (at least for red blood cells) (Tsuji and Ohnishi, 1986;
Tsuji et al., 1988; Edidin et al., 1991; Corbett et al., 1994;
Kusumi and Sako, 1996; Tomishige, 1997; Tomishige et al.,
1998), we still do not fully understand how global motion
over the cell surface occurs. Though we know that proteins
are occasionally able to escape from corrals on the red blood
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FIGURE 1 Schematic illustration of the be-
havior of transmembrane proteins in the red
blood cell. The cytoskeleton immediately
below the membrane hinders protein transport
by confining the protein temporarily to a local-

ized corral (a). Jumps from one corral to
another occur slowly and have previously been
postulated to result from dynamic reorganiza-

Intracellular region 6nm

tion of the cytoskeletal matrix (either by
dissociation of spectrin tetramers (b) or thermal

~ 140 nm fluctuations in the shape of the cytoskeleton (c))

or by infrequent crossing events where the protein is thermally kicked hard enough to force its way over a relatively static cytoskeleton (/). The present study
considers a different possibility—shape fluctuations of the lipid bilayer may allow for corral hopping (e).

cell, we do not know what conditions allow this to happen.
In the language of physical chemistry, we have limited
understanding of the reaction coordinate for passage between
adjacent corrals. Previous theoretical studies have either
utilized very general models to fit the experimental data
(Saxton, 1995) or have assumed that rearrangements of the
spectrin network are necessary for a protein to escape
confinement (Saxton, 1989; Saxton, 1990a; Saxton, 1990b;
Boal, 1994; Boal and Boey, 1995; Leitner et al., 2000;
Brown et al., 2000). In this paper we present another
alternative, that the lipid bilayer itself may deform in such
a way as to promote passage of the membrane protein over
a spectrin filament (Fig. 1).

The dynamic nature of phospholipid bilayers is well
documented. In the red blood cell, for example, thermal
undulations of the membrane surface have been implicated
in the flicker effect (Brochard and Lennon, 1975). Under
appropriate concentrations of osmolites, cells and vesicles
enclose less volume than the surface area of the membrane
would suggest (Dai and Sheetz, 1995; Helfrich and Servuss,
1984), a fact clearly demonstrated when external stimuli act
to draw out the membrane surface (Fygenson et al., 1997).
And, thermally excited membrane undulations have been
implicated in microscopic mechanisms for cellular motility
(Peskin et al., 1993). The above observations rely upon the
fact that membranes typically enclose a volume less than
maximal for a given surface area. For some simple cellular
systems (e.g. the red blood cell where complex structures
like microvilli, coated pits, etc. do not exist), this excess area
is taken up by undulations of the bilayer surface. Such
undulations evolve in time as a result of thermal motion.

Theoretical work on lipid bilayers and related systems has
shown that fairly simple mathematical treatments of bilayer
dynamics are often in good agreement with experiment.
Models appropriate to the red blood cell under physiological
conditions typically include only a bending rigidity for
bilayer energetics (Helfrich, 1973) and treat dynamics within
the framework of linear response (Milner and Safran, 1987;
Schneider et al., 1984; Brochard and Lennon, 1975; Granek,
1997). The resulting equations for membrane dynamics are
well suited for simple simulation as well as analytical study
although we are unaware of previous studies to exploit this

fact. We will outline a simple Fourier space Brownian
dynamics algorithm that allows us to stochastically evolve
a thermal membrane surface forward in time. The ensemble
of evolving membrane shapes lead us to conclude that
thermal membrane undulations are likely to play a role in
global protein transport over the surface of erythrocytes.

The organization of this paper is as follows. In the next
section we present a brief review of the equations govern-
ing membrane dynamics in the linear response regime and
derive our Fourier space Brownian dynamics algorithm to
exploit the simplicity of these equations within a simulation
framework. The following sections make connection between
these dynamic membrane undulations and the regulation of
transmembrane protein transport on cell surfaces both
through theoretical arguments and simulation. Our results
indicate that thermal membrane undulations may play an
important role in the motion of transmembrane proteins. In the
last section we discuss our results and conclude.

A DYNAMIC MEMBRANE MODEL

A popular tool for dynamic studies of membrane systems
is molecular dynamics (MD) simulation (Tieleman et al.,
1997). MD simulation of lipid bilayers has become popular
because it clear that much biology depends upon the
dynamic properties of the lipid bilayer and the techniques
of MD are very well established. There are, however, many
interesting problems related to dynamic membrane behavior
that are completely inaccessible to MD simulation under
current computational limitations. The diffusion of mem-
brane bound proteins is one example, but essentially any
behavior that occurs on length scales longer than tens of
nanometers and time scales slower than tens of nanoseconds
is inaccessible to MD simulation. Dynamic simulations on
simplified bilayer models (where lipids are represented as
spheres or ellipsoids, etc.) have seen some discussion in the
recent literature (Drouffe et al., 1991; Goetz and Lipowsky,
1998; Shelley et al., 2001; Ayton et al., 2001), but such
techniques are in their infancy and it remains to be seen what
role they will play in the study of biology.

Previous theoretical studies of the properties of biological
membranes over length scales too large for direct MD
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simulation have, in large part, concentrated on the static
elastic properties of lipid bilayers in the tradition of the work
of Helfrich (Helfrich, 1973). Thermal fluctuations of the
membrane surface have been theoretically implicated in
the temperature dependent interactions between membrane
bound inclusions (i.e. proteins) (Golestanian et al., 1996;
Goulian et al., 1993) and in changes to membrane rigidity
with temperature (Helfrich, 1985). The time dependence of
thermal fluctuations has been analytically examined through
the study of autocorrelation functions (Milner and Safran,
1987; Schneider et al., 1984; Brochard and Lennon, 1975;
Granek, 1997), which led to a purely physical explanation
of the flicker effect in erythrocytes (Brochard and Lennon,
1975). A recent study of the immunological synapse (Qi
et al., 2001) has utilized a time-dependent Landau-Ginzburg
model for membrane dynamics, but in a regime where
thermal fluctuations do not play an important role. The only
previous work we are aware of that has utilized a dynamically
fluctuating elastic membrane simulation is a study by Laradji
on polymer adsorption to membranes (Laradji, 1999). This
study simplified computation by suppressing fluctuations in
one of the two directions defining the membrane plane and
by ignoring hydrodynamic contributions to the dynamics.

We shall model a thermally fluctuating membrane surface
by converting the equations of linear response that have been
previously derived for membrane dynamics (Brochard and
Lennon, 1975; Schneider et al., 1984; Milner and Safran,
1987; Granek, 1997) into an efficient numerical scheme for
evolving a free membrane sheet in time. The starting point
for our algorithm is the Helfrich bending free-energy for
small deformations (Helfrich, 1973)

H= K?J dx dy(V2h(x,y))?

~ 55 K, )
in its real space (top) and Fourier space (bottom)
formulations. Here #A(x,y) is the displacement of the
membrane surface away from the xy plane that defines
the zero energy configuration of the membrane. K is the
bending modulus, L is the linear dimension of the membrane
surface and k are the wavevectors defining the displacement
in Fourier space, hx = [ dxdye ®*h(r). The Fourier
description is appealing because each of the normal modes,
hy, is independent.

Under the low Reynolds number conditions of the cellular
environment (Purcell, 1977) an overdamped description of
the membrane’s dynamics is appropriate and the assump-
tions of linear response provide us with a Langevin de-
scription for the dynamics of each one of these modes

hk(t) = —w(K)h(t) + &(t) 2

where w(k) is the relaxation frequency for mode 7y and & is
the corresponding component of the (Gaussian white) noise
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that is related to w(k) by the usual fluctuation-dissipation
relationship (VanKampen, 1992). These relaxation frequen-
cies, including hydrodynamic effects from coupling between
membrane and cytoplasm, have been calculated (Brochard
and Lennon, 1975; Schneider et al., 1984; Granek, 1997) as
3
ofk) = o ®
m
with 7 the viscosity of the surrounding solvent. In the case
of a cell membrane 7 is taken to be the viscosity of the
cytoplasm which dominates the (much lower) viscosity of
the surrounding water. To simulate the dynamics of Eq. 2
it is more convenient and completely equivalent to draw
displacements from the associated Ornstein-Uhlenbeck pro-
cess (VanKampen, 1992)

Kck# K k*
P(h) = ng_z eXP {_ Bsz |h“|2}
K.k*
P(hy (1) (0)) — \/M(‘i_w

BKK [y (t) — hi(0)e®1?
DTE (1 — e 2009t :

X exp {
(4)

Here, P(hy) is the equilibrium probability distribution for the
mode & and P(hy(¢)|h(0)) is the conditional probability
density for the mode to take a value of A(z) at time ¢ given
a zero time value for the mode of 7 (0). Temperature, which
enters the through the random force and the fluctuation-
dissipation relationship, is found in 8 = 1/(k,T) where ky,
is Boltzmann’s constant. These probability densities are
solutions to the Fokker-Planck formulation of Langevin Eq.
2. Although we have used times ¢ and 0 in the equation, the
same probability arises for any times 7, 7’ with 7 — 7" = ¢
because the process is Markovian. As the above probability
distributions are Gaussian, it is a simple matter to evolve &y
forward in time utilizing standard normal deviate generators
(Press et al., 1994).

The simplicity of Eq. 2 in k space has allowed for
arbitrarily large time steps with perfect accuracy. The
simulation scheme described here is essentially the tradi-
tional Brownian dynamics (BD) algorithm (Ermak and
McCammon, 1978), although this implementation is unusual
in that the dynamics are performed in Fourier space and the
dynamics are ultrasimple because the system is completely
harmonic. We believe this to be the first implementation
of a Fourier space based dynamic simulation algorithm
for membrane surfaces, but we note that Fourier space
Monte Carlo algorithms have been introduced previously by
Gouliaev and Nagle (Gouliaev and Nagle, 1998b, Gouliaev
and Nagle, 1998a). Fig. 2 displays a representative time
series of membrane structures computed using this algorithm
with parameters (K.,m,L,T) chosen to represent the red
blood cell membrane and as tabulated in Table 1.
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CONNECTION TO PROTEIN MOBILITY

The motivating hypothesis for this study is that membrane
undulations may serve as a mechanism for global protein
transport over the surface of the red blood cell. In the
previous section, we derived a set of probabilistic equations
for the stochastic evolution of a square sheet of membrane
in the absence of tension and with periodic boundary
conditions. In this section we argue that these equations
imply an effective dynamic gating at the edge of the corral
regions that places the macroscopic diffusion coefficient
approximately in the range observed by experiment. In the
following section we discuss simulations that couple this
dynamic gating to protein diffusion to assess the more
quantitative implications of our model.

We shall approximate the geometry of a spectrin corral as
a square with sides of length 140 nm (Brown et al., 2000;
Tomishige, 1997; Tomishige et al., 1998). Though the
geometry of a true erythrocyte spectrin corral would more
correctly be represented as a triangle (Lodish et al., 1995;

TABLE 1 Simulation parameters for band 3 on
erythrocyte membrane
Parameter Description Value Reference
K. Bending modulus 2x10%ergs  *
n Cytoplasm viscosity 0.06 poise *
T Temperature 37°C Body temp.
ho Depth of cytoplasmic domain 6 nm t
of band 3
L Corral dimension 140 nm 89
D Band 3 diffusion constant 0.53um2st *8
N, Initial number of dimers 33 1
per corral
/ Lattice spacing (diameter 7 nm !
of dimer)
At Random walk time step 23%x10°%s 1

*Brochard and Lennon, 1975
tZhang et al., 2000
*Tomishige, 1997
$Tomishige et al., 1998
TBrown et al., 2000
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FIGURE 2 A time series of snapshots for
a dynamic membrane surface obtained from
one realization of the stochastic formula Eq. 4
utilizing physical parameters appropriate for
red blood cells under physiological conditions
(Table 1). The bottom row is identical to the top
row, but with the z axis expanded to emphasize
small wavelength fluctuations. Note that the
long wavelength modes are relatively stable
over this time scale, but shorter wavelength
excitations are evolving. This behavior is to be
expected from the k& dependence in Eq. 3.

Steck, 1989), this approximation allows for a simple
analytical treatment of the membrane surface (as shown
above) and has been invoked previously for other models of
transport in the band 3-red blood cell system (Leitner et al.,
2000; Brown et al., 2000). Additionally, corral shape is not
expected to strongly influence the escape of proteins out of
a corral region once an effective gating mechanism at the
corral boundary has been specified (Saxton, 1995).

We are interested in obtaining from the temporal evolution
implied by Eq. 4 the statistical prevalence of height
fluctuations larger than the dimension of the cytoplasmic
domain of band 3 in the direction normal to the membrane
plane. Recent experiments have shown this length to be
~6 nm (Zhang et al., 2000). Our model assumes that a
band 3 dimer will bump into the cytoskeleton as it laterally
diffuses unless the membrane is 6 nm or higher than base-
line. Inasmuch as the intention of this model is to assess
the importance of thermal membrane undulations, we neglect
motion of the cytoskeleton. The possibility of cytoskeletal
dynamics affecting intercorral jumps has been examined
elsewhere (Saxton, 1989, 1990a,b; Boal, 1994; Boal and
Boey, 1995; Leitner et al., 2000; Brown et al., 2000).

A cartoon for the relation between membrane, band 3
dimer and the spectrin cytoskeleton is displayed in Fig. 3.
Ideally, our model for membrane dynamics within the corral
region would include pinning to the cytoskeleton at
approximately four sites (the points of spectrin-membrane
attachment via ankyrin (Steck, 1989) at approximately the
midpoint of each spectrin chain segment). Unfortunately,
such pinning would render a dynamic model beyond the
realm of simple analytical treatment. Though theories do
exist to predict the conformations and partition function of
pinned or anchored membranes (see for example (Weikl and
Lipowsky, 2000)) we are unaware of any work dealing with
such interactions within a dynamic model and, as we will
argue, dynamic fluctuations are of paramount importance in
this system. We therefore simulate the membrane undu-
lations as though the membrane were a free sheet.
Interactions with the cytoskeleton are included indirectly
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FIGURE 3 A comparison between the structure of the membrane surface
in erythrocytes and our simplified model. In the cell, the lipid bilayer is
attached to the spectrin skeleton via ankyrin, a transmembrane protein that
attaches to the midpoints of each spectrin chain. A mobile protein has a
chance to escape the corral only when a fluctuation causes a gap of at least /g
between spectrin and the bilayer sheet. In this work we concentrate
on membrane fluctuations as opposed to rearrangements of the spectrin
network. In our model, the membrane within a corral region is modeled as an
elastic sheet subject to curvature energetics and thermal fluctuations within
a periodic square geometry. The sheet is pinned to baseline (the plane of the
cytoskeleton) by virtue of a vanishing amplitude for the £ = 0 Fourier mode
of the system. Fluctuations in height of this sheet at a given point in the x,y
plane mimic the shape fluctuations of the membrane surface within a corral.
Heights greater than /g allow for passage of a protein dimer within our
model whereas smaller (or negative) displacements do not.

by truncating the sheet to the size of the corral (thus
eliminating modes of motion at longer wavelengths than
the corral dimension) and setting the & = 0 mode of the
sheet initially equal to zero. Inasmuch as wy = O, this
mode remains unexcited over all times. By virtue of
ho = [dxdyh(r), hy = 0 implies that the average height
displacement of the membrane over the entire corral is zero.
This restriction effectively pins the membrane to the plane of
the cytoskeleton by requiring that any fluctuation above the
cytoskeleton at a given r be compensated for by a negative
fluctuation elsewhere. Large fluctuations are effectively
quenched by this mechanism, albeit in a manner arguably
different than that imposed by a series of pinning sites across
the membrane surface. Interactions between the diffusing
protein and the cytoskeleton are also indirectly included in
our model. The local height of the membrane surface will
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be used to model a dynamic gating function at the corral
boundaries. Proteins are free to pass when the gate is open,
but are otherwise trapped. This gating behavior will be
discussed further below.

The first question we may ask is what is the equilibrium
probability for A(r) to exceed the g = 6 nm minimum
fluctuation height to allow protein hopping to occur?
Inasmuch as our membrane Hamiltonian is quadratic in
h(r), we know that the probability distribution for /(r) must
be Gaussian and, consequently, may be calculated from the
second moment of Ai(r) alone (VanKampen, 1992). This
calculation is conveniently carried out in Fourier space to
yield (angular brackets indicate averaging over the canonical
distribution defined by the Hamiltonian of Eq. 1)

OO} = 4o ©)

22K, 21K, Bh?
P(h) ~ 7T|_z ’Bexp [—WLZB} (6)

From this we see that the probability for / to exceed A is
given by an error function (erfc(x) =2/y/7 [, e *dr)

2773K03> o

so that

P(h>1o) = (O(h) ~ Serfe (ho .
Here, O(x) is the Heaviside step function. Fig. 4 plots this
function for /i in the range of 2—-10 nm. We see that for /g =
6 nm the probability is ~15%. On this basis, we might
expect that we could model the macroscopic diffusion over
the surface of the cell as resulting from diffusion on a plane
with semipermeable barriers (spectrin filaments) that allow

Fluctuation Probability vs. Height

=
N
A
E.
>
E
44
Q
o .
o
2 4 3) 8 10
ho (nm)

FIGURE 4 The equilibrium probability that /(i) exceeds /i as a function
of /. This plot is simply an error function as defined by Eq. 7. For /ip = 6
nm, this probability is ~15%.
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passage of the protein in 15% of the cases when a protein
bumps into it. In fact, such a model would give agreement
with experiment only when the transmission probability is
lower by two orders of magnitude (Brown et al., 2000).

The resolution to this discrepancy is to consider the
dynamics of the system as opposed to the statics. Yes, there
is a protein sized gap between membrane and cytoskeleton
~15% of the time, but this number is irrelevant if such
openings are too short-lived to allow a protein to diffuse over
the cytoskeletal barrier (see a related discussion on transition
regions in the paper by Leitner et al. (Leitner et al., 2000)).
To address this question, consider the number correlation
function for greater than /q fluctuations defined by

c(t) = (OO —h)Oh©) —ho) —P2(h>hy) o

P(h>hy) — P2(h>hy)

This function serves as a measure of the statistical prevalence
for a fluctuation with amplitude greater than /g to last for
time 7. We have evaluated this function by generating a time
series of membrane conformations in Fourier space via eq. 4,
transforming to real space and averaging over time. We
emphasize that the maximal k vector included in this
procedure was #/7 nm~! which was chosen to neglect
fluctuations at the length scale of the band 3 dimer or shorter.
The result of this process is plotted in Fig. 5. The relevant
time scale to consider is the time associated with diffusive
motion of the protein over a distance comparable to
traversing the spectrin barrier. Because the radius of the
dimer and spectrin filament are each ~3-4 nm (Boal and

Number Correlation vs. time

14 — data |
N e Ornstein-Uhlenbeck
8 = = exponential decay
= 6t
@)
4
27
0

0 5 10 15 20 25
time (usec)

FIGURE 5 The number correlation function, C() as a function of time for
h(r) >hg = 6 nm height fluctuations as expressed in Eqg. 8. The solid line
represents the results for our model. For comparison, the dashed line is an
exponential fit to this data and the dotted line is a fit to the data assuming the
stochastic process could be modeled as a diffusive motion in a 1D harmonic
well (see text and Eq. 9). The comparisons demonstrate that correlations
decay over multiple time scales (as expected from the wavevector
dependence of the decay constants in the model) and that the process is
more complex than might be expected. At a time of 2.3 X 105 s the function
has decayed to 9%.
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Boey, 1995; Tomishige, 1997; Zhang et al., 2000; Leitner
et al., 2000), we want to know the characteristic time for
diffusion of the dimer a distance of approximately / = 7 nm
(this scale also corresponds to the level of precision in our
previous study (Brown et al., 2000) and will be used in the
simulations of the next section). Given that the microscopic
diffusion coefficient for a band 3 dimer is 0.53 um? s™* we
estimate the time for barrier traversal to be approximately
At =1?/4D = 2.3 X 1075s. Our correlation function at a
time of 2.3 X 10> s (the ending point for the data in Fig. 5)
is ~9%.

Also plotted in Fig. 5 are two simpler functional forms for
correlation functions that we have fit to the data. The first fit
is a simple exponential decay. Clearly, this is a very poor
approximation—decaying much too slowly at early times
and too quickly at later times. This is not unexpected
because we would expect exponential decay for Markovian
jumping between two well-defined states with a physical
barrier to cross and we have no such barrier in this case;
ho is just an arbitrary height within the context of the
fluctuating membrane equations. The second functional
form is obtained by assuming the membrane motion normal
to the plane at a given x,y point may be described as
diffusion in a harmonic well (i.e., the Ornstein-Uhlenbeck
process) of width implied by the Gaussian form of the
equilibrium probability distribution (Eq. 6). The value of the
effective diffusion constant, obtained by fitting to the true
correlation function, is determined to be D = 0.4um?s™.
We note that the functional form for this decay is given as
(Zhou et al., 1998)

1

Ct) = [ZﬁP(h ) J(ho/\/%m dyerfc(H)

x exp(~y?) — P(h >ho>] / (1~ P(h>hy))

H= (ho/\/ 2<h2>) — &y
1-¢

£=exp (— gg) ©)

Though this functional form does a better job of reproducing
the decay of the correlation function, it still decays too slowly
at early times and too quickly at long times. The
superposition of all the modes of the membrane sheet
contribute to C(7) and so we should not be surprised that
a simple one-dimensional model is unable to reproduce the
decay exactly. In a qualitative sense, C(7) reflects many
superposed stochastic processes with a similar form to Eq. 9,
but with differing D values and variances. The superposition
of these modes gives rise to decays over many different time
scales and hence we see both quickly and slowly decaying
components in the total correlation function. Long wave-
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length undulations provide the slowly decaying tail of C(z)
and the short time dynamics are given by short wavelength
excitations superposed upon this. The fact that the correlation
function reflects relaxation over a distribution of timescales
suggests that it might be possible to fit the data to stretched-
exponential relaxation. Over the time scale displayed, we
find that we can indeed fit the correlation function with
the functional form C(r) = exp(—(r/(3.4x 107%5))>*").
Within the resolution of Fig. 5, this fit is indistinguishable
from the data.

Returning to the question of protein mobility across the
cell surface, we now realize that both the equilibrium
probability to find a large membrane-cytoskeleton gap and
the probability that this gap will persist for Az must
contribute to an effective permeability of the spectrin
network. Inasmuch as both of these contributions are of
order 10%, we expect a reasonable value for a transmission
probability to be of order 1%. This number is in better
agreement with previous statistical analyses (Brown et al.,
2000), but is still in error by an order of magnitude. To
see this, consider a simple mean-field type approach to
calculating the escape rate implied by such a permeability.
Breaking up the corral interior into a grid of points 7 nm
apart (as we shall do in the next section) leads to 400
enclosed points within a 140 nm X 140 nm corral. Of these,
76 (19%) are adjacent to the corral boundary. The probability
for a single protein to escape over a Ar time step will be
approximately equal to 0.19 X 0.01 X 1/4 (i.e., the proba-
bility that the protein is next to the barrier times the
probability that the barrier is open over the characteristic
diffusive timescale times the probability that the protein
moves out of the corral as opposed to another direction). This
corresponds to a protein exit rate from the corral of about
20 s~* which is approximately an order of magnitude faster
than that observed experimentally (Tomishige et al., 1998).

For completeness, we note that a threefold higher value of
the assumed bending modulus for the membrane, K., leads to
an effective permeability of 1.5 X 10~* (Fig. 6). This strong
dependence on K, and the complicated nature of C(¢) should
make it clear that ambiguities in our physical parameters
will strongly affect the numerical value of these results.
Furthermore, we have demonstrated that the underlying
stochastic process is complex and hence characterizing the
dynamics of A(r) through a single two time correlation
function is insufficient to fully understand the dynamics
of the coupled protein-membrane-bilayer system. In the
following section we carry out further simulations to make
this ambiguity manifest. Still, on a qualitative level we see
that all physical parameters in the right ballpark for an
undulating membrane to contribute to the observed macro-
scopic diffusion of band 3 on erythrocytes. This certainly
does not exclude other mechanisms, but serves as a reminder
that in complex systems it is difficult, if not impossible, to
guess what the reaction coordinate for any particular process
may be. Based on very simple physical principles, the above
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FIGURE 6 Figures analogous to Figs. 4 and 5, but using a value of
K. =6x 108 ergs for the bending modulus. The stiffening of the
membrane by a factor of three leads to obvious lowering of the probability
for the sheet to attain a height of 1o = 6 nm as well as a reduced probability
that such a fluctuation will persist over the time scale of band 3 diffusion.

arguments suggest that membrane undulations are expected
to play a role in protein mobility on red blood cells.

SIMULATIONS

The arguments of the preceding section are appealing in their
simplicity, but required certain approximations. Some of
these approximations are physical in nature (square corrals,
homogeneous bending rigidity for the membrane, exclusion
of cytoskeletal motion, periodic boundary conditions with
pinning to the cytoskeleton approximated by no net trans-
lation of the sheet) and were invoked to provide a simplified
model to pinpoint the effect of a particular physical
phenomenon. The relationship between P(/), C(¢) and the
protein’s macroscopic diffusion constant, on the other hand,
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was treated very qualitatively and this may be viewed as
a mathematical approximation that requires verification. In
this section we describe simulations that couple protein
diffusion to the membrane undulations, thus explicitly
demonstrating the shortcomings of the simplified treatment
above. These simulations lead us to the conclusion that our
lack of detailed microscopic understanding of the mem-
brane-protein-cytoskeleton system makes it impossible to
compare to experiment without introducing a fitting param-
eter in our model. The presence of such a parameter (and
indeed of similar parameters in all other dynamic models
discussed in the literature (Saxton, 1989, 1990a,b; Leitner
et al., 2000; Brown et al., 2000)) makes it impossible to
distinguish a membrane undulation mechanism as proposed
here from mechanisms involving cytoskeletal rearrangement
as discussed elsewhere. Given the qualitative agreement of
all these models with existing experiments, we feel it is likely
that some or all such mechanisms may contribute to the
global diffusion of proteins across the spectrin barriers
present in the red blood cell.

Our simulation methodology is similar to one published
previously (Brown et al., 2000). Global diffusivity of band 3
is studied by calculating the decay rate for proteins out of
a single corral. Proteins interact with the spectrin network
as described below, but not with one another. Individual
stochastic runs are seeded with an initial random distribution
of No = 33 band 3 dimers per corral and the population is
allowed to decay over the course of 50,000 time steps as this
distribution of proteins slowly escape confinement. Statistics
were generated by repeating this process 10 times to generate
approximate decay curves. Protein diffusion is simulated as
a random walk on a square lattice with lattice spacing of
7 nm. The microscopic diffusion coefficient of the band 3
dimer, 0.53 um? s~* then sets our simulation time step at
2.3 X 107> s. This spacing in time and space was chosen
for computational convenience and because further refining
of the mesh in space is impossible without a detailed
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knowledge of the band 3, spectrin interactions. We do not
know the form of interaction between these two proteins and
hence spatial resolution at the scale (or below) of the
individual proteins would be ill defined. We shall see that
this lack of resolution does prove problematic, but no more
so than in other theoretical studies of this system.

We assume that undulations of the membrane surface only
affect diffusion of band 3 through modulation of interaction
between band 3 and spectrin and that this modulation is
entirely due to the z direction motion of band 3 relative to
spectrin as defined by the height of the membrane sheet
above the cytoskeletal network. Furthermore, we assume that
passage of band 3 over spectrin is only allowed when the
undulation is higher than &y for some significant fraction of
the time step of our simulation. We will define ““significant
fraction” in the following paragraphs. Our simulation
procedure is then as follows. We evolve the random walk
in time on the lattice. When a random step carries the protein
through a corral barrier we determine if that move is allowed
by the conformation of the membrane sheet over the entire
time step (the membrane fluctuations are sampled more
frequently than the random walk). If yes, the move proceeds
as anticipated. If no, the protein is returned to its position
before the attempted barrier jump. To avoid possible
spurious correlation effects resulting from our simplified
pinning procedure, we sample not one, but 4 equivalent but
stochastically independent membrane surfaces—one for
each of the sides of the square corral (Fig. 7).

In Fig. 8 we have plotted population decay curves for four
different sampling rates of membrane conformations ranging
from 10 to 100 sampling points over the duration of each
random walk step time. Clearly there is a dependence on
sampling frequency in these decay curves. Naively, one
might expect the limit of infinite sampling to be the case
we are interested in (unobstructed passage of band 3 over
spectrin) and presumably the most direct comparison to the
analytical work described above. We argue that this is not

FIGURE 7 An illustration of our simulation
methodology. 33 noninteracting protein dimers
(blue circles) are randomly paced within a corral
at + = 0 and are allowed to undergo a random
walk. Proteins that attempt to cross over a
barrier in a given time step are reflected back or
allowed to make the jump depending on the
local height of the membrane surface at
the attempted crossing site over the duration
of the walk time step. Passage of the protein is
allowed only if h(r) > hg at the site of attempted
crossing for each intermediate sampling time
within the random walk time step. Different
membrane sampling rates affect the rate of
protein loss from the corral (see Fig. 8). The
height distribution along each edge of the corral
is independently simulated as a single line

~

”

t— — — — — — am— — — — -_—
across a given realization of the stochastic process of Eg. 4. In total, four independent membrane sheets are evolved forward in time—one for each edge of the
corral. Four sheets were used to eliminate artificial correlation artifacts arising from the periodic boundary conditions on each sheet.
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Barrier sampled every 1.15 us

FIGURE 8 Simulation results for different
membrane gating sampling rates corresponding
to 10X, 20X, 40X, and 100X the random
walk sampling rate (1/A7) of 4.35X 10%s7L,
The solid lines represent individual simulations
with 33 random walkers and the dashed lines
exponential fits to decay curves obtained by
averaging over 10 such simulations. The inset
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shows the decay rate as a function of sampling,
which demonstrates that even at a gate sam-
pling rate of 4.4 X 10° s* the results are not

Barrier sampled every 0.575 us

Barrier sampled every 0.23 us

rate vs. barrier sampling

converged. If viewed as a fitting parameter,
a gate sampling rate in the neighborhood of
10X to 40X (4.4x10°s1 —1.7x10%s71)
would lead to the best agreement with exper-

k=0.6s"1
- imental results. Histograms of escape waiting

..

times lead to exponential wait time distribu-
tions (W(t) = ke ) as expected for infrequent
opportunities to escape the corral.

necessarily true. As stressed earlier, we are not certain of the
microscopic interactions between all the components in this
system. Requiring the membrane to remain above /g for
the duration of the diffusive crossing event is tantamount to us
saying that the only way for the protein to get over the barrier
is for the barrier to be completely unobstructed for 2.3 X
10~ s. We simply can not make this determination and,
indeed, to find agreement with experiment (decay rate ~2-6
s~ (Tomishige, 1997; Tomishige et al., 1998)) we must
assume a sampling rate of ~10/A7—40/Az (4.4 X 10°s™*—1.7
X 10° s71). We also point out that our analytical work
involving the number correlation function does not require
the fluctuations to remain above /iy at all times. Instead it
looks for the extra probability (beyond that expected for
measurement infinitely separated in time) that a system which
started above /i is later above /4y again. Because our system
displays fluctuations of differing amplitudes and time scales
it is possible for a slow mode (long wavelength) to remain
excited over a time long compared to protein diffusive
motion. Superimposed on top of this we will see short-lived
short wavelength excitations which may knock the surface
under /o without drastically changing the shape of the
membrane surface and with only minimal incursion below /g
(see Fig. 2). It is the relative importance of such brief
incursions that we are unable to account for theoretically and
which lead to the ambiguity in the model.

Our methodology does not allow for coupling between
protein motion and membrane dynamics except through the
gating effect we have used to model the band 3-spectrin steric
interaction. Because we cannot include more realistic forms
of coupling without resorting to a massive simulation, which
would require interaction strengths, etc. as inputs, we have
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halted our study at this semi-quantitative level with a fitting
parameter. It is unlikely that a realistic simulation could be
performed on these length and time scales with current
computer capabilities, even if we were privy to the molecular
forces involved at the nanometer scale. Our study is thus
limited in its quantitative predictive power, but the
qualitative message seems clear. Membrane fluctuations
are expected to exist in erythrocytes under physiologi-
cal conditions and the magnitude and dynamics of these
fluctuations are in qualitative agreement with the observed
mobility of band 3 on the surface of red blood cells. Without
much more sophisticated modeling we are unable to
speculate as to the relative importance of this mechanism
as opposed to mechanisms involving cytoskeletal rearrange-
ment. We point out that our studies here are at a level of detail
comparable to previous studies and our results are similarly
robust. In all likelihood, the transport of transmembrane
proteins relies on a variety of different thermal motions to
enable passage through obstacles on the cell surface.

DISCUSSION

We regard this report to be a confirmation of plausibility. Our
model has used the simplest possible physical representation
of the lipid bilayer and has not properly accounted for the
interactions between bilayer, protein and spectrin cytoskel-
eton. Nevertheless, this picture has merit as a zeroth-order
model. The simplicity of the model has allowed for ana-
lytical and semi-analytical results to be obtained that surely
would not be derivable from more complicated theories/
simulations. Also, we have performed simple simulations
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on the length scale of hundreds of nanometers and time
scale of seconds. It would be extremely difficult (if not
impossible given current computing limitations) to pursue
traditional simulation techniques such as molecular dynam-
ics or Brownian dynamics (even with simplified lipid/fluid
models) over such scales.

Over the course of this study we were forced to invoke
approximations to make the model more tractable to
simplified simulation and analysis. Among the most obvious
are our lack of pinning to the cytoskeleton, the use of
a constant K, (even in the vicinity of the protein), and the
numerical value chosen for K. which is based upon
experimental measurement over length scales far exceeding
those discussed here. Though these approximations are quite
severe, we believe that they represent the natural assump-
tions one comes to in studying this system. It is worth
mentioning that the value of 2 X 1072 ergs used for K in
this study was taken directly from experimental measure-
ments on intact red cells (Brochard and Lennon, 1975).
Effects arising from protein inclusions and attachment to the
cytoskeleton are therefore present in this number in an
averaged sense. In the absence of more microscopically
obtained experimental data, we have used the numbers
available to us. This study has also implicitly assumed
protein lateral diffusion and membrane undulations to be
uncoupled processes (except for the gating effect at the corral
edge). It is possible for two such motions to become coupled
under certain circumstances (see for example (Kumar et al.,
2001)), but again we appeal to the fact that the band 3
diffusion constant D is an experimentally determined
parameter. Any correlations that we have neglected are thus
accounted for in D in an averaged sense (though explicit
correlation is neglected).

Though the quantitative results of our study are surely
affected by such assumptions, we do not believe that they
should alter our qualitative conclusion that thermal mem-
brane undulations play a role in protein transport over
membrane surfaces with underlying cellular structure.
Thermal fluctuations surely influence the behavior of lipid
bilayer surfaces and the estimates discussed in the current
work strongly suggest that such fluctuations may be just as
important as other mechanisms that have previously been
implicated in the global diffusivity of proteins on the surface
of cells.

For concreteness, we have concentrated in this work on
the diffusion of band 3 in red cells, but the physical
principles at play in this system should be applicable to other
cellular systems. Epithelial cells, nerve cells and fibroblasts,
as well as red blood cells, all seem to exhibit characteristics
of systems where the cytoskeleton hinders free diffusion
of membrane bound proteins (Fleming, 1987; Saxton and
Jacobson, 1997; Winckler et al., 1999; Sako and Kusumi,
1995). The physical constants necessary for our analysis are
less firmly characterized for these other systems than for
erythrocytes, but it seems reasonable to expect that dynamic
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membrane undulations will affect the motion of membrane
bound proteins in these other cells as well.

In conclusion, we have presented a simple algorithm to
generate time series of thermal membrane undulations
derived from the elasticity equations of Helfrich (Helfrich,
1973) and the equations of linear response derived by many
authors (Milner and Safran, 1987; Schneider et al., 1984;
Brochard and Lennon, 1975; Granek, 1997). We have
utilized this approach to generate statistics on the duration
and amplitude of thermal membrane undulations over the
length scale of red blood cell corrals and have concluded that
these undulations appear to be capable of contributing to the
observed macroscopic diffusion constant of band 3 dimer
over erythrocyte membranes. Though the physical principles
discussed here were applied to the system of band 3 dimer on
the surface of erythrocytes, it seems plausible that similar
effects may exist in other cellular systems. Recent experi-
ments on cellular membranes utilizing single molecule
techniques (Fujiwara et al., 2002) and laser tweezers and
related mechanical techniques (Discher, 2000) hold promise
for investigating the effects discussed in this work and for
providing the necessary data to test advanced models of
protein mobility in red blood cells and other cellular systems.

APPENDIX

The text has referred to exponential fits on a number of occasions. We used
the following procedure to obtain approximate decay constants for data
collected over the range [0,X].

Suppose the data to fit is represented as the function f{x) (assumed
normalized to 1 at x = 0). If this data was an exponentially decaying
function with decay constant k it would integrate to

JX dxe ™ = }(1 —e™). (A-1)

0 k
In general f{x) is not a simple exponential and the integral over [0,X] is just
a number, but we find the exponential approximation to f{x) by requiring the
two integrals to equal one another

X
J dx f(x) = 1(X) = %(1 —e ), (A-2)
0
so that we may obtain & from the relation
KI(X) =1 —e™, (A-3)

which is solved by Newton’s method. Numerical estimates of /(X) are
calculated by quadrature.
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