
Curvature elasticity of thin ® lms

S. A. Safran

Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot
76100, Israel

[Received 23 December 1996 and accepted 24 December 1997]

Abstract

A tutorial review of the theory of curvature elasticity of thin ® lms is presented
with an emphasis on the physical origins of the bending energy. We begin with a
discussion of surface curvature and focus on the role of special surfaces of
curvature to show how such surfaces can be de® ned to eliminate either the
coupling of the compressibility and bending terms (neutral surface) or the
saddle-splay (Gaussian curvature) modulus. Next, we consider phenomenological
models for curvature elasticity and discuss the coupling of the curvature degrees of
freedom with other properties of the system such as the packing area and the
number of molecules at the interface. The pressure distribution in the ® lm is related
to the bending moduli. We then connect the elastic moduli to the physical
properties of both solid and liquid thin ® lms with a detailed discussion of the
role of solid elasticity (including defects), electrostatic interactions (applicable to
polar head groups and chain packing (using a block copolymer model of
amphiphilic molecules). Finally, we demonstrate the e� ects of ¯ uctuations and
inhomogeneities in these systems in a discussion of the role of thermal undulations
in renormalizing the bending moduli and of mixtures of amphiphiles of
di� erent chain lengths in ¯ uid ® lms. The article is concluded with a brief review
of experimental characterizations of curvature elasticity in self-assembling
systems.
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1. Introduction

Recent interest in the development of nanoscale materials has focused attention
on the morphology of thin ® lms with unusual topologies. The self-assembly [1, 2] of
¯ uid thin ® lms is a challenging area of both experimental and theoretical research
with implications for both chemical technology and biology. The fascinating and
useful variety of shapes, sizes and forms found in these systems which include
micelles (amphiphilic² aggregates in a single solvent such as water), vesicles (closed
bilayer structures formed by amphiphiles in a single solvent) [3] and microemulsions
(three-component solutions of water, oil and surfactant) [4] is related to the ¯ exibility
of the amphiphilic interface² ( ® gure 1) to change its geometry. In many of (but not
all) these systems the domain sizes are much larger than molecular scales and one can
speak of an interfacial ® lm. It is precisely these systems that give rise to the most
striking macroscopic behaviour and many of their properties can be rationalized and
predicted in terms of the curvature elastic behaviour of the interface. In the realm of
solid-state materials, recent attention has focused on the curved structures in
f̀ullerenes’ which consist of single layers or nested planes of carbon and other
layered compounds, where the layers may be organized into nearly spherical (for a
review see [5]), cylindrical [6] or even saddle-shaped [7] structures.

If the ® lms were constrained to lie in a plane, the only relevant energy would be
the compression of the molecules, that is changes in the average area per molecule in
the ® lm, or in the case of a solid ® lm the shear. However, since the membrane can
also deform in the normal direction (out of the plane) , there is an additional set of
`modes’ describing the conformations of the ® lm. These out-of-plane deformations
are known as bending or curvature modes and the free energy associated with such
modes is known as the curvature free energy. For a membrane with ® nite thickness,

² Amphiphilic molecules, examples of which include surfactant (soap-like) and lipid molecules,
contain polar regions which prefer high dielectric constant (polar) solvents such as water and
hydrocarbon regions which prefer non-polar solvents such as oil. They typically self-assemble in
monolayers at water± oil interfaces or into bilayers in a single solvent.
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we denote as pure curvature deformations those perturbations of the membrane that
do not change the overall membrane volume, but where there may be local stretching
and compression of di� erent parts of the ® lm. While a general deformation of the
membrane involves a change in both volume and curvature, we shall see that the
lowest-energy deformations usually involve only the curvature. In most systems,
changing the average density of the membrane is a higher-energy process and hence
is less important when e� ects involving the thermal behaviour of the membrane are
considered. The curvature energy is non-extensive and thus has subtle and
fascinating implications for the structure of materials. This non-extensivity is
demonstrated by the fact that the energy to bend a thin ® lm (which is preferentially
¯ at) into a sphere is independent of the sphere size.

In this tutorial review, we focus on the meaning and microscopic origins of
curvature elasticity in the limit of gently curved interfaces, situations where the
radius of curvature is much larger than the thickness of the interface. Much of
the recent work on self -assembling or even polymerized membranes has focused on
the statistical mechanical behaviour of the system with particular emphasis on the
relationship between the curvature energy and the long-wavelength thermal ¯ uctua-
tions of the structure. However, it is of fundamental interest to understand the origin
of the curvature elastic energy which, in almost all these cases, provides the restoring
force against thermal undulations. In addition, as mentioned previously, there is a
wide variety of materials whose thin-® lm properties depend on curvature elasticity
and it is of interest to outline how the di� erent properties of the underlying material
in¯ uence the bending moduli. In some cases, these moduli are entropic in origin (e.g.
in the case of charged membranes with counterions in solution or in the case of
polymeric chains) and what is thought of as a `microscopic’ picture in reality results
from the e� ects of thermal ¯ uctuations.

After de® ning the curvature tensor and the mean curvature H and Gaussian
curvature K of a surface, we begin with an outline opf a phenomenological theory of
curvature elasticity in thin ® lms to motivate the classical expression [8] for the
bending or curvature free energy fb per unit area:

fc = 1
2k(H ­ c0)2 + kK. (1.1)

The properties of the interface determine the bending moduli k (known as the
bending or curvature modulus) and k (known as the saddle-splay or Gaussian
curvature modulus) as well as the spontaneous curvature c0. This expression for fb,
which is essentially an expansion of the free energy for small curvatures, is correct in
the limit of radii of curvatures that are large compared with the thickness of the ® lm.

Figure 1. Monolayer and bilayer membranes composed of amphiphiles at the interfaces
between two di� erent solvents (oil± water in the case of the monolayer) or the same
solvent (water in the case of the bilayer) .
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A treatment of the bending energy of thick ® lms (compared with their radii of
curvature) requires a more detailed treatment of each particular case; the situation
discussed here of thin ® lm bending is particularly useful precisely because of the
universality of the general form of the energy. The ® rst term in fb represents the
change in energy if the average curvature of the ® lm deviates from the spontaneous
curvature which is a property of a given ® lm in a particular environment. The second
term represents the part of the energy which depends on the Gaussian curvature, and
hence on the topology of the ® lm² .

We begin the review by discussing a general expression for the free energy of a
mathematically thin surface or interface; all the physics behind the curvature energy
is lumped into phenomenological coe� cients in an expansion of the free energy as a
function of the area per molecule and the curvature of the interface. We show how a
certain choice of the surface of curvature can decouple terms in the energy which
involve the changes in area per molecule (compressibility) and the curvature of the
surface; this is commonly known as the choice of a neutral surface. In addition, we
show how a di� erent choice for the surface of curvature can result in the vanishing of
one of the curvature moduli (the Gaussian or saddle-splay modulus) ; this is
somewhat less known but has been discussed in the past in the context of speci® c
microscopic models [9]. We tailor this discussion to the case of self-assembly of
amphiphilic molecules and consider the possibility of interfaces with a variable
number of molecules; this is the case for amphiphilic interfaces that are in
thermodynamic equilibrium with the same molecules in dilute solution. Here, the
system has an additional degree of freedom since the molecules which self-assemble
can leave the interface and go into solution when the interface is deformed. We show
how this can dramatically reduce the curvature moduli in the very dilute regime
where the self-assembly process ® rst begins; at higher concentrations, we show that
the bending moduli are almost independent of amphiphile concentration and can be
related to those of an almost isolated, mechanical system.

In order to relate the phenomenological model to the physics of the interface it is
necessary to consider the energetics of a surface of ® nite thickness and to relate the
deformation energy to the internal stresses or pressure. We obtain expressions for the
curvature moduli in terms of the moments of the internal pressure distribution and
their derivatives. While the pressure expansion applies to both solid and liquid thin
® lms, solid materials have an additional restoring force which arises from their shear
modulus. We consider the general case of an anisotropic material which is relevant to
the layered solids that form fullerene-type structures. In these materials, the
interplanar bonding arises from van der Waals forces and is much weaker than
the in-plane covalent bonds. In addition, solids have the freedom to form defects
such as dislocations and their role in lowering the bending moduli of solid thin ® lms
is discussed and applied to fullerene-type materials.

To apply the formulae which relate the curvature moduli to the pressure
distribution, one must consider speci® c physical situations; we discuss the contribu-
tions to the bending moduli from charged polar head groups and from ¯ exible

² The Gauss± Bonnet theorem relates the surface integral of the Gaussian curvature to the
topology of the surface such as the number of holes and handles: dS K = 4p (1 ­ g), where g is the
Euler characteristic of the surface, for example, g = 0 for a spherical topology and g = 1 for a simple
toroidal topology.
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polymer-like chains. These are the primary contributions in the case of amphiphilic
molecules; in both cases, the restoring forces are related to the changes in the entropy
of the molecular con® gurations upon bending. Finally, we demonstrate the e� ects of
¯ uctuations and inhomogeneities in these systems in a discussion of the role of
thermal undulations in renormalizing the bending moduli and of mixtures of
amphiphiles of di� erent chain lengths in ¯ uid ® lms. While most of the article treats
the local bending free energy of an amphiphilic interface without thermal ¯ uctua-
tions, the undulations are of particular importance in determining the large-scale
structure and phase behaviour of amphiphilic systems. We show how long-
wavelength ¯ uctuations (the entropic degrees of freedom) soften the e� ective
bending modulus of the interface. In mixtures, the degrees of freedom associated
with the mixing also can make the bending modulus lower than one would expect.
The article concludes with a brief review of experimental characterizations of
curvature elasticity in self-assembling systems and some open questions.

2. Curvature: mathematical de® nitions

In this section, we de® ne the mean and Gaussian curvatures of a mathematically,
in® nitely thin surface. We point out that the mean curvature H and Gaussian
curvature K are invariants of the surface and therefore independent of the particular
coordinate system or representation of the surface.

2.1. Surfaces and curvatures
Surfaces can be described ® rstly by the parametric form x = f (u, v), y = g(u, v)

and z = h(u, v), which determine a vector r(u, v) which locates (in the three-
dimensional l̀aboratory’ frame) points on the surface, or secondly by the implicit
form F(x, y, z) = 0. A simple example of the parametric form is where u and v are
equal to x and y respectively and the `height’ z = h(u, v) = h(x, y). This is called the
Monge parametrization of a surface and the position of the surface (see ® gure 2) is
given by

r = (u, v, h(u, v)) = (x, y, h(x, y)). (2.1)
On the surface one de® nes the two tangent vectors ru = ¶ r/ ¶ u and rv = ¶ r/ ¶ v. These
vectors are not necessarily unit vectors, nor are they necessarily orthogonal. The two
vectors de® ne a tangent plane. The equation of the plane is given by r· ^

n = 0 where ^
n

is the normal to the surface at `positions’ (u, v). The normal is given by the cross
product:

^
n =

ru rv

jru rvj
. (2.2)

Figure 2. A surface in the Monge representation where the height is denoted by h(x, y).
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The implicit de® nition of a surface, F(x, y, z) = 0, gives in the Monge representa-
tion F(x, y, z) = z ­ h(x, y) = 0. For the general implicit form, one obtains the
normal by realizing that on the surface, where F is a constant, the total derivative
of F is zero:

dF = dr· Ñ F = 0, (2.3)
where dr is a vector connecting two points in the surface. Since dr is a vector that is
tangent to a certain direction in the surface, equation (2.3) indicates that Ñ F is
orthogonal to this tangent; the normal vector is thus parallel to Ñ F (with F evaluated
on the surface) . The unit normal is thus given by

^
n =

Ñ F
j Ñ Fj

. (2.4)

It is well known that the curvature of a linear object is given by the change in the
tangent as one moves along the arc length of the curve. Similarly, the curvature for a
curve on the surface can be derived from the implicit form of the surface,
F(x, y, z) = 0 by considering the change in the normal vector de® ned from equation
(2.4) as one proceeds along the surface. Thus, if one moves along the surface a
distance dr, the normal ^

n changes by an amount

d^n = dr·Q, (2.5)
where Q is a tensor whose elements in Cartesian cordinates are given by di� erentiat-
ing equation (2.4):

Qij =
1
¨

Fij ­
Fi¨j

¨
, (2.6)

where ¨ = j Ñ Fj and Fi = ¶ F/ ¶ ri, where r = (x, y, z), with a similar notation for ¨i.
By taking the dot product of equation (2.5) with dr, one obtains an expression for
the curvature along a given curvilinear direction that is proportional to the trace of
the tensor Q. Thus, the curvature is associated with the change in the normal as one
moves along the surface. Since both the normal and the direction along the surface
are vectors, the curvature is, in general, a tensor quantity.

2.2. Invariants of the curvature tensor: mean and Gaussian curvatures
It is useful to decribe the curvature tensor by its invariants, since these quantities

do not change if one rotates the coordinate system used to describe the surface; the
invariants are intrinsic properties of the surface. For the implicit representation of
the surface, F(x, y, z) = 0, the curvature along a general direction is related to the
tensor Q de® ned in equation (2.6). In three dimensions, Q is a 3 3 matrix with three
eigenvalues. One can show by explicit calculation using equation (2.6) with ¨ = j Ñ Fj
that the determinant of Q and one eigenvalue are zero. The remaining two
eigenvalues are the two principal curvatures of the surface; these can be calculated
for any F directly from Q.

The three-dimensional tensor Q has three invariants under similarity transforma-
tions (which include rotations) : its trace, the sum of the principal minors (i.e., the
three minors formed by crossing out the rows and columns of the diagonal elements),
and its determinant (for a proof see [2]). Explicit calculation shows that the
determinant of Q is zero. Two of the eigenvalues of Q have dimensions of an inverse
length and are known as the principal curvatures (one eigenvalue is zero). The
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eigenvectors corresponding to the non-zero eigenvalues are known as the principal
directions of the surface; along these directions, the curvature tensor is diagonal. The
trace, which is the sum of the eigenvalues (i.e., principal curvatures) , is twice the
mean curvature H; both quantities have the dimensions of an inverse length.
The other invariant of the tensor Q is the sum of the principal minors, which has
the dimensions of an inverse length squared and is termed the Gaussian curvature K,
which is equal to the product of the two principal curvatures (eigenvalues of Q).
Using equation (2.6) we ® nd an expression for the mean curvature:

H =
1

2¨ 3 [Fxx(F2
y + F2

z) ­ 2FxFyFxy + Perm], (2.7)

where the term Perm indicates that one should consider two additional permutations
of each termÐ one where (x, y, z) ! (z, x, y) and another with (x, y, z) ! ( y, z, x) Ð
and where

¨ = (F2
x + F2

y + F2
z)1/2. (2.8)

The Gaussian curvature is given by

K =
1

¨ 4 [FxxFyyF2
z ­ F2

xyF
2
z + 2FxzFx(FyFyz ­ FzFyy) + Perm]. (2.9)

In the case where F is described by the Monge parametrization F = z ­ h(x, y), these
expressions simplify considerably and one obtains:

H =
(1 + h2

x)hyy + (1 + h2
y)hxx ­ 2hxhyhxy

2[(1 + h2
x + h2

y)]3/ 2 , (2.10)

K =
hxxhyy ­ h2

xy

(1 + h2
x + h2

y)2 . (2.11)

In the limit of a nearly ¯ at surface, hx 1, hy 1; the mean and Gaussian
curvatures can be approximately written as

H 1
2(hxx + hyy), (2.12)

K hxxhyy ­ h2
xy. (2.13)

Another way to think about surface curvature is in terms of the parameteric
representation of the surface r(u, v) with components: x = f (u, v) , y = g(u, v) , and
z = h(u, v). The (linear) curvature along an arbitrary direction in the surface
^
a = lru + mrv, is a quadratic function of the values of l and m. As shown in [2],
the curvature · is

· = L l2 + 2Mlm + Nm2, (2.14)
where L , M and N are related to derivatives of the normal with respect to the
coordinates u and v (see equation (2.2))

L = ­ ^
nu·ru, M = ­ ^

nv·ru = ­ ^
nu·rv, N = ­ ^nv·rv. (2.15)

Diagonalizing this quadratic form of ·, subject to the contraint that ^
a is a unit

vector, is mathematically equivalent to the minimization± maximization of ·. Thus,
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the extremal curvatures, ·a and ·b are determined by the extremal values of l and m,
which we denote as l and m . For directions on the surface close to these extremal
values, the expansion of the curvature as a function of l ­ l and m ­ m has no
linear terms since l and m are extremal; in this sense, the local curvature is a
diagonalized quadratic form. The mean curvature is the average H = 1

2(·a + ·b)
while the Gaussian curvature is the product K = ·a·b and one ® nds that

H =
EN + GL ­ 2FM

2(EG ­ F2) , (2.16)

K =
L N ­ M2

EG ­ F2 , (2.17)
where

E = r
2
u, F = ru·rv, G = r

2
v . (2.18)

2.3. Parallel surfaces
Consider a locally ¯ at surface (e.g. in the Monge gauge j Ñ hj 1) and imagine

translating that surface along the normal direction, a distance d to obtain a parallel
surface (® gure 3) whose location is given by

r
0 = r(u, v) + ^

nd . (2.19)
The relation of the area element dA 0, mean curvature H 0 and Gaussian curvature K 0

on the parallel surface compared with the original surface with area dA, and
curvatures H and K is given by

dA 0 = dA(1 + 2Hd + Kd 2), (2.20)

H 0 =
H + Kd

1 + 2Hd + Kd 2 , (2.21)

K 0 =
K

1 + 2Hd + Kd 2 , (2.22)

and the normals are of course equal to within a sign. These relations are important
in understanding the properties of surfaces of ® nite thickness. (The proof is
straightforward, but lengthy and simpli® es if one chooses the lines of curvature as
parametric curves.)

Figure 3. Schematic drawing of two parallel surfaces separated by a distance d along
the normal.
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3. Phenomenological theory of curvature elasticity

Although solid thin ® lms as well as ¯ uid membranes can be composed of many
di� erent types of chemical and molecular species, their behaviour (equilibrium
shapes as well as their thermal ¯ uctuations) can be understood from a uni® ed point
of view that considers the free-energy cost of deformations of the membrane. We
begin with an enumeration of the thermodynamic degrees of freedom that exist in
self-assembling systems: solubility of the amphiphilic molecules, the sizes and shapes
of the interfaces formed, the number of interfaces that exist, and the area per
molecule at these interfaces. We point out the conditions under which the tensions of
the interfaces in the system can be considered to be zero and when these tensions are
® nite. Next, we discuss the free energy of a single thin ® lm and consider, in addition
to the curvature, the area per molecule as a degree of freedom which can be adjusted
by the system to minimize the energy. The thickness of the ® lm plays no explicit role
in this initial discussion; it enters indirectly in the phenomenological constants used
to write the energy as a function of area per molecule and curvature. We show ® rstly
that the freedom that the system has to adjust the area per molecule upon bending,
reduces the bending modulus and secondly that the surface of curvature can be
chosen either to decouple changes in area from those in curvature (this is the so-
called neutral surface) or to result in a zero value for the Gaussian curvature
modulus.

Another relevant degree of freedom in self-assembling membranes is the ® nite
solubility of the molecules of the ® lm in the solution; for a system in equilibrium with
amphiphilic molecules in solution, the membrane can sometimes respond to bending
by moving molecules from the ® lm into the solution (or into the vapour that coexists
with a solid ® lm). We show in section 3.5 how this e� ect can also result in a reduced
bending modulus, but only in a small range of amphiphile volume fractions where
the ® lms have a free energy that is comparable with that of the amphiphiles in
solution (critical aggregation concentration).

In order to obtain more physical insight into the origin of the bending moduli, it
is necessary to consider explicitly the e� ects of bending a ® lm of ® nite thickness. In
the case of solid ® lms, one can derive the bending elasticity by considering the elastic
energy explicitly; this is done in section 4. For a ¯ uid ® lm, one can relate these
moduli to the pressure distribution which varies through the thickness of the ® lm and
in section 3.6 we show that a completely isotropic ¯ uid (or gas) ® lm has no response
to bending. The physics of various types of pressure distributions are discussed in
section 5, which considers the electrostatic and chain contributions to the bending
moduli for particular systems.

3.1. Thermodynamic degrees of freedom in self-assembly
The theoretical description of the free energy and associated constraints in self -

assembling systems can be subtle. Although it is commonly stated that self-
assembling membranes have zero interfacial tensions, this is rigorously true only
in the particular limit of a single membrane whose amphiphilic components are
insoluble in the solvent. It is more generally true, however, that self-assembling
membranes determine the area R per molecule, for packing of the amphiphilic
molecules from equilibrium considerations and that the free energy is a minimum
when varied with respect to R .

Any discussion of the thermodynamic degrees of freedom in self-assembly must
consider two cases: ® rstly soluble amphiphiles (where the membranes formed can
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exchange molecules with the amphiphile monomers in solution) and secondly
insoluble amphiphiles (where there is no such exchange) . In the case of insoluble
amphiphiles, the area of the system is determined by the total area of all the
membranes in the system. In general, the many membranes or globules that coexist
in the solution can have di� erent sizes and shapes and the area per molecule will
di� er from membrane to membrane; even within a single membrane it can also be a
function of the local curvature. The area per molecule can also depend on the
entropy of mixing of the membranes or globules in solution and upon their
interactions. However, if the interaction energies are small compared with the typical
molecular compressibilities and if the membrane radii of curvature are much larger
than any molecular size (e.g. the size associated with a typical area per molecule),
then, to a good approximation, R can be taken to be a constant. In this case, the total
area of all the membranes is ® xed by the total number of molecules in solution and
the area R per molecule is determined to zeroth order by minimizing the free area of
a ¯ at membrane with respect to R ; it is this free-energy derivative (a type of
interfacial tension) that is zero in this case. Of course, the number, size and shape
of all the membranes in the solution are still degrees of freedom to be considered and
the distribution of these degrees of freedom must be found. In a mean-® eld type of
approximation where one considers only one typical membrane or globule size and
shape, the free energy can be minimized with respect to these degrees of freedom,
provided that one takes into account the conservation constraints.

The case of a single membrane with insoluble amphiphiles is even simpler. Here,
the total area is ® xed by the total number of molecules; if one neglects curvature or
¯ uctuation corrections to R , the derivative of the free energy with respect to R is
zero. This limiting case, therefore, shows a zero interfacial tension. The situation for
the case where the curvature corrections to R are explicitly taken into account is
discussed in the next section.

When the amphiphilic molecules are soluble in the solution, there is no longer a
constraint of ® xed total membrane area since the ® lm molecules can exchange with
those in solution. The constraint of a ® xed total number of amphiphilic molecules (in
both the solution and the ® lm) dictates the equality of the chemical potential for the
amphiphiles which determines their partitioning in the solution and in the ® lm. This
case is discussed in section 3.5. Here we note that, in the approximation where the
interactions between membranes and curvature corrections to the packing area R can
be neglected, the area per molecule is still determined to zeroth order by the
minimum of the free energy of the ¯ at ® lm and in that sense there is an
approximately zero tension in the system. However, the derivative of the membrane
free energy with respect to the membrane area is not zero, instread, it is equal to the
chemical potential (divided by R ) of the amphiphilic molecules in solution.

Heretofore, we have focused on the degrees of freedom of membranes with no
shape ¯ uctuations. When such undulations are important, one must also di� er-
entiate between the projected area and the actual area of the membrane. The usual
interfacial tension would then refer to changes in the projected area. However, a
detailed discussion of these additional degrees of freedom and their conjugate
tensions is outside the scope of this article.

3.2. Bending and area changes in membranes and thin ® lms
Microscopic models of amphiphilic interfaces often tie the interface location to a

particular molecular site (e.g. the bond joining the two parts of a block copolymer,
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the polar head group in a surfactant) . It is therefore useful to describe the energy of a
bent ® lm or membrane for a general location of the surface of curvature, since the
location of this surface is often dictated by molecular considerations and cannot be
arbitrarily assigned when using a particular microscopic model. As mentioned
previously, we ® rst consider a single, in® nitely thin, surface (whose amphiphilic
molecules are insoluble in the solution) . The free energy per molecule is a function of
both the area R per molecule and the curvature. (The membrane thickness enters
only indirectly in determining the phenomenological expansion parameters; the
explicit dependence of the bending on thickness is described in section 3.6.) To
describe the novel large-scale structures observed in these systems and to characterize
the low-energy deformations that are most strongly in¯ uenced by thermal ¯ uctua-
tions, we consider radii of curvature whose length scales are much larger than
molecular sizes.

We write an expansion of the free energy f per molecule for small curvatures (the
dimensionless small parameter is the product of the curvature and the membrane
thickness) up to second order. As explained previously, the two invariants of the
surface to this order in curvature are the mean curvature H and the Gaussian
curvature K; since the free energy of a ¯ uid membrane must be invariant under
rotations of the coordinate system, f is a thus a function of H, H2 and K to the order
that we consider. Thus,

f (R , H, K) = f0(R ) + f1(R )H + f2(R )H2 + f2(R )K, (3.1)
where the coe� cients of the curvature are, in general, functions of the equilibrium
area per molecule, which itself may depend on curvature. The free energy of the ¯ at
® lm is f0 and f1, f2 and f2 are derivatives of the free energy with respect to H, H2 and
K respectively. Since the free energy of the ¯ at layer has a minimum when R = R 0, a
change in R that is linear in curvature contributes a term quadratic in curvature to the
free energy; the free energy has no term that is linear in R ­ R 0 because ¶ f0/ ¶ R 0 = 0.
We thus expand f0 to second order and f1 to ® rst order in R ­ R 0 to ® nd that

f (R , H, K) f0(R 0) + 1
2 f 0 0

0 (R 0)(R ­ R 0)2 + f1(R 0)H

+ f 0
1 (R 0)(R ­ R 0)H + f2(R 0)H2 + f2(R 0)K, (3.2)

where

f 0 0
0 (R 0) =

¶ 2f0
¶ R 2

R 0

(3.3)

and

f 0
1 (R 0) =

¶ f1
¶ R R 0

. (3.4)

The terms proportional to H2 and K are already of quadratic order in our
expansion. Their coe� cients need only be kept to lowest order in the expansion of
R and are therefore given by f2 and f2 evaluated at R = R 0. Minimizing the free
energy to determine the equilibrium area R per molecule of the curved interface we
® nd that

R = R 0 ­ f 0
1

f 0 0
0

H. (3.5)
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Evaluating the free energy at the optimal value of the area R per molecule we see
that f depends only on H and K. This de® nes the curvature free energy via

f (R , H, K) = g0 + g1H + g2H2 + g2K (3.6)

where g0 = f0(R 0), g1 = f1(R 0), g2 = f2(R 0) and

g2 = f2(R 0) ­ 1
2

f 0
1

2

f 0 0
0

. (3.7)

Note that the correction term which makes the area per molecule depend on
curvature is always negative since f 0 0

0 > 0 by the minimization condition and the
stability of the ¯ at layer. Physically, this means that, if the molecules are allowed to
adjust their area per molecule depending on the curvature, the monolayer will be less
rigid upon bending than if constrained to have a ® xed area per molecule. We thus see
that there is a term independent of curvature (the ¯ at layer free energy), a term linear
in curvature (which must vanish for a symmetric bilayer, but which is present for a
monolayer) and a term quadratic in curvature.

3.3. Neutral surface; surface of vanishing Gaussian modulus
In the preceding discussion, the area per molecule had a correction term due

to curvature. This arose because of a coupling between the stretching and curvature
of the surface, that is the term proportional to (R ­ R 0)H in equation (3.2).
This coupling can be eliminated by a shift in the normal direction of the surface
of curvature by an amount ¸ whose magnitude is determined as follows: The
curvature on the new interface changes (see the previous discussion of parallel
surfaces in section 2.3) according to

H 0 H(1 + 2̧ H) ­ ¸K. (3.8)

The higher-order terms as well as the change in the Gaussian curvature are negligible
if one keeps the free energy to second order in the curvatures only. The area R 0 per
molecule de® ned with respect to the new interface is related to the area per molecule
de® ned on the original interface by

R 0 R (1 ­ 2̧ H), (3.9)

where we keep terms linear in H only since the energy (equation (3.2)) depends
quadratically on deviations of R from its value on the ¯ at interface. Rewriting the
bending energy as a function of both R 0 and the curvatures (which have negligible
higher-order corrections due to the shift of the interface position), and keeping terms
up to order H2, (R ­ R 0)2 and (R ­ R 0)H, equation (3.2) becomes

f (R 0 , H 0 , K 0) f0(R 0) + 1
2 f 0 0

0 (R 0 ­ R 0)2 + f1(R 0)H 0

+ H 0(R 0 ­ R 0)( f 0
1 + 2R 0¸ f 0 0

0 ) + [f2(R 0) + f1(R 0) ]̧K 0

+ [2f 0 0
0 R 2

0¸
2 + 2f 0

1 R 0¸ + f2(R 0) ­ f1(R 0) ]̧H 0 2, (3.10)

where the extra terms arise from the change in the interface position.
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The neutral surface is obtained by choosing the shift at the interface position,
¸ =¸n, so that there are no terms in f (R , H, K) where the area and curvatures are
coupled. From equation (3.10), one sees that this is the case when

¸n = ­ f 0
1

2R 0 f 0 0
0

. (3.11)

The only dependence of R 0 in the free energy is a term proportional to (R 0 ­ R 0)2, so
that at the neutral surface the minimum free energy con® guration is given by
R 0 = R 0; that is there is no change in the area per molecule compared with the ¯ at
surface. When the free energy is evaluated at the minimal value of R 0 , only pure
bending terms contribute and we ® nd a free energy of the form of equations (3.6) and
(3.7), with g1 and g2 as given previously, but where g2, the coe� cient of H 0 2 has
several additional contributions (given by the last term of equation (3.10) evaluated
with ¸ =¸n).

In addition to the neutral surface where the coupling between the area changes
and the curvature vanishes we can de® ne another type of special surface [9]where the
e� ective Gaussian curvature modulus vanishes. The value of ¸ at which this occurs is
given by

~
¸ = ­ f2(R 0)

f1(R 0) . (3.12)

Of course, this surface is, in general, not the same as the neutral surface and one can
only choose the de® nition of the surface of curvature once. Thus, one can choose the
surface of curvature to lie either on the neutral surface or on the surface where the
e� ective saddle-splay modulus vanishes. In addition, one has to check that the value
of ¸ where the e� ective Gaussian curvature modulus vanishes is physically mean-
ingful, that is not much larger than the ® lm thickness; otherwise the surface of
curvature is too far removed from the actual ® lm. Dimensional analysis shows that
f2/ f1 does indeed have the dimensions of a length which one expects to be
proportional to the spontaneous radius (1/ c0) of curvature. Since the continuum
theory is most appropriate when 1/c0 is large compared with a molecular size, one
might think that there is never a situation where

~
¸ is comparable with the ® lm

thickness. However, there may arise situations (see equation (5.4)) where the
Gaussian curvature modulus itself becomes proportional to the spontaneous
curvature and the value of

~
¸ indeed does become of the order of the ® lm thickness

(or smaller) and hence physically meaningful. In these cases, it is interesting that the
dependence of the bending energy on the overall ® lm topology vanishes when one
chooses ¸ =

~
¸ and the e� ective Gaussian curvature modulus is then zero. This can

simplify many calculations of the energetics and ¯ uctuations of complex surfaces.

3.4. Curvature energy
One can also discuss the curvature energy using symmetry considerations and

relate it to the models analysed previously. The most general form of the curvature
free energy fc, per unit area, up to quadratic order in the two curvatures, can be
written in terms of the mean and Gaussian curvatures de® ned previously. One can
write

fc = 1
2 k(H ­ c0)2 + kK. (3.13)

Curvature elasticity of thin ® lms 407



This form for the free energy per unit area was discussed by Helfrich [8] and states
that the mean curvature which minimizes the free energy has a value c0, termed the
spontaneous curvature of the membrane. The energy cost of deviating from the
spontaneous curvature is the bending or curvature modulus k. The parameter k,
known as the saddle-splay modulus, measures the energy cost of saddle-like
deformations.

The spontaneous curvature describes the tendency of the surfactant ® lm to bend
towards either the water (c 0

0 < 0 by convention) or the oil (c 0
0 > 0). For amphiphilic

membranes, it is taken (in the absence of long-range interactions) to arise from the
competition between the packing areas of the polar head and hydrocarbon tail of the
surfactant molecules. If the interactions between the polar heads (as mediated
through the intervening water and electrolyte) favour a smaller packing area than
that dictated by the tail± oil± tail interactions, the surfactant ® lm will tend to curve so
that the heads (and the water) are on the ìnside’ of the interface. The bending
moduli k and k arise from the elastic constants determined by the head± head and
tail± tail interactions. In section 5 we show how these moduli depend on the
surfactant chain length and on the head± head interaction strength.

The bending parameters c0, k and k can be derived from equations (3.6) and (3.7).
Comparing equations (3.6), (3.7) and (3.13) and noting that f is an energy per
molecule, while fc is an energy per unit area, we identify

k =
2g2

R 0
, (3.14)

k =
g2

R 0
, (3.15)

c0 = ­ g1

2g2
. (3.16)

This allows the curvature moduli to be obtained from the parameters of a given
microscopic model that incorporates both the change in the area per molecule and
the curvature. We note that a stable ® lm will always have k > 0. However, the sign of
k can be either positive or negative; ® lms that prefer isotropic shapes (where the
Gaussian curvature K > 0) such as spheres or planes will have k < 0, while ® lms that
prefer saddle shapes (where the Gaussian curvature K < 0) will have k > 0. Once can
show that the requirement that the quadratic term be positive de® nite implies that
® lms are only stable if ( for values of k < 0) 2k + k > 0; otherwise higher-order
curvature terms are needed to stabilize the system.

3.5. Thermodynamics of self-assembling ¯ uid interfaces
3.5.1. Self-assembly in solution

The previous section presented a mechanical picture of the perturbations of the
molecules in a thin ® lm whose degrees of freedom were the area per molecule and the
® lm curvature. In this section, we show that, even if one considers an additional
degree of freedom, namely the ability of molecules in the ® lm to resolubilize in the
solvent, one still can use a bending energy description of the ® lm energetics, provided
that one is not too close to the critical concentration at which the ® lms ® rst self-
assemble from solution. For simplicity, and because most cases of self-assembling
® lms occur for ¯ uid ® lms, we discuss this case here. The bending energy of a solid
® lm is treated later.
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We consider a ¯ uid monolayer membrane at a water± oil interface in equilibrium
with dilute solutions of the very same amphiphiles in the water and oil. In general,
there is an equilibrium between the amphiphiles adsorbed at the interface and those
in the bulk solution. For extremely small volume fractions of amphiphile, the
surfactants will preferentially remain in solution owing to their higher entropy of
mixing with the solvent; the interface will have a relatively small number of
amphiphiles adsorbed per unit area. However, this is not the case when the
amphiphilic molecules are strongly insoluble in either solvent owing to the
unfavourable interactions of the polar groups with hydrocarbon solvents and of
the hydrocarbon groups with polar solvents. The large energy cost of keeping these
molecules in solution overcomes their entropy of mixing and at even moderately
small volume fractions (which in practice can be very low, about 10­ 4 or less for
surfactants which strongly prefer the interface) , the free-energy cost for remaining in
solution is too high and the amphiphiles will tend to accumulate at the interface.

As one increases the volume fraction of amphiphiles in the solution, more and
more would go to the interface and the area R per molecule on the interface would
decrease. However, the molecules cannot pack at in® nite density at the interface. In
the case where there exists a minimum in the packing energy of the ¯ at interface at a
value of R = R 0, the system will keep adding amphiphiles to the ¯ at interface until R
is reduced to a value close to R 0. If even more molecules are added to the system,
instead of decreasing R further and thus increasing the free energy (since R = R 0 is a
minimum), the amphiphiles will maintain their packing at R R 0 and accommodate
the extra molecules by creating more interface (e.g. by rippling the ¯ at interface or by
incorporating oil into the water with the additional molecules located at the extra
interface that is thus generated) . When this happens, one says that the interface is
saturated; instead of changing the packing area, the system accommodates more
amphiphiles by making more interface while still minimizing the packing free energy
with respect to R . Of course, the interface may then have some curvature and the
actual value of R may depend on the curvature.

In general, one must consider the chemical potential of a molecule at the interface
and in the solution. The equality of these two chemical potentials is the criterion for
equilibrium and hence determines the area per molecule on the interface. When the
amount of interface is ® xed, as in the case of a single water± oil interface, this equality
® xes R . However, when the amount of interface can vary to minimize the free energy,
R is determined by minimizing the interfacial free energy per molecule; the chemical
potential then determines the number of interfaces that exist in the system as well as
the (small) volume fraction of surfactant that is not incorporated in these interfaces;
the properties of each interface are determined to a ® rst approximation by the
minimization of the local free energy of the ® lm.

The thermodynamics of these processes are discussed in detail in the following
section and in [10], where it is shown that there is a critical volume fraction u c

s of
surfactant above which there are many interfaces in the system, and the amount of
surfactant not incorporated into these interfaces is small and remains approximately
constant as the overall amount u s of surfactant is increased ( u c

s is analogous to a
critical micelle concentration [1]) [2]. One usually considers the simple case of
surfactants that are strongly surface active (highly insoluble in the bulk) so that at
even very small volume fractions of amphiphile ( u c

s u s 1), there are many
interfaces (e.g. vesicles and microemulsions) in the system in equilibrium. In this
approximation, the fraction of surfactants in solution is very small and their volume
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fraction is approximately constant. However, in the following section we show how
the equilibrium between the surfactant in the ® lm and in the solution can be taken
into account; the net e� ect is to soften the bending constants (i.e., the renormalized
moduli are funtions of u s); this is a major e� ect for the case where u s u c

s .
Once the appropriate bending free energy has been derived, the properties of the

system are obtained by focusing on the physics of the interfaces. When, in addition,
the ¯ uctuations of and interactions between these interfaces and their translational
entropy can be neglected compared with the local deformation energies of the ® lms
(true when k kBT ) one can ® rst minimize these local deformation energies to ® nd
the size and shape of the interfaces. Afterwards, one can ® nally take into account the
entropic and interaction e� ects as higher-order corrections to the shape which is
primarily determined by the curvature energy.

In addition to being characterized by the area per amphiphile, the interfacial
membrane is also characterized by its thickness ,̧ which can also change under
deformations of the ® lm. For simplicity, we assume that the equation of state of the
¯ at membrane determines the thickness as a function of the area per molecule. (A
simple example is the case of an incompressible ® lm where the product of Ŗ is
constrained to equal the molecular volume so that ¸ 1/ R .) We thus take the ¯ at
membrane to be characterized only by the area R per molecule; the curved
membrane is characterized by both its curvature and the area per molecule.

3.5.2. Free energy of self-assembling interfaces
First consider a single, locally ¯ at isolated interface. Saturation occurs when the

interfacial free energy achieves a minimum:

¶ f0
¶ R = 0, (3.17)

where f0 is the free energy per molecule for a ¯ at layer and R is the area per molecule.
The free energy per molecule is minimized when R = R 0. The optimal value of the
area per molecule arises from a balance of terms such as the entropy, and the
interfacial tension terms or attractions. The entropy favours a large area per
molecule (because of the larger number of centre-of-mass positions and chain
conformations) while the interfacial tension terms (e.g. contact of the hydrocarbon
chains with the water) and molecular (e.g. van der Waals) attractions favour a small
value of R . Of course, there can be deviations in the area per molecule from this
minimum and the energy cost of such a compression or expansion is

f0 = 1
2 f 0 0

0 (R ­ R 0)2, (3.18)

where the primes signify a derivative with respect to R . However, these deformations
are typically of higher energy than the curvature deformations; a membrane can
change its shape or size with a much lower free-energy cost than that required to
compress or expand it. Below, we show how these ¯ uctuations soften the bending
moduli of the system; however, the basic picture of a set of ® lms with curvature
elasticity is maintained even if one allows area ¯ uctuations. It is important to
remember therefore that, for insoluble amphiphiles, it is the saturation of the
interface and the minimization of the area per molecule that permits the usual
surface tension term to be neglected; the derivative ¶ f / ¶ R = 0. The surface tension is
no longer relevant since the molecules adjust their area to optimize the free energy
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and it is therefore the curvature energy that mainly determines the properties of the
® lm.

The standard treatment of curvature elasticity focuses on the compressibility and
bending elasticity of isolated interfaces. The free energy of an interfacial ® lm with
® xed curvature and a ® xed number of surfactants is minimized with respect to the
area per molecule, and the bending energy is then derived. In reality, the number of
molecules which comprise these interfaces is not ® xed since they coexist and
exchange with the surfactant monomers in the solution. In what follows we show
that, even in this case, one can still derive an e� ective bending free energy for the
surfactant ® lm. The curvature energy is obtained by minimization of the total free
energy of both the surfactant molecules in the ® lm as well as the molecules in the
solution with which they exchange. The e� ect of monomers in the solution has also
been discussed in the context of block copolymer self-assembly [10]. Here we use a
similar formalism to calculate the e� ective curvature energy and to examine its
dependence on the surfactant volume fraction. It is found that the presence of
surfactant molecules in the solution induces softening of the ® lm, that is, the e� ective
curvature moduli decrease from their nominal values. Additionally, we show how the
adjustment of the area per surfactant upon bending can further soften the elastic
parameters of the ® lm.

To be speci® c, we consider a system of surfactant monolayers in a water± oil±
surfactant microemulsions (the same conclusions also apply to bilayers in a one-
component solution) . The volume fractions of water and oil, which are assumed to
be mutually insoluble, are u w and u o, respectively and the total volume fraction of
amphiphile in the system is u s. The surfactant molecules are partitioned among the
water, the oil, and the monolayer ® lms with volume fractions u w

s , u o
s and u f

s
respectively. The local concentrations of surfactant in water and oil are w w and w o

respectively (it is assumed that the water and oil do not penetrate the ® lm so that the
local concentration of surfactant in the ® lm is w s = 1). The local surfactant volume
fractions w o and w w are related to the concentrations u o

s and u w
s relative to the whole

system by

w o =
u o

s

u o + u o
s
,

w w =
u w

s

u w + u w
s

,
(3.19)

Since we focus on the case where the surfactant is highly insoluble in the water
and oil regions, we assume that the amphiphile in these regions can be described as
an ideal gas of molecules. However, the main conclusions remain valid even for
interacting monomers in the solution. The free energies fw and fo , per unit volume of
the surfactant molecules in the water and oil regions respectively can be written as

fw = w w (log w w ­ 1 + c w),

fo = w o (log w o ­ 1 + c o),
(3.20)

where c w and c o are the energies (in units of kBT ) of one molecule solubilized in
water and oil respectively relative to the same molecule in a ¯ at lamellar con® gura-
tion (taken to be the zero of energy). In equation (3.20) , fw and fo are taken in units
of kBT /v0, where v0 is the volume per molecule and T is the temperature.
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The surfactant ® lm is characterized by a free energy ff (R , H, K) per molecule,
which depends on the area R per molecule, the mean curvature H and the Gaussian
curvature K. In what follows we shall use an expansion to quadratic order in the
curvature:

ff (R , H, K) = f0(R ) + f1(R )H + f2(R )H2 + f2(R )K (3.21)
appropriate for small curvature [2]. This free energy also includes the contributions
from the short-range interactions of the ® lm with the water and oil molecules. The
total free energy fT per unit volume includes the energy ( u w + u w

s ) fw of the
surfactant in the water region and the energy ( u o + u o

s ) fo of the molecules in the
oil region. (Note that the water phase is composed of water and the dissolved
surfactant, and occupies a fraction u w + u w

s of the total volume. A similar expression
applies for the oil phase.) The contribution of the ® lm energy to the total energy is
u f

s ff . Thus, the total energy is

fT = ( u o + u o
s ) fo + ( u w + u w

s ) fw + u f
s ff . (3.22)

We are interested in the limit of low solubility of the surfactant molecules in both
water and oil, when u o,w

s u o,w, and the total energy fT per unit volume is thus
approximated by fT = u o fo + u w fw + u f

s ff . This form of free energy assumes
extensivity of the system, that is the energies are calculated for isolated ® lms and
the entropy of mixing, and the interactions among the ® lms are neglected. This
assumption is valid since the entropy (per unit volume) of the self-assembled ® lms is
smaller by a factor of R­ 3 than the entropy of the same amount of separate
surfactant molecules, where R is a characteristic size of a microemulsion droplet.
The interaction energy can be neglected as long as the solution is dilute. Here we
neglect both the entropy and the interactions in the calculation of the local packing
area and the curvature energy and keep the curvatures and size of the microemulsion
regions ® xed. Of course, to determine these latter properties of the ® lms, one must
include entropy and interactions in the minimization of the free energy with respect
to H and K.

3.5.3. Free-energy minimization; e� ective modulus
In what follows the total free energy fT is minimized with respect to all the other

degrees of freedom: the surfactant concentrations w o, w w and u f
s in each region, and

the area R per molecule in the ® lm. The system is de® ned by its composition u w, u o

and u s and by the ® xed curvatures H and K. This procedure enables us to derive an
e� ective curvature energy which does take into account the e� ect of the monomers in
the solution. The free energy fT is minimized subject to the constraint of conserva-
tion of the total amount of the surfactant:

u w
s + u o

s + u f
s = u s. (3.23)

For low solubility of the surfactant it follows from equation (3.19) that the
constraint of equation (3.23) can be approximated by u w w w + u o w o + u f

s = u s. The
constrained minimization with respect to w o, w w and u f

s is calculated using the
method of Lagrange multipliers. The physical equivalent of this procedure is that all
three regions contain surfactants with the same chemical potential which turns out to
be proportional to ff (R , H, K), the energy per surfactant in the ® lm. One ® nds that
the values at the minimum are
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w 0 = exp ( f f ­ c o), w w = exp ( ff ­ c w),
u f

s = u s ­ u o w o ­ u w w w.
(3.24)

The physical situation is completely analogous to micellization. There is a critical
volume fraction u c

s of surfactant, below which all the surfactant monomers are in the
solution [10]. It is determined from equation (3.24) with u f

s = 0 to be

u c
s = u o w o + u w w w. (3.25)

Only for larger values of volume fraction, u s > u c
s , do the ® lm layers begin to appear.

With the ratio u w/ u o of water to oil kept constant, one can relate the volume
fractions by

u f
s =

u s ­ u c
s

1 ­ u c
s

. (3.26)

The total energy per unit volume obtained after minimization is

fT = u w( ff ­ 1) exp ( ff ­ c w) + u o( ff ­ 1) exp ( ff ­ c o) + u f
s ff . (3.27)

One can de® ne an e� ective curvature energy per surfactant molecule of f fT/ u s

( f is in units of kBT) . In previous treatments, the surfactant was treated as totally
insoluble, w o = w w = 0, and the e� ective energy is equal to the bare curvature
energy, f = ff ; here we determine the correction to ff from the ® nite solubility of the
surfactant. In the remaining discussion it is assumed, as a matter of convenience² ,
that the solubilities in the water and the oil are equal: c w = c o = c . The e� ective free
energy now takes a simpli® ed form:

f = ff ­ 1 ­ u s

u s
exp ( ff ­ c ). (3.28)

Of course, the system also responds to changes in the curvature by adjusting the
area per molecule to minimize the total energy. We ® nd that this tends to reduce
further the bare bending modulus f2 by an amount related to the spontaneous
curvature. Expansion of the generic form of the ® lm energy to second order in the
change of the area R per molecule (equation (3.21)) yields³

² In the case where c w 6= c o the physical conclusions concerning the in¯ uence of the monomers
do not change, but the expressions are slightly more complicated.

³ For cases where the curvatures are small compared with the inverse of the ® lm thickness, it is
possible to choose the plane from which the curvature is measured so that the term linear in both the
curvature H and the change R ­ R 0 in the area compared with the ¯ at layer has a coe� cient which is
zero [2]. This choice for the dividing surface is termed the neutral surface and allows the area and
curvature degrees of freedom to be decoupled. On the neutral surface, the free energy is minimal when
the area per molecule is always equal to the area per molecule in the ¯ at geometry and the free energy
includes only the curvature terms. In what follows, however, we consider a general surface where the
coupling of the area and curvature terms is non-zero. We show that this still yields the Helfrich
curvature free energy, but with a renormalized bending coe� cient. The reason for not necessarily
choosing a neutral surface is that microscopic treatments of curved thin ® lms often are conveniently
formulated in terms of a physical dividing surface, such as the polar head group in a system of simple
surfactants or the connecting point in a block copolymer, which does not necesssarily coincide with the
netural surface.
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ff (R , H, K) = f0(R 0) + 1
2 f 0 0(R 0)(R ­ R 0)2 + f1(R 0)H + f 0

1 (R 0)(R ­ R 0)H

+ f2(R 0)H2 + f2(R 0)K, (3.29)
where R 0 is the area per molecule at the minimum of the ¯ at ® lm free energy f0.
Substitution of equation (3.29) into equation (3.28) and minimizing with respect to R

yields ¶ ff / ¶ R = 0, that is the area per molecule at the minimum of the e� ective
energy f has the same value of the area per molecule at the minimum of ff :

R = R 0 ­ f 0
1

f 0 0
0

H. (3.30)

Substitution of R back into equation (3.28) and expansion of the curvature part of
the free energy, ff ­ f0 ff , yields

f = f0 + f1 H + f2 H2 + f 2K, (3.31)
with the coe� cients

f0 = f0 + r ­ 1,

f1 = f1r,

f2 = f2 ­ 1
2

f 0
1

2

f 0 0
0

r

(3.32)

and f2 = f2r, where

r = 1 ­ 1 ­ u s

u s
exp ( f0 ­ c ). (3.33)

The area ¯ uctuations thus serve to reduce the bare bending modulus f2 by an
amount proportional to the square of the spontaneous curvature f 0

1 divided by the
compressibility; for very incompressible systems (large values of f 0 0

0 ), these changes
are small while, for anomalously compressible systems, this softening e� ect can be
more signi® cant. In any case, the expression for the change in f2 is always negative;
the extra degree of freedom of the area allows the system to lower its free energy.

We now return to the e� ect of the ¯ uctuations in the surfactant between the ® lm
and the solution. Comparison of the coe� cients of f with equations (3.29) ± (3.33)
shows that r is also the ratio r = k /k = k /k of the e� ective to the nominal
curvature moduli. The spontaneous curvature remains the same: c0 = c0. Using
the de® nition of u c

s , equation (3.33) can be rewritten in the form

r =
1 ­ ~

u c
s/ u s

1 ­ ~
u c

s
, (3.34)

where ~
u c

s = u c
s(H = K = 0) is the critical volume fraction for creation of ¯ at

interfaces (we note that u c
s depends upon the curvature energy) . In ® gure 4 we show

a plot of r against
~
u c

s/ u s . It is evident that even for high surfactant concentrations
there is a correction that behaves like k ­ k = k

~
u c

s/ u s. As u s decreases, the e� ective
curvature moduli decrease until they vanish at the critical volume fraction ~

u c
s :

k( u s =
~
u c

s) = k( u s =
~
u c

s) = 0. (3.35)
The mechanism underlying the softening of the curvature moduli arises from the

ability of the surfactant molecules inside the ® lm to exchange with monomers in the

S. A. Safran414



solution. If the system composition is near critical, u s u c
c, there is a small amount

of surfactant in the ® lms, u f
s u c

s . Now, if one slightly increases the curvature
energy ff of the ® lm, the solubilities w w = exp ( ff ­ c w) and w o = exp ( ff ­ c o) will
increase and surfactant molecules from the ® lms will be transferred to the solution.
Hence, the average free energy f per molecule, will not increase according to the
nominal curvature moduli but according to their decreased value, which takes into
account the free energy of the molecules in the solution. This is a major e� ect for
relatively small surfactant volume fractions, when there is a small amount of
amphiphile in the ® lms. In this case, when the curvature energy is increased,
relatively large portions of the ® lms can be reabsorbed in the solution. However,
when there are many interfaces in the system, only a negligible fraction of the
surfactant can be reabsorbed in the solution, and thus the corrections to the nominal
values of curvature moduli are small. In this case, where u s

~
u c

s , the microemulsion
can be approximated by a system in which the surfactant molecules are totally
insoluble and are (nearly) all contained at the interfaces. This is the situation usually
treated and discussed in the remainder of this review, where one considers only the
® lm energy and then optimizes the packing area at ® xed curvature in order to derive
the curvature free energy.

In summary, we have shown that, when the exchange of the molecules in the ® lm
with those in the solution is taken into account, the curvature moduli are decreased.
The nominal moduli are renormalized by a factor which depends on the volume
fraction of the surfactant. The curvature moduli vanish at the critical concentraion.
For amphiphile volume fractions much larger than the critical value, the correction is
small and the ® lms are thus well approximated by a system in which all the
surfactant is the ® lm. The softening phenomenon, which also occurs for compressible

Figure 4. Renormalization factor r which quanti® es the softening of the bending moduli as
a function of the ratio of the surfactant volume fraction u s to its critical value u c

s ,
where the ® lm layers ® rst occur. The factor r is approximately given by r 1 ­ ~

u c
s/ u s,

where ~
u c

s is the critical surfactant volume fraction for the occurrence of ¯ at sheets, as
discussed in the text.
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® lms as the area per molecule adjusts to the curvature, resulting in a reduction in the
bending moduli, is an example of a general physical principle, which suggests that
the free energy of a system decreases when one removes constraints. Here the
constraint which was removed is the requirement of either ® xed area or that all the
surfactant is contained in the ® lms.

3.6. Pressure and bending
3.6.1. Work of deformation

For small curvatures, equation (1.1) shows that the curvature energy of a thin
® lm is characterized by the three parameters k, k and c0. The qualitative behaviour of
any system, including such properties as the equilibrium shapes, magnitude of
thermal ¯ uctuations and any phase transitions, can of course be calculated as a
function of these constants. However, the physics of the system can be radically
di� erent depending on the physical parameters; for example a change in c0 can
induce shape changes in the system. It is thus of interest to relate the bending elastic
moduli and the spontaneous curvature to the physics of the particular system. This
section ® rst shows how these parameters are related to the pressure distribution in
the membrane which is a general property of thin ¯ uid ® lms. Applications of these
ideas occur in calculations of the bending elastic constants of charged membranes
where the pressure distribution arises from the spatially dependent counterion
concentration [11± 14] and in the bending of block copolymer ® lms where the
pressure distribution is related to the monomer density [10, 15± 17]. Both these cases
are brie¯ y reviewed in the subsequent discussion of microscopic models. The case of
a solid thin ® lm is also treated below. A treatment for the bending energy of liquid
interfaces which deals with concentration gradients at liquid± liquid boundaries with
no explicit reference to the surfactant properties (which are the focus of the present
discussion) , can be found in [18].

The bending elastic moduli are determined by the curvature dependence of the
free energy of the system, that is, there is a resistance of the system to curvature. This
curvature dependence is associated with a local area change; curvature changes the
local area element. For an isotropic and homogeneous ¯ uid, the work done in
changing the volume is calculated using the relationship

F = ­
V

V 0

P (V 0) dV 0 , (3.36)

where F is the change in free energy due to an incremental volume change from V 0

to V and P (V ) is the local pressure (for a compressible system) or osmotic pressure
(for a system of solvent and solute) against which this work is done. In general, P

can be a function of V and equation (3.36) accounts for the total work that is done in
expanding the system from V 0 to V ; this requires a knowledge of P at all volumes
between V and V 0 and not just P (V 0). However, thin liquid ® lms that show a
resistance to bending are anisotropic and one must consider separately the longi-
tudinal pressure P °, which resists changes in the ® lm thickness and the transverse
pressure P t which resists changes in the ® lm area. In general, these quantities may
vary within the ® lm.

For solid ® lms (i.e., ® lms with a shear modulus) , there is an additional resistance
to bending arising from the resistance to shear deformations [19]. This results in a
non-zero curvature modulus even for a system which is elastically isotropic in the
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bulk as is discussed below. This is not the case for systems with zero shear modulus
treated in this section; completely isotropic ¯ uids show no resistance to bending
deformations.

The curvature energy is essentially the work done in changing the local volume of
the membrane related to the change in the area element due to the curvature; this
work is done even if there is no global change in the volume of the membrane. We
shall therefore use a local version of equation (3.36) to calculate the curvature energy
and consider the volume change due to curvature. This method for calculating the
bending energy was introduced in [16, 20] where the area change was considered.

We consider an in® nitely large membrane of thickness ¸ and area R per molecule
(de® ned on the l̀ower’ ( z = 0) plane of the membrane (® gure 5) and calculate the
curvature free energy as a function of these parameters that characterize the global
properties of the membrane. In practice, both R and ¸ are functions of curvature.
However, it is simplest ® rst to keep these parameters ® xed and to derive the
curvature energy expansion; this requires that we know P for any given R and .̧
Afterwards, one can minimize the free energy with respect to these parameters
(equivalent to determining an equation of state) and/or use constraints of constant
volume to constrain either or both of them. (See section 3.2 for an example of how
the equilibration of the area per molecule can a� ect the bending modulus.) For
example, the thickness of the membrane can be found by requiring that the curvature
energy includes only pure curvature deformations, that is that there is no overall
compression or expansion of the membrane. Here, we make this choice and
determine the ® lm thickness ¸ of the curved ® lm by requiring that the total volume
of the system is kept constant (enforcing global incompressibility) .

For constant or slowly varying curvatures, the area element changes owing to the
curvature. The equality of the volumes of the ¯ at and curved membranes is written
(see equation (2.20) and the discussion in section 2 on parallel surfaces) :

R
¸

0
dz (1 + 2z H + z 2K) = R f f̧ , (3.37)

where f̧ is the thickness and R f is the area per molecule of the ¯ at membrane. The
coordinate z is the distance from the lower surface of the membrane in the normal
direction, and H and K are the mean and Gaussian curvatures respectively. To take
into account the e� ects of the change in the area per molecule we de® ne

¸0 = f̧
R f

R
. (3.38)

We therefore include all the dependence of the parameters on the actual area R , per
molecule of the curved membrane in their behaviour as a function of 0̧ and rewrite
equation (3.37) as

Figure 5. Thin ® lm of overall thickness ¸; the pressure varies along the thickness z .
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¸

0
dz (1 + 2z H + z 2K) =¸0. (3.39)

As mentioned previously, once the curvature energy expansion is obtained in terms
of ¸0, it can further be minimized over R and the `area-equilibrated’ expansion can
be derived as was done in section 3.2. This implies that, under the constraint of
constant local volume, the thickness ¸ of the curved membrane is related to the
thickness ¸0 of the ¯ at membrane by

¸ 1 + ¸H +
K¸2

3 =¸0. (3.40)

To second order in the curvatures, this implies that

¸ ¸0 1 ­ ¸0H ­ K¸2
0

3
+ 2̧ 2

0H2 . (3.41)

3.6.2. Bending moduli
We assume that the curvatures are slowly varying in the plane of the membrane

(or are constant as they are for cylindrical and spherical curvature) so that the
pressure depends only on z . The surface of curvature is measured from the lower
plane of the membrane located at z = 0. We calculate fc, which is the additional
curvature free energy per unit area (the (¯ at) base area is A0, which we hold ® xed for
now) from the change A0(2z H 0 + z 2K 0) in the local area due to the imposition of the
curvatures H 0 and K 0. Using the principle of virtual work to compute the free
energy, we note that the work is independent of the path chosen. Thus, we choose
® rst to keep the thickness ® xed at ¸0 and to change the area elements commensurate
with the curvature. Since we shall need contributions up to second order in the
curvature, we consider the work done in continuously changing the mean curvature
from H 0 = 0 to H 0 = H and the Gaussian curvature from K 0 = 0 to K 0 = K; the
mean and Gaussian curvatures are two independent degrees of freedom of the
membrane as discussed in section 2. This requires an integration over the di� erential
changes in curvature. We then have a curved membrane of thickness 0̧. For this
process of local area change, it is the transverse pressure P t that does work against
the di� erential volume change; the initial volume element A0(1 + 2H 0 z + K 0 z 2) dz is
modi® ed because of the change in the area element upon increasing H 0 by dH 0 and
K 0 by dK 0 :

dV = A0(2z dH 0 dz + z 2 dz dK 0). (3.42)

Next, we compute the work needed to change the thickness of this curved membrane
from ¸0 to .̧ Here, the membrane surface at z =¸ 0 does work against the change in
the thickness and we compute this work by multiplying the longitudinal pressure P °

at the top surface by the volume element ḑ 0 and integrating ¸ 0 from 0̧ to .̧ We
therefore write

fc = ­ fa ­ ft, (3.43)

where
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fa = fH + fK (3.44)

fH =
H

0
dH 0

¸0

0
dz 2z P t( z ,¸0, H 0 , K 0) (3.45 a)

fK =
K

0
dK 0

¸0

0
dz z 2P t( z , 0̧, H 0 , K 0), (3.45 b)

ft =
¸

¸0

ḑ 0
P °(¸ 0 ,¸ 0 , H, K)(1 + 2H¸ 0 + K¸ 02), (3.46)

where P t( z , 0̧, H 0 , K 0) is the local z -dependent transverse pressure in the membrane
of thickness ,̧ which is bent with the mean curvature H 0 and the Gaussian curvature
K 0 . The longitudinal pressure P ° is also a function of the thickness and the
curvature. The term fa is the work due to the change in the area element at ® xed
¸ =¸0 and the term ft is the work due to the change in thickness of the already bent
membrane. This form for fc guarantees that the curvature energy is calculated
relative to the ¯ at state; that is, if H = K = 0 (and thus ¸ =¸0), the bending energy
must vanish. More importantly, equations (3.43) ± (3.46) have the property that any
constant isotropic terms in the pressures do not contribute to the curvature energy fc.
This can be seen explicitly using equation (3.40) for ¸ in equations (3.43) ± (3.46) with
P t =P ° equal to a constant. The physical reason for this is that the curvature energy
requires an interaction that extends throughout the thickness of the membrane; an
ideal gas or small molecule ¯ uid with constant density and hence constant P t =P °

takes the shape of its container and in the absence of compression or expansion,
guaranteed by equation (3.40) , has zero curvature energy.

In principle, to evaluate the curvature energy we must know the pressures at all
values of the intermediate curvatures H 0 and K 0 . However, to ® nd fc to second order
in the curvature, it is su� cient to expand each of the pressures P i (i = t, °), to ® rst
order in H and we write:

P i( z , ,̧ H 0 , K 0) P i0( z ,¸) +
¶ P i

¶ H 0
H=0

H 0 + , (3.47)

where P i0( z ,¸) is the local transverse (i = t) or longitudinal (i = °) pressure of a
membrane with thickness ¸ in the ¯ at state. Equation (3.47) requires that we solve
for the free energy of the membrane in the curved state; that is we must solve the
entire problem to linear order in curvature, obtain the pressure and then take the
curvature derivative. We use this expansion in both fa and fc and perform the
integrals over the dummy curvature variables in fa. The contribution from ft is
evaluated by expanding the integral for small values of ¸ ­ ¸0 (see equation (3.41))
to second order. Keeping terms up to second order in curvature, we ® nd that

fc = ­
¸0

0
dz P t0( z ,¸0)(2z H + z 2K) +

¶ P t

¶ H H=0
H2 z

­ ¸0 ­ ¸0H ­ K¸2
0

3
P l0(¸0, 0̧) + ¸2

0H2 ¶ P °(¸0,¸0)
¶ H H=0

­ 1
2¸4

0H2 ¶ P °(¸ 0 ,¸ 0)
¶ ¸ 0

¸ 0=¸0

. (3.48)
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Comparing powers of H, H2 and K in equations (3.13) , (3.40) and (3.48) allows us to
identify the curvature moduli as moments of the pressure distribution.

We now present the results for the curvature moduli in terms of the pressure
distribution through the thin ® lm. We de® ne the longitudinal and transverse
pressures in the ¯ at ® lm as P °0( z , 0̧) and P t0( z ,¸0); the subscript 0 on P and ¸
indicates that these are the values for the ¯ at ® lm. The work done to bend the ® lm
can be calculated in terms of the pressure distribution in the ® lm [2] and the result is
the curvature elastic energy of equation (1.1). The elastic constants are given by

kc0 = 2
¸0

0

~
P 0( z ,¸0) z dz , (3.49)

k = ­
0̧

0

~
P 0( z , 0̧) z 2 dz , (3.50)

k = ­ 2
¸0

0

¶ ~
P 0

¶ H H=0
­ ¶ P °(¸0, 0̧)

¶ H 0
+

¶ P °( ,̧¸)
¶ (1/¸) ¸=̧ 0

z dz , (3.51)

where
~

P 0( z ,¸0) =P t0( z , 0̧) ­ P °0(¸0,¸0). (3.52)
If the pressure ® eld is continuous in space, then the thickness, 0̧ can be set to in® nity
and P °0(¸0, 0̧) = 0, corresponding to a zero-pressure boundary condition far away
from the membrane. If the pressure is non-zero in only a ® nite region (e.g., a ¯ uid or
a gas contained between two walls with a ® nite spacing between them), the
dependence on the di� erence in pressures in equations (3.49) ± (3.52) guarantees that
there is no curvature energy for an isotopic ¯ uid system with P t =P ° constant. (In
this case, our expressions di� er somewhat from those of [16, 20].) For a solid,
however, the shear response of the system results in a non-zero bending modulus,
even for an isotropic elastic medium [19]. We note that the combination kc0 and the
saddle-splay modulus k are simply related to the moments of the pressure distri-
bution of the ¯ at membrane, while the bending modulus itself requires that the
change in pressure due to curvature be calculated to linear order in H. For a given
microscopic model (e.g. charged membranes, or polymers at an interface) , this
requires a solution of the density pro® le and the resulting free energy and pressure in
the curved geometry. However, k and k often scale in an identical manner with the
microscopic parameters (e.g. charge density and membrane thickness) ; one can
therefore ® nd k quite simply and infer that k scales similarly. Finally, we observe that
for membranes with stress-free boundaries at z =¸ (P °( ,̧¸) = 0 for all values of ¸),
the expression for k simpli® es.

Note that the elastic constants still depend on the area per molecule via their
deendence on¸0 (see equation (3.38)) . In section 3.2, we showed how one can include
the ¯ uctuations of the area R per molecule and obtain the e� ective bending energy
together with a prediction of how the minimal value of R varies with the curvature of
the ® lm.

4. Curvature energy of solid thin ® lms

4.1. Motivation
In this section, we discuss the curvature energy of thin solid ® lms. They di� er

from liquid ® lms in that solids have a ® nite shear modulus which enters into the
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expressions for the bending constants. More importantly, solids can be bent
coherently, preserving the topology of the lattice, or incoherently, resulting in the
formation of defects. Based on [21] we show below that there is a critical value of the
thickness (or alternatively of the curvature) at which dislocation lines (in the plane of
the ® lm) spontaneously form. Above this critical thickness, the dislocations tend to
reduce the energy required to curve the thin ® lm uniformly. Once the dislocations are
formed, the bending energy of the ® lm may be further reduced by an alignment of
these defects into grain boundaries. The grain boundaries can take up all the
curvature of the thin ® lm in the form of sharp bends at the grain boundaries. Of
course the problem of bending even a single plane of a crystalline material into a
sphere requires in-plane defects. The number of these defects per layer, however, is
independent of the ® lm thickness; we therefore do not discuss them in this paper (but
see, for example, [22]) since we focus on the scaling of the bending moduli with ® lm
thickness.

The theoretical treatment of the curvature of thin solid ® lms is motivated by the
observations of closed curved structures in the f̀ullerenes’ which consist of single
layers or nested planes of carbon and other layered compounds, where the layers
may be organized into nearly spherical [5], cylindrical [6] or even saddle-shaped [7]
structures. While such structures are well known and understood in the context of
the self-assembly of amphiphilic layers, their properties in the solid-state context are
a subject of active research.

4.2. Coherent± incoherent bending of solid thin ® lms

The elastic theory of bending of coherent thin ® lms dates back to the seventeenth
century and has been well established since the nineteenth century (see Love [23] for
a historical review). For the bending of a thin ® lm (with normal ^z), the solutions of
the equilibrium equation for isotropic linear elastic materials [19] valid for small
curvature are determined by the dependence of the strain on the location within the
® lm. The strain is the derivative of the local displacement of the atoms, and on the
neutral surface at z = 0 the ^z component of the displacement is just the deformation
z (x, y) of the ® lm away from being ¯ at. For a thin ® lm, with free surfaces,
equilibrium requires that the normal stresses [19] s xz = s xy = s zz all vanish. This
determines [19] that the ^x and ^y components of the displacement are equal to
­ z ¶ z / ¶ x and ­ z ¶ z / ¶ y respectively. Taking further derivatives of these displace-
ments yields the strain tensor components

²xx = ­ z
¶ 2 z
¶ x2 , (4.1)

²yy = ­ z
¶ 2 z
¶ y2 , (4.2)

²xy = ­ z
¶ 2 z

¶ x¶ y
, (4.3)

In a similar manner, one can show that ²xz =²yz = 0 while

²zz = z
t

1 ­ t

¶ 2 z
¶ x2 +

¶ 2 z
¶ y2 . (4.4)
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Here, t is the Poisson ratio [19] which relates for an isotropic material the transverse
compression to the longitudinal extension (²xx = ­ t ²zz) of a rod. This ratio is a
function of the compressive and shear moduli and e� ectively varies between 1

2 and 0;
in the case of negligible shear modulus t = 1

2 and it is zero when the shear modulus is
comparable with the compressive modulus. These components of the strain tensor all
change sign at the midplane, z = 0; this is because the outer layers of the bent ® lm
are expanded while the inner layers are compressed.

The elastic energy u, per unit volume is given by [19]

u =
E

2(1 + t ) ik

²2
ik +

t

1 ­ 2t
²2

ii , (4.5)

where E is Young’s modulus which is related to the shear modulus ¹ by
¹ = 1

2E/ (1 + t ); thus, when there is no shear modulus, E = 0. Using the formula
for the elastic energy and the previously derived formulae for the strains, and
integrating u over the thickness of the layer, ­ h/2 < z < h/2, one ® nds that the
deformation free energy per unit area is given by the Helfrich form of equation (1.1)
with the bending modulus k given by

k =
Eh3

3(1 ­ t 2) . (4.6)

The saddle-splay modulus k is

k = ­ Eh3

12(1 + t ) . (4.7)

For an isotropic material, both moduli vanish if there is no shear modulus. The
Gaussian curvature modulus is negative, favouring isotropic curvatures. Both
moduli scale with the cube of the ® lm thickness; this is expected from the fact that
the strains are linear in the distance from the neutral surface and the free energy is
the integral of the square of the strain. It is also consistent with the expressions which
relate the pressure distribution to the bending moduli as derived above.

To study the e� ects of incoherency and defects on the relaxation of the bending
moduli, we consider the simple case of bending about a single axis, with curvature ·
so that there is no Gaussian curvature. The origin of the coordinate system is again
chosen to be in the centre of the plate and the strain is positive in the portion of the
® lm which is expanded owing to the bend and is negative in the portion which is
compressed. The strain energy per unit area associated with this elastic ® eld is given
by equation (4.6):

W u =
Eh3·2

24(1 ­ t 2) , (4.8)

where h is the thickness of the plate. The subscript u indicates that this is the
unrelaxed strain energy (see below).

This treatment assumes that all the layers bend coherently, preserving the
topology of the solid. One can also imagine a situation where the layers have
physically been decoupled from each other; they then would bend independently of
each other and the total energy for the independent bending of h/a layers (a is the
thickness of a single layer) is
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W r =
Eha2·2

24(1 ­ t 2) . (4.9)

This is of course equivalent to the bending energy of a smectic with decoupled layers.
In this case, the strain energy is given by equation (4.8) with h replaced by the
molecular layer thickness a; the entire energy is then multiplied by the number h/a of
layers in the ® lm. Since each layer is independent, the strain and stress ® elds with
each layer are given by the expressions listed above, with the origin of the coordinate
system each time being chosen to lie in the centre of the layer. Therefore, several
components of the stress and strain tensor ® elds are discontinuous through the
thickness of the multilayer ® lm. In fact, in this case, the individual layers are free to
slip parallel to the interfaces. In a normal elastic continuum, such slipping is
prevented by the compatibility conditions.

The presence of a slipping interface between the layers is predicated upon the
assumption that the energy of the structure is independent of the relative translation
state of the individual layers. This would be valid, for example, for amorphous solid
sheets separated by thin layers of a lubricant. However, if the individual layers are
ordered and interact with one another, then the energy of the system will be a
function of the relative in-plane translation which is related to the presence of
dislocation[24] defects. The discontinuity in the strains between the molecular layers
may be described in terms of a network of dislocations between the layers. In this
view, the energy associated with the discontinuity in strain at the interface is
associated with the elastic energy of the dislocation network.

When slipping does occur, the presence of the structural energy associated with
the discontinuity in strain at the interface suggests that the true bending energy is
intermediate between those predicted by equations (4.8) and (4.9). In other words,
the equilibrium slippage (or strain discontinuity) should be expected to be smaller
when there are interactions between the molecular layers such that the bending
energy is increased relative to that given by equation (4.9).

4.3. Bending with dislocations
We begin by considering a uniformly curved layered material (the curvature itself

inducing an in-plane strain in each layer) and consider the possibility that the in-
plane strain state may di� er from one layer to the next. This in-plane strain in each
layer may be thought of in terms of changing the number of atoms in the layer
which, if done at ® xed layer area, could lead to an in-plane compressive or tensile
stress. ² These èxtra’ atoms may come from matter transport within the ® lm (® gure
6) or from dislocations, as discussed in the next section. Since these èxtra’ atoms
create a strain which is not associated with an elastic deformation, this additional
strain must be accounted for separately. Because the in-plane strain (and lattice
constant) of each layer will di� er when the number of atoms in a layer changes, two
adjacent layers will be incoherent. (This incoherency, while relieving some of the
elastic strain due to the bend, will be the source of the dislocation energy to be
considered below).

² It is precisely this e� ect which is responsible for the fact that a thin liquid ® lm has no bending
energy (takes the shape of its container); molecules in the compressed region leave to join those in the
expanded region of the ® lm. In this manner, the ® lm can bend and maintain constant local density.
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For simplicity, we consider bending of the sheet about a single axis ( y axis),
which produces the following strain distribution:

²xx = ­ z·+ n²0, (4.10)
where n²0 is the constant strain within layer n of the thin ® lm (e.g. due to the
dislocations). The layer index n = z/a where z is the location of the layer; at the
neutral surface n = 0. The mis® t strain discontinuity, ²0, between layers is assumed to
be constant since the curvature is uniform. The strain ²yy in the ^y direction is
assumed to be zero and ezz = ­ ²xx[t / (1 ­ t )] because of the thin-® lm condition that
the normal stress in the ^z direction is zero, that is, plane stress. Applying Hooke’s
law, we ® nd that the stresses are given by

s xx(x, n) =
E

1 ­ t 2 (­ ·z + n²0) (4.11)

and

s yy(z, n) = t s xx(z, n). (4.12)
The resulting strain energy density is

w(z, n) = 1
2 s ij²ij =

E
2(1 ­ t 2) (­ ·z + n²0)2. (4.13)

This result and all other elastic results in this and the following section are derived
within the framework of linear elasticity where all stresses and strains are assumed to
be small.

The total strain energy per unit length of cylinder, associated with equation
(4.10), is obtained by integrating over the entire ® lm which includes a sum over the
index n which characterizes the strain due to the dislocations and an integral over the
continuous variable z which speci® es the bending strain and one ® nds [21] that

W p =
Eh

24(1 ­ t 2) h2 · ­ ²0

a

2

+ a²0 2· ­ ²0

a
, (4.14)

where the subscript p indicates that the strain energy is partially relaxed. If the mis® t
strain discontinuity ²0 is zero, then equation (4.14) reduces to equation (4.8), that is
the unrelaxed bending energy of coherent ® lms reduces to the relaxed strain energy

Figure 6. Schematic drawing of a coherently and an incoherently (de¯ ected) bent thin ® lm.
The innermost layers of the coherently bent ® lm are too compressed while the
outermost layers are too expanded; this is because all layers must have the same
number of atoms. The defect is created by removing atoms from the bottom layer
(thus relieving the compression somewhat) and moving them to the top layer (thus
relieving the expansion somewhat). This is a simple example of an interlayer
dislocation in the ® lm.
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of incoherent ® lms. In the limit that ²0 = ·a, equation (4.14) reduces to the relaxed
strain energy, that is equation (4.9).

This result may be used to reinterpret the nature of the relaxation associated with
the strain jump between layers. In uniform bending, the midplane of the ® lm remains
unstrained and is referred to as the neutral plane. If there is no strain discontinuity at
the interface between layers, then the strain ²xx at the midplane of each layer grows
linearly with increasing distance from the neutral plane of the ® lm. Subtracting
n²0 = na· from the bending strain of layer n reduces the overall strain in layer n such
that the strain on the midplane of layer n is zero, that is, it is a neutral plane. Either
increasing or decreasing ²0 from the value a· will increase the strain energy in the
layer. To minimize the total energy, one must consider both the bending energy W p

and the energy of the interface between molecular layers associated with the
translation of each layer with respect to its neighbouring layers (i.e. the discommen-
suration or dislocation network energy) , as shown in the next section.

4.4. Dislocations
Edge dislocations with Burgers vectors in the ^x direction (bx) and line direction

parallel to ^y can relax the stress caused by the curvature ·[25, 26]. This relaxation is
attributable to the fact that a spatially uniform array of edge dislocations of density²
q [32] results in a lattice curvature given by q bx [27]. The curvature that produces a
stress is thus the di� erence between the lattice curvature and the macroscopic
curvature. The stress in a curved crystal with a uniform density of dislocations is
thus [26]

s xx(z) =
Ez

1 ­ t 2 ( q bx ­ ·). (4.15)

Comparing this result with the stress derived from equation (4.10) shows that
²0 = 1/ q abx . Rewriting the partially relaxed bending energy equation (4.14)) in
terms of the normalized dislocation density q 0 = q bx, we obtain the following energy
per unit area of the curved crystal:

W p =
Eha2

24(1 ­ t 2) q 0 2 h
a

2

­ 1 ­ 2q 0·
h
a

2

­ 1 + ·2 h
a

2

. (4.16)

The energy per unit length of an edge dislocation in an isotropic solid is given by

w? =
Eb2

8p (1 ­ t 2) ln
R
r0

, (4.17)

where b is the Burgers vector of the dislocation and r0 is the dislocation core cut-o�
parameter which is of order of an atomic dimension. The outer cut-o� parameter R
is typically assigned the value of half the spacing between dislocations and accounts
for the screening of the stress ® eld of each dislocation by those of the other
dislocations in the solid. The elastic ® eld of a dislocation in a ® lm is complicated
by the fact that the free surfaces introduce image-like terms into the elastic ® eld. If a
dislocation is very close to the free surface, it may be closer to its image than to the
other dislocations within the ® lm. In this case, the outer cut-o� parameter R is

² The units of q are (length)­ 2; the dislocation density represents the number of dislocation line
lengths per unit volume which has an overall dimension of an inverse area.
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approximately equal to the distance between the dislocation and the surface. In a
thin ® lm, this distance is of the order of the ® lm thickness, h. For simplicity, we
consider ² the case where the density of dislocations is small so that h q ­ 1/ 2.

The total strain energy per unit area associated with a density q of dislocations
(line length per unit volume) in a ® lm of thickness h may be approximated as

W ? =
Eb2hq

8p (1 ­ t 2) ln
h
r0

. (4.18)

We note that in all cases, h/2 must be less than the radius of curvature of the
crystal in order to ensure that two sections of the surface do not cross. Since the
maximum dislocation density is equal to ·/b, the large-h limit is valid when
2( q b)­ 1 h q ­ 1/ 2.

The total energy per unit area of the system is the sum of the dislocation and
bending energy: W = W p + W ? . When the solid is thin compared with the spacing
between dislocations (h q ­ 1/ 2), the total energy is given by

W =
Eh3

24(1 ­ t 2) a q 0 2 ­ q 0 2a · ­ 3b
p h2 ln

h
r0

+ ·2 (4.19)

where a = 1 ­ (a/h)2. The energy is a quadratic function of the dislocation density
q 0 = q b and has a minimum corresponding to positive q 0 for all · greater than a
critical value ·c:

·c =
3b

2p a h2 ln
h
r0

. (4.20)

We can minimize W with respect to q 0 in order to determine the equilibrium
dislocation density q 0 and ® nd that q 0 = 0 when · < ·c. For values of the
curvature greater than the critical curvature (· > ·c) the minimization results in a
® nite value of the dislocation density and q 0 = · ­ ·c.

The equilibrium total energy, is given by the following simple relation:

W =
Eh3

24(1 ­ t 2) ·2 (4.21)
when · < ·c and

W =
Eh3

24(1 ­ t 2) [·
2 ­ a (· ­ ·c)2] (4.22)

when · > ·c. Since the atomic size a is usually much smaller than the thickness h, a
is approximately unity and the energy a is approximately linear in · when · > ·c.
This linear behaviour for the case where there are an equilibrium number of
dislocations in the ® lm is in marked contrast with the usual quadratic dependence
of the bending energy on the curvature in the dislocation-free case.

These results show that the number of spontaneously generated dislocations is
zero when the curvature is less than the critical curvature ·c. As the curvature is
increased beyond ·c, the density of dislocations increases linearly. For the isotropic
system consider here, the critical curvature ·c is determined primarily by the

² This is completely appropriate in the region near the transition from no dislocations to
curvature induced dislocations where q increases from zero. The case where the thickness is small
compared with the spacing between dislocations is outlined in [21]. In this case, the equilibrium density
of dislocations is proportional to the curvature with a term that is logarithmic in the curvature.
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thickness of the ® lm. The thinner the crystal, the larger is the critical curvature; thin
crystals, where the bare curvature modulus is smaller, are therefore more likely to be
dislocation free than thick crystals. (For anisotropic systems, ·c also depends on the
ratio of the in-plane to the interplanar shear elastic constants, as shown below.) Since
the transition from a dislocation-f ree to a dislocated crystal with increasing
curvature occurs at zero dislocation density, the dislocation density is continuous
while its ® rst derivative with respect to curvature is not. Therefore, this acts like a
second-order phase transition in curvature. For all reasonable values of the physical
parameters, the condition h q ­ 1/ 2 is satis® ed at the transition. The case of large
dislocation density or small thickness where the condition h q ­ 1/ 2 is not satis® ed is
examined in [21].

The transition from an undislocated to a dislocated crystal may also be analysed
in terms of a critical thickness instead of a critical curvature. For ® xed curvature, ·c

decreases with increasing ® lm thickness as 1/h2. Therefore, for any ® xed positive
curvature an initially dislocation-f ree ® lm will become dislocated at a thickness
h = hc, where hc is given by the solution of h2

c = 3b ln (hc/ r0)/2p a ·. The concept of a
critical thickness for the relaxation of stresses is familiar from its application to the
case of a mis® tting heteroepitaxial ® lm on a substrate [28].

This prediction of a transition from a dislocation-f ree state to one with a
thermodynamic number of dislocations which relieve the bending energy may be
useful in understanding why some (usually thin) nested fullerenes grow with a fairly
uniform spherical or cylindrical geometry; thin nested fullerenes have high critical
curvatures ·c and one expects them to grow relatively dislocation free. On the other
hand, thicker structures have a much smaller critical curvature for dislocation
formation and one expects [29] them to grow with the intrinsic formation of grain
boundaries or polygonalized morphologies; dislocations tend to organize themselves
into grain boundaries. Recent observations [29] seem to show that thin nested
fullerenes tend to be grain boundary free and to show spherically symmetric
morphologies, in contrast with thicker systems.

4.5. Bending of anisotropic solid ® lms
In many cases of experimental interest, including the fullerene materials, the

curved structures occur in anisotropic layered solids that typically have strong
covalent bonds in the plane and weaker van der Waals attractive bonding between
layers. The theory developed above can be generalized [19, 21, 30] to the case of a
® lm which is isotropic in the plane but with di� erent interplanar bonding; this is
equivalent to the case of hexagonal symmetry with the c axis oriented normal to the
surface of the ® lm. The bending and Gaussian bending moduli are related to the
elastic constants Ca b g d [19] via

k =
h3

3
Cxxxx ­ C2

xxzz

Czzzz
, (4.23)

k =
h3

3
(Cxxyy ­ Cxxxx) = ­ 2Cxyxy. (4.24)

In comparison with the isotropic case, the bending modulus for the anisotropic
material depends on the di� erence between the in-plane compressional modulus
Cxxxx and a term related to the Poisson ratio that couples in-plane and out-of-plane
deformations. This term always reduces the bending modulus of the material by
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providing an extra dimension of mechanical relaxation that is not present in strictly
two-dimensional systems such as amphiphilic monolayers. The Gaussian curvature
modulus k depends only on the in-plane shear modulus, implying that materials with
very low in-plane shear moduli may have very small resistance for forming saddle-
shaped structures. For graphite, the measurements of Blakeslee et al. [31] imply that
kv = k/ (a3/3) 105 1011 dyncm­ 2 and the ratio jkj/k 0.8. In this material, as in
other van der Waals layered solids, the in-plane stretching constant Cxxxx dominates
the elasticity. Equation (4.14) for the bending energy remains the same with the
factor E/ (2(1 ­ t 2)) replaced by kt .

The energy of a dislocation in an anisotropic elastic material can be written [32]

W ? =
Jb2

4p
ln

R
r0

, (4.25)

where J depends on several components of the elastic constant tensor. In the case
when the interplanar bonding is weak such that the elastic constants with a z
component are all small,

J (CxxxxCxzxz)1/ 2. (4.26)
The strong dependence of J on the anisotropy is not surprising since the dislocations
of interest arise from removing atoms from the compressed (inner) layers and
transferring them to the expanded (outer) layers; they thus involve mis® t between
the planes and the weak shear modulus between layers has a signi® cant e� ect on the
dislocation energy. Using the values of the elastic constants for graphite, it can be
shown that this results in a lower energy for a dislocation of about a factor of ® ve,
compared with an isotropic material, approximated in these layered systems by
measurements in polycrystalline systems [21].

As in the previous section, one can calculate the critical curvature at which
dislocations spontaneously form and one ® nds for the anisotropic case that

·c = ­ 3bJ
2p a h2kv

ln
h
r0

(4.27)

where again kv = k/ (a3/3) and a is the thickness of a layer. This is identical with the
result found in the isotropic case but with a reduction factor of J/kv; in graphite,
J/kv is typically 0.06. The factor J/kv may be small in a layered material such as
graphite, thus signi® cantly reducing the value of the critical curvature ·c. In the
isotropic limit, J = kv/2 = E/[2(1 ­ t 2)] and we recover the previous results. The
physical origin of the anisotropy factor J/kv in the expression for ·c may be traced to
the fact that the dislocations relieve the in-plane strains, whose energy cost is related
to kv, while the energy cost of creating a dislocation (arising from its long-range
strain ® eld) is related to the interplanar shear modulus through J. In highly
anisotropic materials, the critical value of the curvature at which the dislocations
are spontaneously generated can be very low, owing to the low energy cost of
creating dislocations relative to curvature. Again, there will be a second-order type
of transition from the dislocation-f ree coherent crystal to one with a ® nite number of
dislocations as the curvature exceeds the critical curvature ·c, which is now
controlled by both the ® lm thickness and the anisotropy. Similarly, the expression
for the critical thickness will be reduced by a factor of J/kv and one would expect
departures from sphericity (due to the interactions between dislocations and the
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formation of some type of grain-boundary structure) to occur at small thickness or
curvatures.

5. Microscopic models

In this section, we supplement the phenomenological discussion of curvature
elasticity by more microscopic models. The discussion of these models is not meant
to be exhaustive, but rather illustrative of the fact that many di� erent microscopic
scenarios all result in the curvature elastic energy (per unit area) of a surfactant
monolayer. We begin with a review of a very simple ball-and-spring model of
surfactant molecules and then proceed to use the relation between the pressure
distribution and the bending elastic constants derived above to estimate the moduli
in charged ® lms and in monolayers composed of block copolymers.

5.1. Ball-and-spring models
The simplest models of surfactant molecules that give rise to the curvature elastic

energy [33] treat the molecules as (asymmetric) dumb-bells with the polar head
groups and the chains each idealized as a point particle, attached by a rigid rod. The
heads of di� erent molecules are attached to each other by springs as are the chains.
While this model yields expressions for the elastic constants in terms of the spring
constants and equilibrium spring lengths which are physically reasonable, we use a
slightly di� erent formulation in which the surfactant chains are treated not as point-
like entities but as spring-like molecules themselves. This provides a simple example
for the treatment of block copolymer surfactants.

As a simple microscopic model that will allow some more physical insight into
the meaning of the curvature elastic moduli, we consider a monolayer of chains that
we model as springs with a spring constant ks and with an equilibrium spring length
°s. We denote the actual (stretched or compressed) length of the spring by ° ( ® gure 7).
We assume that the chains form an incompressible `melt’ with no penetration of
solvent into the chains. Their free energy is proportional only to the stretch of the
springs; such a picture is applicable to polymeric molecules that pack incompressibly
but are stretched near an interface, so that the free energy cost for deformations
arises from stretching. The area per chain at the interface is assumed to be ® xed at a
value R 0; in reality, this value is determined by the interactions that act on the polar
head groups and our simple model assumes that these interactions are much stronger
than the chain stretching energies, so that the optimal head area R 0, determined by
the interactions in the polar layer, is not a� ected by the chains. The energy per chain
is thus

f = 1
2ks(° ­ °s)2, (5.1)

Figure 7. Model of a thin ® lm composed of springlike molecules whose spring length l(H)
depends on the mean curvature H. The area per molecule is R 0 and l is the spring
length in the ¯ at ® lm.
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and the incompressibility of the chains implies that the volume occupied by the layer
is constant. For a ¯ at layer, this would be written R 0° = v0 where v0 is the molecular
volume. For a curved layer, the volume occupied by the chains depends on the
curvature. The volume per molecule is

v0 = R 0°(1 + °H + 1
3°2K), (5.2)

where H and K are the mean and Gaussian curvatures respectively. (This formula is
based on the integral of the expression for the area of a parallel surface, discussed in
section 2.1. and in [2].)

Thus, the incompressibility condition relates the layer thickness ° and the area R 0

per molecule. For ® xed R 0, this determines the free energy as a function of curvature
obtained by solving equation (5.2) for ° and using this value for ° in equation (5.1).
The result is

° = °0 + °1H + °2H2 + °3K, (5.3)
where °0 = v0/ R 0, °1 = ­ °2

0, °2 = 2°3
0 and °3 = ­ °3

0/3. Note that, for a ¯ at layer, the
incompressibility constraint determines the layer thickness to be equal to v0/ R 0; in
general, this will not be equal to the thickness °s which minimizes the chain stretching
energy. The ¯ at layer is not, in general, the minimal energy state since the imposed
thickness °0 is not identical with the preferred thickness °s. Only when these two
lengths are equal is the ¯ at monolayer relieved of the frustration induced by the
mismatch of these two lengths. The layer will then tend to bend; a spontaneous
curvature will be induced so that the resulting thickness more closely matches °s.

Using the incompressibility relation, we ® nd that the elastic energy per chain is
given to lowest order by

f =
ks°4

0

2
(H ­ c0)2 ­ 2c0°0

3
K , (5.4)

where a higher-order term in c0°0H2 has been neglected. The spontaneous curvature
c0 is related to the di� erence between the chain length, °0 dictated by the molecular
volume conservation and the head packing, and the chain length °s, preferred by the
chain stretching energy:

c0 =
°0 ­ °s

°2
0

. (5.5)

Equation (5.4) is equivalent to the `Helfrich’ form of the curvature free energy
(equation (1.1)) by a simple transformation that converts from energy per molecule
to energy per unit area. The bending modulus (coe� cient of H2) and the saddle-splay
modulus (coe� cient of K) both increase as a power of the chain length. Of course,
the spring constant ks also depends on the equilibrium spring length °s ; a simple
polymeric analogy yields in the limit of small curvatures, ks 1/°s 1/°0. In that
case, the bending modulus k °3

s . This variation of the bending modulus with the
cube of the thickness is also characteristic of a bent solid elastic plate as discussed
above and in [19].

Recent estimates of the curvature elastic constants from analysis of neutron
scattering on ¯ uctuating microemulsion droplets and from surface tension
measurements[34] have shown that increasing the chain length of the surfactants
from C8 to C10 results in an increase in the elastic constant by a factor of two, while
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increasing from C8 to C12 results in an increase of 3.6 in the elastic constant. These
very nonlinear dependences of the bending moduli on the chain length are consistent
with the predictions mentioned above.

The quantity c0 is the spontaneous curvature of the membrane, which this model
endows with a simple physical meaning: When the imposed head area R 0 is larger
than the optimal area v0/°s dictated by the chain packing, the preferred curvature is
negative; the system prefers to pack with the heads on the `outside’ . Note that the
free energy of the curved interface is lower than that of the ¯ at interface; the system
accommodates part of the strain induced by the mismatch between the heads and
chains by bending.

An interesting result of this particular model is that the saddle-splay or Gaussian
curvature modulus k is proportional to the spontaneous curvature. As discussed
above (see equation (2.21)) , this depends on the location of the plane of curvature
which in this calculation is taken quite naturally at the polar head surface. For
example, if the plane of curvature is taken to be at °/3 above the polar head surface,
the resulting Gaussian modulus vanishes. This choice also modi® es the e� ective
bending constant.

As discussed previously, this expression for the bending energy is found for a
® xed value of the area R per head. The physically relevant relaxed bending energy of
the system is obtained by minimizing the total free energy with respect to R and
recalculating the bending moduli as shown in section 3.2.

5.2. Charged head-group contributions to curvature elasticity
5.2.1. Charged surfaces and counterions

The previous section indicated how, in a very simple model, one can account for
the contribution of the hydrocarbon chains in the bending modulus of a surfactant
monolayer. The heads were modelled as an incompressible two-dimensional ¯ uid
which enforced a speci® c packing area. In this section, we consider the contribution
to the bending modulus from the polar heads; in general, this requires a detailed
molecular calculation which takes into account their packing and interactions.
However, we focus here on the more universal aspects of these interactions and
consider the case where the surface of polar groups can be idealized by a sheet of
molecules with ® xed charge with counterions distributed in the water. We then ® nd
the energy to bend such a sheet (allowing the counterions to respond) and use the
relationship between the pressure distribution and the bending moduli to study the
scaling of k and k as a function of the charge density and the distance between layers.

Electrostatic interactions are important, and often dominant, in systems where
there is some separation between charged groups and thus some ® nite-range internal
electric ® eld. For example, some surfactant molecules have a ® xed charge, which
remains attached to the molecule, and mobile counterions, which are solvated by
polar solvents. In the NaSO3 polar groups, the positively charged Na is mobile while
the SO3 group is the negative ® xed charge (® gure 8). Usually the interactions
between the di� erent layers are repulsive (except possibly when the distances between
the interfaces become of order of a molecular size), In describing these systems, one
speaks of the ® xed charge at the surface of polar heads and the delocalized or mobile
counterion that lowers its free energy through the entropy it gains by being in
solution. The problem of interest is to ® nd the spatial distribution of counterions
around the surface of ® xed charges. The Coulomb attractions tend to bind the
counterions close to this interface while their entropy of mixing with the solvent
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tends to distribute them in the solution. One ® nds that, for highly charged interfaces,
most of the counterions reside close to the ® xed charges in a thin layer whose size is
typically several AÊ ngstroÈ ms; the remaining counterions are in solution with a density
that decreases slowly (i.e., as a power law) as a function of the distance from the
surface of ® xed charge. It is these delocalized charges that give rise to long-range
interactions of the charged interfaces. The fact that some of the charge is highly
localized near the surfaces suggests the concept of an e� ective charge of the interface
which enters the long-ranged interactions, that determine the overall structure and
phase behaviour of the system.

Minimization of the free energy of the system of ® xed and mobile charges as a
function of the local charge density determines the spatial dependence of the charge
distribution of the mobile counterions. Thinking of the system in terms of the total
free energy allows a wide range of problems to be treated. For simplicity, one can
focus on the simple case of ® xed charges and mobile counterions in the limit where
these counterions can be treated as a point-like dilute gas. In actual systems,
deviations from this simple case can be important and e� ects such as excluded
volume of the counterions (i.e. ® nite size e� ects), the discrete nature of the surface
charge distribution, and speci® c interactions between the counterions can be
included by generalizing the free energy and performing the appropriate minimiza-
tion. We shall ® rst consider the simplest case of ® xed charges and counterions where
the charge distributions show power-law, long-range spatial decay.

Another, very di� erent case arises when the solvent (such as water) of the
colloidal particles contains added salt which introduces additional mobile charges of
both positive and negative signs (e.g. Na+Cl­ ). Thus, in addition to the counterions,
the salt ions participate in he screening of the ® xed charge and one must consider
three types of mobile charge: the counterions, the positive salt ions, and the negative
salt ions, whose entropy will be distinct from that of the counterions if the salt and
counterions are distinguishable molecules. The addition of salt (which experi-
mentally is almost always present in water to some degree) allows the ® xed charge
to be more easily screened and changes the spatial dependence of the charge
distribution from one that decreases as a power law to one that decreases
exponentially as one moves away from the surfaces of ® xed charge. The decay
length of this exponential is known as the screening length and is inversely
proportional to the square root of the equilibrium salt concentration in the bulk
of the solution. A relatively small amount of added salt can have a drastic e� ect on
the electrostratic repulsion of two charged surfaces; with no salt, the counterion
screening is long ranged while with added salt this screening and the resulting
interaction between the surfaces become short ranged.

We now calculate the charge distribution around a single layer of ® xed charge in
the case where there is no added salt. The free energy is written [2] as the sum of the

Figure 8. Positive counterions form a particular spatial distribution around the surface of
negative ® xed charge located at z = 0.
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electrostatic energy of both the mobile and the ® xed charges as well as the ideal gas
entropy of the mobile charges. The electrostatic potential w (r) is related to the
mobile charge density n(r) by

w (r) =
n(r 0)

jr ­ r 0 j
dr

0 . (5.6)

Minimization of the total free energy [2] yields the Poisson± Boltzmann equation for
the potential:

r 2 w (r) = ­ 4p n(r), (5.7)

n(r) = n0 exp[­ °w (r)], (5.8)
where ° = e2/²kBT is the Bjerrum length and is a measure of the ratio of the
electrostatic energy (which is minimal when all the counterions are at the surface of
® xed charge) to the entropy (which is maximal when the counterions are uniformly
distributed in the solvent). The constant n0 is determined from charge conservation;
when the mobile charge density is integrated over the entire volume, the total
number of charges must balance the number of ® xed charges on the polar head
group surface. The exponential factor in equation (5.8) comes from the Boltzmann
distribution of the counterions whose energy is determined by the potential w ; this
simple relationship between the charge and the potential is only true within the ideal-
gas approximation for the counterion entropy and will be modi® ed if one takes ® nite
ion size and excluded volume e� ects into account.

We now consider a single planar interface at position z = 0 with a uniform ® xed
charge density per unit area s 0. De® ning

u = °w , (5.9)
we have from equations (5.6) and (5.7)

r 2 u = ­ 4p °[n0 exp (­ u )]. (5.10)
The quantity n0 is determined from the conservation law

n0

1

­ 1
dz exp (­ u ) = s 0. (5.11)

The solution of equation (5.10), whose charge density decays to zero as z ! 1, is

u = 2 log[(jzj + ¸)(2p n0°)1/2], (5.12)

n(z) =
1

2p °
1

(jzj + )̧2 , (5.13)

where the characteristic length

¸ =
1

p °s 0
. (5.14)

The charge density falls o� slowly at large distances; however, most of the charge is
localized in a layer of width ,̧ which tends to zero as the ® xed-charge density s goes
to in® nity.

The charge density surrounding a single layer is extremely long ranged and this
can be problematic when calculating the bending moduli which are moments of this
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distribution. We therefore consider the case of a lamellar stack of charged surfaces
with a repeat distance 2D where the counterions in the solvent are between the layers
of ® xed charge. A calculation similar to that for a single layer shows that the charge
density is given by

n(z) =
n0

cos2 (k0z) , (5.15)

where charge conservation determines that

k0D tan (k0D) = p °s 0D. (5.16)
There are two interesting limits to this problem depending on the charge density s 0

relative to 1/D°.

(i) Ideal-gas limit. In the limit of low charge density, D°s 0 1, k0D 1, so
that n s 0/2D and is only weakly dependent on z. This is the ideal-gas limit
where the counterions are nearly uniformly distributed between the two
layers.

(ii) High-charge-density limit. In the limit of high charge density, D°s 0 1
(large separations and high charge densities), k0D p /2 and n0° 1/D2.
For a uniform charge distribution, n0 s 0/2D; so this result tells us that the
charge at the midplane, z = 0, is smaller than that of a uniform distribution
by an additional factor of 1/°s 0D. As the spacing between the interfaces is
made larger, the ratio of the charge at the midplane to a uniform charge
distribution decreases. This result is strongly geometry dependent. These
results suggest that one can think of an e� ective ®̀ xed’ charge Z given by the
actual ® xed charge (Z = s 0A, where A is the area of the sheet) minus the
charge of those counterions localized near the ® xed charges. For distances
much greater than ,̧ the system approximately behaves as if the e� ective
mobile charge

Z Z
1

°s 0D
(5.17)

of counterions was uniformly distributed in the space between the e� ective
® xed charges. Thus, the long-distance properties determined by these
interactions are strongly in¯ uenced by the reduction of the Coulomb
interactions by these e� ects.

When the system contains additional salt, the long-range interaction discussed
here is screened by the salt ions and the potentials and charge distributions fall o�
exponentially as a function of distance from the plane of ® xed charge. The decay or
screening length ¸s is related to the salt concentration ns by ¸s = 1/ (8p ns°)1/2.

5.2.2. Bending of charged layers
The discussion in the previous section summarized the basic physics of ¯ at

charged layers. In order to calculate the changes in energy of these layers (which is
most sensitive to the spatial distribution of the counterions) , one must explicitly
solve the Poisson± Boltzmann equation for the curved geometry. Detailed theories of
these e� ects have been presented in [11± 14]. Here we use dimensional considerations
to relate the bending constants to the electrostatic properties of the charged polar
head groups, the counterions, and any electrolyte that may be present in the water.
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We begin by recalling equations (3.49) ± (3.52) which relate the bending moduli to
the pressure distribution. In the case of charged layers with counterions distributed
inhomogeneously in the water, the relevant pressure distribution is that of
the counterion `gas’ . We note that the bending constants scale as the product of
the transverse pressure di� erence and the cube of a characteristic length which
characterizes the thickness over which the transverse pressure di� erence is
signi® cant.

From quite general considerations [2], the transverse pressure P t of the gas of
counterions in a system of charged monolayers is equal to the product of kBT (where
T is the temperature) and the di� erence between twice the charge density n(z) at a
given point and the midplane between layers which is taken at z = 0:

P t = kBT[2n(z) ­ n(0)]. (5.18)
Although this resembles the ideal-gas result, one must remember that the charge
distribution of the counterions in solution is inhomogeneous.

Using the expressions for the charge density derived in the previous section we
see that the charge density at the surface of ® xed charge, where the bending occurs
and where the pressure di� erence is largest, scales as n(0) 1/¸2l. The pressure at
that surface is the product of kBTn(0) kBT /¸2l. On the other hand, the pressure
di� erence at a distance d from the surface of ® xed charge (the polar head groups)
scales as kBTn(d) and if d ¸ this is proportional to kBT /d2l. To determine the
characteristic length scale over which this pressure is e� ective we consider three
di� erent cases:

(i) the case of no added electrolyte, but where there is an array of charged
sheets, as in a lamellar phase and the spacing between sheets d ;̧ this is
relevant in the limit of very small surface charge densities which is sometimes
termed the ideal-gas limit;

(ii) as in (i) but where the charge density is relatively high so that d ;̧
(iii) the case of added electrolyte of concentration ns where the relevant length

scale is the screening length ¸s 1/ (nsl)1/ 2.

(i) For an array of sheets in the case of no electrolyte and weak surface charge
(d ¸), the length scale over which the pressure di� erence is signi® cant is
the entire distance between the sheets d while the pressure di� erence is
proportional to kB T /¸2l. We thus estimate that the bending modulus
scales as

k kBT
d3

¸2l
, (5.19)

Using the expressions for l and ,̧ we see that the bending modulus is
proportional to the strength of the Coulomb interaction energy; if, in this
nearly ideal-gas limit of weak surface charge, the counterions were
distributed completely uniformly (with absolutely no e� ect of the
electrostatic interactions) , the bending modulus would vanish, as discussed
previously.

(ii) For an array of sheets in the case of no electrolyte and strong surface charge
(d ¸), the length scale over which the pressure di� erence is signi® cant is
still d, but the pressure over most of that region is better estimated by
kBT /d2l. The bending modulus thus scales as
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k kBT
d
l
. (5.20)

Here we see that bending modulus is indeed proportional to temperature
with an additional factor of kB T/ e2 which accounts for the electrostatics.
This proportionality indicates the role of the entropy in determining the
spatial distribution of the counterions; if the entropy were ignored, in this
strong surface charge limit, all the counterions would collapse onto the ® xed
charge and there would no resulting contribution to the bending energy.

(iii) For the case of added electrolyte, the relevant length scale where the pressure
di� erent is e� ective is the screening length ¸s and this screening length plays
the role of d in cases (i) and (ii) . Thus, for example, in the weak surface
charge limit

k kBT
¸3

s

¸2l
. (5.21)

Here the screening length plays the role of the interlayer spacing d in case (i).

Typical values of ¸ (for unit charge per polar group) and l are of the order of
10AÊ . We thus see that the electrostatic contributions to the bending energies can be
signi® cant compared with kBT when either the interlayer spacing (for systems with
no added electrolyte) or the screening length (for systems with added salt) are large
compared with ¸ or l. When the screening is strong, the screening length is small, and
the contributions to the bending energy can be negligible. On the other hand, for the
case of no added electrolyte and a large interlayer spacing, the electrostatic
contribution to the bending modulus can be quite signi® cant. The exact value of k
depends, of course, on numerical factors not given by our scaling arguments. These
factors have been discussed in [11± 14] for the various cases and sometimes give
rather small numerical pre-factors of the order of 1

10 or smaller. Furthermore, the
sign of the saddle-splay modulus k is negative; this tends to favour spherical
topologies over saddle-like or ¯ at structures. The spherical shape for the surface
of polar heads allows for more volume and thus relatively greater entropy of the
counterions [35, 36]. In addition, as noted in the previous section and as we
emphasize in the following section, the chain contributions to the bending energy
scale with powers of the chain length. Thus, crudely speaking, one must compare the
interlayer spacing or the screening length for the charged head-group electrostatic
contributions with the chain length for the tail contributions to determine whether
the bending modulus is dominated by the heads or chains.

Finally, we note that these results depend parametrically on the packing density
of the ® xed charge and hence of the polar head groups; here we have taken this
quantity to be constant. In practice, the free energy should be further minimized with
respect to ¯ uctuations in the area per molecule; this results in a downwards
renormalization of the bending modulus as we have previously shown in equation
(3.7). To carry this out, one needs a particular model for the interactions of the polar
group and the dependence of the total energy on the packing area per head.

5.3. Chain contributions to curvature elasticity
While the previous discussion of the electrostatic contribution to the bending

energy is applicable to strongly charged systems, one expects that for non-ionic
surfactants (or even zwitterionic surfactants where there is a permanent dipole
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moment of the polar head group, but no large spatial separation between the
charges) the contributions of the hydrocarbon chains will dominate the bending
modulus; the polar head groups will enter in providing packing constraints on the
area R per molecule, but the bending response of the thin ® lm will be mostly that of
the tail region.

Detailed treatments of the response of both grafted polymer chains [15] and
block copolymers [10, 37± 39] to bending have been presented. Here, for simplicity,
we use scaling arguments to relate the transverse pressure distribution in the
polymeric layer to the bending moduli. As in the previous section, the bending
modulus scales as the product of the transverse pressure di� erence and the cube of
the relevant length scale. The transverse pressure itself scales as the free energy per
unit volume.

5.3.1. Melt brush
The simplest case to treat is that of a `melt brush’ of chains with no penetration

of the layer of chains by the hydrophobic solvent (® gure 9). Using a simple
Flory model [40], one writes the free energy F per chain as a function of the chain
extent h as

F =
3kBT

2
h2

Na2 , (5.22)

where a is the monomer size and where there are N monomers in the chain. This just
represents the entropy cost of stretching a Gaussian chain. By conservation of chain
segments, the product of the height and the area R per chain along the interface must
obey hR = Na3. The transverse pressure is just the free energy per unit volume:
P t = F/ R h. Using these relations, we ® nd that the bending constant in the Helfrich
representation scales as P th3. For the case of chains where the surface of curvature is
measured at the chain end and not along the neutral surface and where the free
energy is most conveniently expressed per chain, it is useful to de® ne a bending
constant kc, associated with the free energy per chain and not the free energy per unit
area; thus kc = R k relates this modulus to the usual modulus k. A scaling analysis
yields kc P th3R and we ® nd that

kc
N3

R 4 . (5.23)

For chains irreversibly grafted at the hydrophobic interface, this is as far as one can
go in predicting the bending modulus as a function of polymerization index N, since

Figure 9. A polymeric brush of height h and where d is the spacing between the grafted
ends.
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N and R are independent. However, in the case of self -assembled chains, the area per
chain adjusts itself to minimize the total free energy which includes both the chain
stretching contribution and the interfacial energy g R which represents the increase in
the chain± water or chain± polar head contacts as the area per chain is increased.
Minimizing the total free energy with respect to R determines the scaling of the
equilibrium value of the chain packing R with N as

R N1/ 3. (5.24)
Using this result in equation (5.23) we ® nd that

kc N5/ 3. (5.25)
This is a considerably weaker dependence on N than the result for irreversibly
grafted chains where kc N3. The softening of the bending modulus is due to the
relaxation of the free energy by the chains adjustment of their packing area R . A
more detailed treatment of this problem [38] yielded similar scaling.

5.3.2. Swollen chains at an interface
We now consider a grafted polymer layer swollen by a good solvent. The polymer

has an area R per molecule which at this point we regard as being ® xed. The free
energy [40] consists of two contributions: ® rstly the excluded volume interactions of
the polymeric segments with each other which scales (in a good solvent) like vc(z)2,
where c(z) is the local concentration of monomers and v is the excluded volume per
monomer; secondly the stretching energy of the chains which increases quadratically
with the extent (distance from the grafting surface to the chain end) of each chain.
The free energy per chain is thus written as

F = R kBT
h

0
dz 1

2vc(z)2 +
3z2c(z)
2Na2 , (5.26)

where the coe� cient of z2 in the stretching energy is a crude approximation that the
probability of a chain end existing at a given value of z is proportional to the local
average concentration c(z) of monomers. The balance of these two terms and a
Lagrange multiplier term which constrains the conservation of chain segments yields
[2, 41] a parabolic density pro® le [15, 41] with

c(z) =
´

v
1 ­ 1

2´

z
Na

2

, (5.27)

where N is the number of monomers in the chain and a is the monomer size. The
dimensionless constant ´scales as 1/ R 2/3 and is independent of N. One can minimize
the free energy with respect to the brush height h, and one ® nds that chains in the
brush are stretched with an extent that scales linearly with N/ R 1/3; this di� ers
considerably from the situation of free chains in good solvents where the chain extent
scales as N1/ 2 without excluded volume and N3/5 if excluded volume interactions are
taken into account. Thus the relevant length scale over which there is a signi® cant
transverse pressure di� erence scales linearly with N and we therefore expect the
bending moduli to scale as N3 (since the pressure itself is a function of z/N).

Using the same type of estimates as in the previous section, we ® nd that the free
energy scales as F R ´2h N/ R 2/ 3. The transverse pressure P t scales as F/ R h and
the bending constant kc R P th3 thus scales as
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kc
Nh2

R 2/3
N3

R 4/ 3 . (5.28)

As before, this is the ® nal result for irreversibly grafted chains. If the chains are,
however, free to adjust their packing area, one must minimize the total free energy
given by the sum of F and the surface tension term g R . Doing this determines the
equilibrium value of R N3/5 and one then ® nds that

kc N11/5. (5.29)
A more sophisticated analysis given in [38, 42] indicates that F N/ R 5/6 with all

the other relationships remaining the same. Going through the same procedure yields

kc Nh2/ R 5/ 6 N3/ R 3/ 2 (5.30)
for the case of irreversibly grafted chains and

kc N24/ 11 (5.31)
for the case of chains that are self -assembled and free to adjust their packing area on
the interface. The numerical values of the scaling exponents are very close in both the
simple and the more sophisticated treatments.

For completeness, we cite [38] the results for the bending moduli (in the
formulation of the bending energy per chain given by kc = R k, kc = R k)) for the
case of a block copolymer consisting of a total of N segments with identical
persistence lengths and excluded volume parameters but where the A (B) block
has NA (NB) segments so that N = NA + NB. One can think of the A block as being
the `head’ and the B block as the tail of this amphiphilic surfactant. We characterize
the asymmetry of the `head’ ± t̀ail’ packing by ² = (NB ­ NA)/N and de® ne the
interfacial tension in units of kBT between the water and oil as g . We take all
the microscopic parameters (persistence length and excluded volume) to scale
with the same microscopic length a. The moduli and spontaneous curvature are
then given for two di� erent cases to lowest order in ², for small asymmetry (for more
details see [38]).

(1) For the case of a block copolymer in a good solvent,

kc = 0.0881 kBT g 9/ 11N24/11, (5.32)

kc = ­ 0.0499 kBT g 9/11N24/11, (5.33)

c0 =
3.853²g ­ 2/11N­ 9/11

a
. (5.34)

(2) For the case of a block copolymer melt (no penetration of the solvent into the
block copolymer layers) the results are similar but with somewhat di� erent
scaling exponents:

kc = 0.067 kBT g 4/3N5/3, (5.35)

kc = ­ 0.053 kBT g 4/ 3N5/ 3, (5.36)

c0 =
2.134²g ­ 1/3N­ 2/ 3

a
. (5.37)
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These results provide us with a `microscopic’ model for a system of interacting
chains which can be used to estimate the bending modulus from the ® rst principles of
the polymer statistics. It is interesting to note that the ratio, kc/kc of the Gaussian to
beind moduli lies in the range from ­ 0.56 for the case of chains in good solvent to
­ 0.79 for a melt. These values are close to the value of ­ 2

3 predicted by the simple
spring model discussed above. To apply the spring model to polymer one must take
the preferred spring length °s to be zero; the spontaneous curvature then scales as the
chain length 1/°0 and the product of c0°0 is of the order of unity. The polymer theory
can be extended to treat the case of mixed chains and to provide insight into how the
interactions between long and short chains can dramatically modify the bending
moduli; these ideas have been used to suggest a mechanism for spontaneous vesicle
formation in mixed-chain systems [17].

6. Role of thermal ¯ uctuations and inhomogeneities

As we have seen in the discussion of the relaxation of the area per molecule at the
interface, additional degrees of freedom over and above the interface curvature tend
to lower the e� ective bending modulus [43]. Another e� ect that has been only
recently discussed [44] involves the orientable anisotropic defects in possibly chang-
ing the sign of the saddle-splay modulus k from its usual negative value. This can
occur as the defects cooperatively orient; if they couple to the membrane in an
appropriate manner, they can strongly prefer saddle-shaped structures.

In this section we consider two degrees of freedom that can soften the bending
modulus k. Firstly thermal ¯ uctuations soften the modulus at long distances in a
manner that depends logarithmically on the length scale. The renormalization and
softening of the bending modulus at long length scales have important implications
for the structure and phase behaviour of such systems such as microemulsions
[45, 46] and the size distribution of equilibrium vesicles [47, 48]. For example, the
Boltzmann factor governing the vesicle distribution has as its argument a term in the
bending free energy that is logarithmic in the globule size. The e� ect of a logarithmic
term in the Boltzmann exponential results in a power-law contribution to the vesicle
size distribution whose exponent depends on the coe� cient of this logarithmic term.
Secondly mixing of di� erent amphiphiles [49] (and, in particular, polymeric chains
with di� ering chain lengths [16, 50] is considered. Mixed-chain systems show a highly
nonlinear change of the bending modulus from the values of the pure systems
because the longer chains can take advantage of the free volume in the region near
the short chains. The e� ective modulus and spontaneous curvature of mixed systems
have important implications for possible phase separations and even the stabilization
of equilibrium vesicles with di� erent compositions in each lea¯ et of the bilayer
[51, 52].

6.1. Thermal ¯ uctuations of thin ® lms
The long-wavelength ¯ uctuations of interfaces and membranes have been shown

to reduce the e� ective bending energy. The physical origin of this e� ect is that the
interface spontaneously undergoes a certain amount of bending owing to the
increased entropy of the disordered structure; to what extent this occurs is of course
a balance of the bending energy and the thermal forces. Thus, for any given bend
imposed on the system, there is some probability that the interface will be
spontaneously bent in a somewhat similar con® guration due to the thermal
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¯ uctuations. Entropy thus increases the probability of spontaneous bends and can be
thought of as e� ectively reducing the bending energy.

Theoretical treatments of this e� ect were ® rst presented in [1, 47] and have also
been recently studied using computer simulations [53]. Here we present a simple
derivation of the e� ective reduction of the bending energy due to the long-
wavelength ¯ uctuations which yields the renormalization obtained by most
investigators.

For simplicity we consider the case of zero spontaneous curvature where the
bending energy is the integral of the square of the curvature over the entire surface.
We use the expression for the curvature in the Monge gauge (equation (2.10)) where
the surface is described by the local height h(x, y) above a reference plane. When the
interface is nearly ¯ at, the terms hx = ¶ h/ ¶ x and hy , proportional to the local slopes
can be neglected and the mean curvature is proportional to hxx + hyy . Similarly,
terms in the derivatives of h which appear in the local area element can be neglected.
The bending energy is then quadratic in the second derivatives of the local height and
the bending energy Fb is harmonic when calculated as a function of the Fourier
transform:

hq =
1

L 1/ 2 dr h(r) exp[i(q·r)], (6.1)

Fb =
k
2 q

q4jhq j2, (6.2)

where r = (x, y) and L is the system size. To be consistent with the rest of the
literature, we write the bending energy per unit area as fb = 2kH2, where H is the
mean curvature, related to the height h(x, y) by equation (2.12). Thus, when
considering the degrees of freedom which are the Fourier modes, one has a harmonic
energy with a cost kq4/2, per mode, where k is the bare bending constant.

On the other hand, as the interface begins to wander further and further from the
reference plane, the ® nite slope cannot be neglected; this is most important at long
length scales where the cost of making a relatively large-angle bend is reduced since
the bend is spread out over a large distance. As the energy cost is reduced, the
probability that such a bend will occur in thermal equilibrium increases and one
must include the terms proportional to hx and hy . A simple approximation is to write
the complete bending energy, using equation (2.10) where the terms proportional to
h2

x, h2
y and hxhy are replaced by their mean values calculated for the nearly ¯ at

membrane. This gives the ® rst perturbation to the harmonic energy. The mean
curvature is thus approximated as:

H =
(1 + )́hyy + (1 + )́hxx

2(1 + ´+ )́3/ 2 , (6.3)

where ´= hh2
xi = hh2

yi and hhxhyi = 0. Within the harmonic approximation

´= hh2
xi =

kBT
4p k

dq
1
q =

kBT
4p k

log
L
a

, (6.4)

where the high-q cut-o� is proportional to the inverse of the molecular size a, and the
low-q cut-o� is proportional to the inverse of the system size L .
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Since this is a perturbative approach (´ is calculated using the probability factor
of the nearly ¯ at membrane), to be consistent, one must expand the mean curvature
to ® rst order in ´ and one ® nds for the square of the mean curvature

H2 1
4(hxx + hyy)2(1 ­ 4 )́. (6.5)

To ® nd the total bending energy, one integrates H2 over the surface, approximating
the local area element (1 + h2

x + h2
y)1/ 2 by 1 + .́ The net result is that the bending

energy is written as

Fb
k
2

1 ­ 3
kBT
4p k

log
L
a

dr (hxx + hyy)2. (6.6)

This has the same form as the bending energy of the nearly ¯ at membrane but with a
renormalized and softened bending modulus:

kr = k 1 ­ 3
kBT
4p k

log
L
a

. (6.7)

Thus, the long-wavelength undulations of the interface e� ectively soften the energy
to bend the interface in a manner that increases logarithmically with the system size.
One can identify the system size at which this approximation for the e� ective
bending modulus yields no cost for bends (kr = 0). This determines the persistence
length L = a exp (4p k/3kBT ) at which there is a relatively high probability that the
interface will spontaneously bend owing to its ¯ uctuations.

Similar considerations can be used to estimate the renormalization of the
Gaussian curvature modulus and the spontaneous curvature [46]. The Gaussian
modulus, which in almost all microscopic models is negative (thus favouring
spherical structures as opposed to saddles) becomes more positive (thus favouring
more saddle-shaped structures) owing to the e� ect of the thermal undulations. The
spontaneous curvature increases with the ¯ ucutations since they tend to ripple the
interface further in the direction in which it spontaneously prefers to bend.

6.2. Amphiphilic mixtures: interactions and chain mixing
Mixtures of amphiphiles can provide a way of tailoring the microstructure of self-

assembled systems by simple composition variations. In addition, the phase
diagrams of mixed systems have been shown to be qualitatively di� erent from those
expected by a simple average of the components; for example, mixtures of
surfactants can form thermodynamically stable vesicles [51] for systems where each
of the separate components form only micelles. Mean-® eld models of mixed
surfactant systems have been discussed in [16, 54, 55] where it is shown that the
e� ective bending modulus of a mixed system is not a simple compositional average
of the moduli of each species. It is found that the addition of small amounts of short
chains to an interface composed mainly of long-chain molecules can have a dramatic
e� ect (nonlinear in the fraction of short chains) on the softening of the bending
modulus. The physical reason for this is that the long chains adjacent to the short
chains can make very e� cient entropic use of the free volume in the region above the
short chains and this has a relatively strong e� ect on lowering the bending sti� ness of
the system.

Analytic insight into this phenomenon can be obtained by considering a model of
either grafted or block copolymers at an interface. In the case of irreversibly grafted
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chains (where the area per chain is ® xed by the grafting process) several groups [15,
50, 56] have determined the dependence of the free energy and the curvature moduli
on the composition. As discussed above, for a single chain length, in this case of non-
equilibrated chain packing, the bending modulus scales as N3 where N is the
polymerization index. The dependence on the composition indicates that indeed,
when the volume fraction u l of long chains is small, the modulus is hardly a� ected
and

k N3
s 1 +

16a u 3
l

3
+ , (6.8)

where Ns is the degree of polymerization of the short chains and a = (N° ­ Ns)/Ns

is a measure of the molecular weight di� erence between the long and short chains.
On the other hand, the addition of a small amount of short chains has a more
dramatic e� ect on the bending modulus of a brush composed of mostly long chains
and for u ° 1

k N3
° 1 ­ 5a (1 ­ u l)

(1 + a ) + . (6.9)

Of course, if the chains can equilibrate their packing areas, the area per chain
depends somewhat on the curvature and the bending moduli are further reduced as
in the case of the single-component system [50]. However, the e� ects of mixing a
small number of long chains in a layer of mostly short chains is much less dramatic
than the mixing of a small number of short chains in a layer of mostly long chains as
discussed above.

7. Experimental measurements of curvature elasticity

In this section, we brie¯ y review several experimental tests of the in¯ uence of the
curvature energy on the properties of microemulsions and vesicles. While micro-
emulsions exhibit a wide variety of interesting morphologies and phases, the simplest
case is where the domains are spherical and the system can be modelled as consisting
of a nearly monodisperse set of spherical droplets. This picture is applicable to
systems with relatively large spontaneous curvatures of the monolayer and large
bending moduli. Since the structure is simple in these cases, one can study these
systems more quantitatively to see whether the properties re¯ ect in an unambiguous
way the determining in¯ uence of the curvature energy. Here we present an example
whereby the scaling of experimentally measurable quantities with drop size provide
strong evidence for the relevance of the bending energy (and not the stretching
energy) to large-scale microemulsions. We then mention some experiments on
bilayer vesicle systems and conclude with some recent results which attempt to
determine the dependence of the bending modulus on the electrostatics of the polar
head groups and their associated counterions.

7.1. Experimental estimates of bending moduli
We begin with the monolayer ® lms found in microemulsions. Measurements and

analysis of the dynamical ¯ uctuations of microemulsion drops provide information
on the restoring forces which resist these ¯ uctuations and hence on the bending
energy [57± 59]. The reader is referred to the references for the details; here we merely
mention that the scaling of the characteristic time scale with the drop size can
di� erentiate between restoring forces which arise from bending energy and those
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which arise from an actual stretching or compression of the surfactant interface. The
microemulsion experiments referred to above show that the slowest time scales are
those associated with bending ¯ uctuations.

In bilayer systems, there have been many experimental attempts to estimate
bending moduli of isolated globules such as vesicles, mostly by analysis of the
amplitude of the thermal ¯ uctuations of the vesicle; a comprehensive and critical
survey of these experimental results is outside the scope of this paper. For reviews see
[3, 60] and the references therein. Of particular note are experiments using
micropipette pressure [61] and optical techniques [62]. The spontaneous curvature
of lipid± water systems has been studied in [63].

Finally, we note that the scaling of the bending constants with the chain length
has been estimated in recent experiments [34]. Increasing the chain length of the
surfactants from C8 to C10 results in an increase in the elastic constant by a factor of
two, while an increase from C8 to C12 results in an increase of 3.6 in the elastic
constant. These very nonlinear dependences of the bending moduli on the chain
length are at least qualitatively consistent with the predictions discussed above.

7.2. Emulsi® cation failure: drop size and interfacial tension
While the presence of a spherical phase of droplets cannot by itself either prove

or disprove the dominance of the bending energy in determining the properties of
microemulsions, the transitions from a single-phase to multiphase coexistence can be
an important indicator. Neglecting ¯ uctuations in the droplet size and shape,
conservation of the internal phase (to be speci® c we shall assume it is oil) and the
surfactant with volume fractions u o and u s, respectively, imply that the radius of the
spherical droplets is given by R = 3d u o/ u s, where d is a typical surfactant size. This
conservation law neglects changes in the area per molecule with curvature which give
higher-order corrections to this law (of order d /R); the observation of a nearly linear
increase in the drop size with increasing ratio u o/ u s is one indication of the fact that
the area per molecule is nearly equal to its value in the ¯ at ® lm. Naturally, this
approximation breaks down when R/ d becomes of order unity but, as mentioned at
the outset, we focus on the properties of microemulsions with large domain sizes
compared with molecular scales.

For a phase of spherical droplets, the conservation laws determine the actual
drop size, while the bending energy determines the optimal droplet size. Minimiza-
tion of equation (1.1) with respect to the curvature indicates that the optimal drop
size R is proportional to c­ 1

0 ; the spontaneous curvature sets the drop size which
minimizes the bending free energy. Thus, if R < R , the system has no choice but to
keep a uniform phase of spherical droplets (when R di� ers signi® cantly from R ,
other shapes are possible [2]) but, when R > R , the droplets cease to grow and expel
the excess inner phase (e.g. the oil) into a coexisting phase. This has been termed an
emulsi® cation failure instability [64] (® gure 10). The simple picture described here is
somewhat modi® ed by contributions coming from the ¯ uctuations of the droplet
shape, the entropy of mixing, and possible (weak) interactions between the droplets,
but in the limit of large bending moduli (k kBT ) our approximations are
appropriate.

Thus, the bending energy predicts a maximum drop size with a two-phase
equilibrium with the excess internal phase. On the triangular phase diagram, this
phase boundary which occurs when R u o/ u s c­ 1

0 should be a straight line. The
droplet size at emulsi® cation failure is a measure of the spontaneous curvature.
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Measurements of the drop size along the phase boundary for the coexistence of
nearly spherical microemulsion drops with excess internal phase (oil) in non-ionic
systems [65] indicates that the spontaneous curvature varies linearly with tempera-
ture in this regime. For these systems, it appears that corrections to the linear phase
boundary due to entropy of mixing e� ects are small.

The observation of such a straight-line phase boundary is therefore an indication
of the validity of this picture. A consistency check consists of measurements of the
interfacial tension between the microemulsion (in our example, oil in water) of
optimal droplets and the excess phase (water, in our example) . This interface consists
of a monolayer of surfactant and the tension is just the energy to make more ¯ at
interface from the preferred droplets that is, the bending energy cost of a ¯ at
interface in a system with a strong spontaneous curvature. This energy cost per unit
length is just proportional to the inverse drop size squared. Thus measurements of
the tension as a function of droplet size are predicted to have an inverse square
relationship due to the bending energy.

Recent experiments [34, 66] using both scattering techniques and interfacial
tension measurements have shown that a variety of microemulsion-forming non-
ionic surfactants obey the scaling relationship g 1/R2. In addition, the bending
moduli extracted [34] from the dependence of this relationship on k and k is
consistent with the moduli deduced from analysis of the neutron scattering spectra
for ¯ uctuating microemulsion droplets.

7.3. Electrostatic contributions to the bending modulus
In a recent paper [67], it is shown that the bending constant can be estimated

experimentally from experiments which determine the interlayer distance in a
lamellar phase of an oil± water± surfactant microemulsion. Fluctuation corrections
to the conservation of surfactant area due to the thermal crumpling of the surfactant
layers result in a correction to the swelling law for the smectric period d and one
expects that

d =
d

u s
(A ­ B log u s), (7.1)

where u s is the surfactant volume fraction, d is the surfactant layer thickness, and A
and B are coe� cients that are functions of the bending constant k/kBT . By careful

Figure 10. Emulsi® cation failure in a microemulsion. The droplets of oil in water are at
their spontaneous curvature. The macroscopically ¯ at interface between the water
containing the microemulsion and the phase of excess oil is covered by a surfactant
monolayer whose tension is discussed in the text.
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® tting of the X-ray measurements of the periodicity of these lamellar systems, one
can estimate the bending modulus k.

For charged surfactant with no added salt, the bending modulus was deduced
from the measurements as a function of the increasing thickness of the water layer.
According to the theory outlined above, the modulus k should increase linearly with
increasing water region thickness owing to the long-range nature of the electrostatic
interactions. What was observed, however, was that k initially decreased with
increasing water thickness and then at a thickness of about 15 AÊ saturated at a
value of about 0.3kBT . The predicted increase was certaintly not observed.
Freyssingeas et al. [67] attributed this striking discrepancy betweeen theory and
experiment to the possibility that the numerical pre-factor relating k and the water
thickness may be quite small (of the order of 0.14kBT AÊ ­ 1) and that this causes the
electrostatic contribution to k to be undetectable with the present experiment.
However, it is strange that such a strong dependence of k on water thickness should
not be observable at least at very large thicknesses and further inquiry may be useful.
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