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A Monte Carlo simulation method is presented for simulation of phase transitions, with emphasis on
the study of crystallization. The method relies on a random walk in order parameter ®(g") space to
calculate a free energy profile between the two coexisting phases. The energy and volume data
generated over the course of the simulation are subsequently reweighed to identify the precise
conditions for phase coexistence. The usefulness of the method is demonstrated in the context of
crystallization of a purely repulsive Lennard-Jones system. A systematic analysis of precritical and
critical nuclei as a function of supercooling reveals a gradual change from a bcc to a fcc structure
inside the crystalline nucleus as it grows at large degrees of supercooling. The method is generally
applicable and is expected to find applications in systems for which two or more coexisting phases
can be distinguished through one or more order parameters. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2178324]

I. INTRODUCTION

Molecular simulations are used extensively to study
phase transitions. Coexisting phases are often separated by
large free energy barriers; conventional simulation tech-
niques such as canonical molecular dynamics (MD) or
Monte Carlo' (MC) are unable to sample both phases simul-
taneously, and generally remain trapped in one or the other
local free energy minimum. Several simulation techniques
have been developed to overcome large free energy barriers:
examples include umbrella sampling2 and its variants,” mul-
ticanonical sampling,4 and parallel tempering formalisms.”
The basic idea behind umbrella or multicanonical sampling
is to introduce a bias that favors configurations having a
higher free energy at the expense of configurations with a
lower free energy, thereby sampling thermodynamic space in
a somewhat uniform manner. Umbrella sampling requires
that a good initial guess of the biasing potential be provided,
followed by an iterative optimization process. Multicanoni-
cal sampling requires calculation of a biasing function
w(d(g")), where ¢" is a set of coordinates and @ is an order
parameter, which must also be obtained through an iterative
procedure. Recently, Wang and Landau® have proposed a re-
markably simple and effective algorithm (WL algorithm) for
uniform sampling of energy space. In WL sampling, a ran-
dom walk is performed in energy space, and configurations
having different energies are visited with the same frequency.
Since its original conception, Wang-Landau sampling has
been extended to simulations in a continuum and to different
ensembles.”"" Several improvements have also been pro-
posed to extend its range of applicability; these include the
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use of configurational temperature to improve the conver-
gence of the algorithm,12 its combination with parallel tem-
pering or replica exchange Monte Carlo techniques,lz’13
N-fold way Monte Carlo,'* and optimization of round trip
times" to improve the accuracy of the method. Note that
such implementations, however, implicitly assume that a ran-
dom walk in energy space leads to a random walk in con-
figuration space. There are numerous cases of interest where
this is not the case; these cases include the problem of crys-
tallization.

Based on Wang and Landau’s ideas, we have introduced
a series of simulation techniques, which we collectively refer
to as the expanded ensemble density of states (EXEDOS)
sampling, that permits systematic calculation of free energy
profiles in terms of arbitrary reaction coordinates or order
parameters.lﬁ*18 Various implementations of the EXEDOS
sampling have been used to examine the free energy of col-
loidal particles suspended in liquid crystals as a function of
their sepauration,17 or the free energy required to fold and
unfold a protein as a function of its end-to-end distance.'® In
those implementations of EXEDOS sampling, w(g") need
not be known a priori; it is determined “on the fly” in a
self-adjusting manner. The EXEDOS approach prescribes
that a random walk be performed in an expanded ensemble
expressed in terms of one or several reaction coordinates or
order parameters. In this work, a method is presented in
which the weights obtained from an EXEDOS simulation are
related to the free energy as a function of the order parameter
(Landau free energy).19 This technique permits precise cal-
culation of the free energy profile of an arbitrary system as it
undergoes a phase transition. The free energy corresponds to
the equilibrium free energy of the macrostates characterized
by a fixed value of the order parameter. The path along
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which the transition occurs depends on the specific choice of
the order parameter, and it need not coincide with the states
visited during the kinetics of phase transformation—a non-
equilibrium process. The use of the method is illustrated in
the context of crystallization, which continues to pose con-
siderable challenges to numerical simulation.***

Il. EXPANDED ENSEMBLE DOS METHOD

Consider an EXEDOS simulation of a system consisting
of N particles, at temperature 7 and pressure P; configura-
tions are sampled with probabilitym’17

M- exp[- BU(¢") - BPV(¢")Iw(®(g"))
- 0,(N,P,T)

,PW,B,P(q > (1)
where w(®(g")) is the weight associated with an order pa-
rameter ®(¢"), and Q,(N,P,T) is the normalization con-
stant. Subscript w denotes a sampling corresponding to a
weighted ensemble.

In EXEDOS, a running average of the weights can be
computed and refined in a self-adjusting manner. Ideally, the
weights are related to the unweighed ensemble distribution
by

w(®P(g")) = 2)

1
PB,P(‘D(C]N)) '
where Pp p(P(¢")) is, in the present study of crystallization,
the isobaric-isothermal (N, P,T) ensemble probability distri-
bution of ®(g").

The method presented here requires that an appropriate
order parameter be identified. The order parameter must
clearly distinguish any coexisting phases from each other.
Examples of suitable order parameters include the scalar
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order parameter for the study of nematic-isotropic transitions
in liquid crystals,24 a density based order parameter ¢ for
block copolymer systems,25 or a bond order parameter for
the study of crystzztllization.26 Having specified a suitable or-
der parameter, EXEDOS simulations are performed to calcu-
late Pg p(P(g")). The Landau free energy of the system
A(®D) can then be related to Pﬁ’P(CD(qN)) by19

A(DP(g")) = const — kT In{P(P(¢"))}. (3)

Depending on whether P(®) is obtained from EXEDOS in a
constant (N,V,T) or constant (N, P, T) ensemble, A will cor-
respond to the Helmholtz free energy or the Gibbs free en-
ergy of the system, respectively.

Away from a phase transition, A is expected to exhibit a
single minimum as a function of ®. Near coexistence, how-
ever, A develops two minima; the barrier between the
minima corresponds to the free energy associated with the
formation of an interface.”” The method described above is
capable of providing a free energy profile (including free
energy barriers) at any given temperature and pressure. In
general, however, the coexistence temperature (e.g., melting
temperature) or pressure is not known. In order to obtain the
precise conditions under which two phases coexist it is there-
fore necessary to conduct a series of exploratory simulations,
until a set of conditions is found for which the free energy
minima corresponding to the two equilibrium states become
identical. This process can be facilitated by resorting to the
following histogram extrapolation scheme.™® Energy and vol-
ume data from EXEDOS simulations must be saved and
sorted in joint histograms according to the order parameter.
The probability of a system to be in bin m, denoted by
Pﬁz, p(®,,,D,,.1), at a temperature B, can be obtained from a
simulation at a temperature (3; from

P (Do bet) 2t exp((By = B Uy + PV0)

PBZ,P( ¢m’ ¢m+l) =

where U, ; and V,, ; are the energy and volume entries in the
mth order parameter histogram bin, N, is the total number of
histogram bins, and N, is the number of entries in bin m. The
collection of thermodynamic data is done only after the his-
tograms have become sufficiently flat. Equation (4) can be
used to determine the precise values of coexistence tempera-
ture 7° and pressure P* for which the free energy Eq. (3)
exhibits two minima of equal Weight.29 This histogram ex-
trapolation scheme works particularly well in conjunction
with EXEDOS because we do not only sample configura-
tions having large Boltzmann weights but also configurations
that have a small Boltzmann weight but that are important
for free energy estimations. Configurations having a small
weight away from coexistence could be relevant at coexist-
ence; the sampling of such configurations in EXEDOS simu-

Elr:bzl PBI,P(d)m’ ¢m+1)2j\2’; exp((ﬁl - 182)(U1m + PVi,m)) ,

(4)

lations therefore facilitates histogram extrapolation.

Once the free energy profile of a system is obtained and
it is verified that the system adopts a slablike configuration
with two interfaces [cf. Fig. 6(b)] at the free energy barrier,
the excess free energy AA can be related to the interfacial
tension by27

AA

=3 (5)

Y

where L is the dimension of the box. The factor of 2 in the
denominator arises because of the presence of two interfaces
in a simulation cell with periodic boundary conditions. Equa-
tion (5) is only accurate for large systems with minimal
finite-size effects. Alternatively, the interfacial tension can
be obtained by using the finite-size scaling approach of
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Binder.”” In that case, the interfacial tension, 7;, calculated
from a finite system of size L can be related to the true,
infinite-system size interfacial tension 7y through

BAA; a+bInL
2L L7

By = + B (6)
where a and b are system-specific constants.

Having determined the free energy A as a function of
®(g"), configurations corresponding to the top of the free
energy barrier can be used to explore the transition pathways
from one phase to another, as will be discussed later in this
work in the context of nucleation mechanisms.”!

lll. APPLICATION TO A LENNARD-JONES CRYSTAL

To demonstrate the usefulness of the technique outlined
above, we have chosen to simulate the crystallization of a
model about which much is known from previous simula-
tions, namely, a system of particles interacting through a re-
pulsive Lennard-Jones (LJ) potential U(r)=e(o/ ) trun-
cated at a distance of r.=20. The long-range contribution to
the potential was calculated under the assumption of constant
density. For this system, the stable nuclei at melting are be-
lieved to be face centered cubic (fc:c).30732 Previous simula-
tions by ten Wolde et al.*" used umbrella sampling to gener-
ate free energy curves and to examine the structure of the
critical nuclei that form in a deeply supercooled liquid.

The order parameter used is the bond orientational order
parameter, (g, originally introduced by Steinhardt et al.*®
and later used by van Duijneveldt and Frenkel® to study
crystallization. It is sensitive to the overall degree of crystal-
linity in the system, irrespective of the crystal structure, i.e.,
it distinguishes the liquid from the crystal. The values of Qg
for pure fcc, body centered cubic (bec), and liquid are
0.574 52, 0.510 69, and 0.0, respectively. Previous work”
has shown that a defective fcc crystal, which crystallizes
from the liquid in simulations, has an order parameter below
0.5, and that finite-size effects lead to small positive values
for the order parameter in the liquid phase.

Our simulations were performed on systems of various
sizes, ranging from 108 to 1364 particles. The order param-
eter range explored here goes from 0.05 to 0.5 for the small
system and from 0.02 to 0.45 for the larger systems. In all
simulations the order parameter was calculated at every step
and was used in the Monte Carlo acceptance criteria. Follow-
ing our previous work, the range of order parameter was split
into multiple overlapping windows (intervals of order
palrametelr).]é’17 Ten overlapping windows with a 50% of
overlap between adjacent windows were employed in all
simulations. Configuration swaps were implemented to fa-
cilitate our calculations. During the simulation we observed
the tunneling of individual replicas between the liquid and
the crystalline state. The total number of tunneling events for
each system size exceeds #=20 000. Thus the statistical un-
certainty of the free energies we calculate is on the order of
AA ~ O(kgT/\#)=0.01kzT. The corresponding error AT
(in reduced LJ units) is of the order =~0.001 and AP is of
the order =0.003. Figure 1 shows a small part of the history
of a replica traveling along the order parameter coordinate.
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FIG. 1. A small range of Monte Carlo steps showing change of order pa-
rameter for a single replica in EXEDOS simulation.

Figure 1 shows how one out of the ten replicas moves from
low values of the order parameter to large values, before
coming back to low values. The complete order parameter
trajectory is analogous to the small fragment shown in Fig. 1.

The accuracy of the simulated coexistence temperature
and pressure in the method outlined in this work appears to
be comparable (or sometimes better) to that achieved with
techniques such as phase switch Monte Carlo,™ self-
referential Monte Carlo,* and techniques that rely on ther-
modynamic integration and Gibbs-Duhem irltegration.35 The
added advantage of the order-parameter-based method is
that, in addition to obtaining accurate coexistence conditions,
we also get an accurate free energy curve as a function of the
chosen reaction coordinate. We note here that an alternative
technique, the so-called transition path sampling Monte
Carlo, can also lead to accurate coexistence conditions and a
free energy curve. In a recent study of crystallization,36 the
free energy barrier and a transition path were presented for
the Lennard-Jones fluid. One disadvantage of transition path
sampling, however, is that it is much more computationally
demanding than the technique proposed here.

The EXEDOS simulations were initially performed on
the smaller system at a reduced LJ temperature (T
=kzT/e) T'=1.0 and pressure (P"=Po’/e) P =24.21,
which are the estimates for the coexistence conditions in the
literature® for a system of similar size. Figure 2 shows the
resulting free energy curve. It can be seen that, for our sys-
tem geometry, T°=1.0 is not the best finite-size estimate of
the coexistence temperature. Using Eq. (4), we reweight the
free energy histograms to identify the temperature where the
two minima become identical. This condition is fulfilled at
T,=1.14. A second set of EXEDOS simulations were per-
formed at this new temperature to explore the range over
which data can be reweighed with the single-histogram ex-
trapolation of Eq. (4). The results of that second simulation
are also shown in Fig. 2, and are consistent with our extrapo-
lated results of the previous run in several respects: (i) The
barrier height in both curves is about ten LJ units (E"
=E/e€), (ii) the free energy minimum for the crystalline phase
shifts to the left when temperature increases, and (iii) the free
energy minima are almost identical in both curves.

For a larger system, 864 particles, our starting guess for
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FIG. 2. Free energy profile of a repulsive LJ system containing 108 par-
ticles: EXEDOS simulations at 7°=1.0 (solid line), predicted free energy
profile by reweighing 7°=1.0 data to 7"=1.14 (dash line), and EXEDOS
simulations at 7"=1.14 (dot-dot-dash line).

coexistence temperature and pressure was 7 =1.14 and P
=24.21. The order parameter range was set between 0.02 and
0.45. EXEDOS simulations were again performed in mul-
tiple windows. The free energy curves obtained at this tem-
perature and pressure (see Fig. 3) show that, as a result of
finite-size effects, T"=1.14 is not the estimate of the phase
transition temperature for the larger system. The free energy
curves were therefore reweighed to arrive at 7, =1.03 as an
estimate for the melting temperature. The histogram-
extrapolated free energy profile was again confirmed by a
subsequent EXEDOS simulation at the same temperature.
The above results are indicative of strong finite-size effects;
these effects are larger than the statistical errors associated
with our simulations and limit the accuracy of our estimated
melting temperatures. It is therefore important to use finite-
size scaling to predict the coexistence temperature for an
infinite system. Figure 4 shows the variation of T:; with the
volumetric length scale. The figure includes results for sys-
tems of 256 and 500 particles; a clear finite-size scaling can
be seen in the behavior of 7', with volume. The extrapolation
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FIG. 3. Free energy profile of a repulsive LJ system containing 864 par-
ticles: EXEDOS simulations at 7"=1.14 (solid line), predicted free energy
profile by reweighing 7°=1.14 data to 7"=1.03 (dash line), and EXEDOS
simulations at 7°=1.03 (dot-dot-dash line).
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to infinite size yields a coexistence temperature of T;x
=0.99(1). Note that in the algorithm proposed here the nucle-
ation barrier necessary to expand a solid nucleus is removed,
but the barrier associated with transforming an ordered but
homogeneous liquid into an inhomogeneous liquid with an
initial solid nucleus at the same value of the order parameter,
Ogs remains.”~® This formation of solid bodies of high Q¢
allows the larger system to move more easily between high
and low order parameters, thereby facilitating the conver-
gence of the simulations.

A subsequent structural examination of the trajectories
was performed using Voronoi tessellation and employing the
analysis outlined by ten Wolde et al*' In this procedure, a
combined distribution of local invariants g4, gg, W4, and wg
was generated for a given configuration. A detailed explana-
tion of local invariants g4, g¢, W4, and wg can be found in the
original reference.* The distribution of local invariants was
then decomposed into distributions for thermally equilibrated
bee, fee, and liquid configurations (see Fig. 5) according to

A= [icl - (fliquliq + foceVbee +ffcc;fcc)]2a (7)

where Vg, Vg, Vi, and Py, are combined distributions for
the cluster to be analyzed, thermally equilibrated liquid, fcc,
and bee configurations, respectively. In Eq. (7) fiig» foce» and
frec are weight coefficients for liquid, bce, and fcc configu-
rations. The analysis confirmed that the first minimum in the
free energy profile corresponds to a liquid phase, and the
second minimum corresponds to a thermally equilibrated fcc
phase.

The analysis also provides an explanation for the asym-
metric shape and the kinks that appear in the free energy
curve of Fig. 3. These features were not observed in previous
simulations of the same system, which used a different simu-
lation approach, and it is therefore important to discuss their
origin by investigating the configurations that the system
adopts as a function of the order parameter.37_42 Between the
order parameter of 0.10 and 0.15, simulated configurations
reveal the occurrence of spherical nuclei. In the order param-
eter range from 0.15 to 0.25 we observe the formation of
solid-fluid interfaces. An interesting point to note here is that
the interface has a predominantly bcc character, hinting at
the formation of thin interfacial layers which are structurally
different from the bulk solid. The fact that we observe a bcc
interface coincides with the fact that the liquid-bcc tension is
smaller than the liquid-fcc tension.” Moving further along
the free energy profile to the range of 0.25-0.35 we see the
growth of an interface that spans the entire simulation box,
with a defective bce-like solid. Upon further increasing the
order parameter we observe that, beyond 0.35, this defective
bee-like solid rearranges into a defective fcc-like solid. Fig-
ure 6 shows snapshots of various representative configura-
tions extracted from our simulations. The transitions to and
from various configurations in EXEDOS are highly revers-
ible. The asymmetric shape of the free energy profile can be
attributed to this two-step transition from an interface be-
tween a liquid and defective bce-like structures, and then
from defective bec-like structures to defective fce-like struc-
tures.
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FIG. 4. Tj, as a function of system size; three different
system sizes of 256, 500, and 864 particles was used to
see the finite-size scaling. The arrow points to the lim-
iting value.
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The fact that solid-liquid interfaces can form in our
simulations can be exploited to calculate the interfacial ten-
sion of the system. To this end, simulations were performed
for four system sizes, namely, 108, 256, 500, and 864 par-
ticles. From the simulations (7"=1.03) of the above systems,
free energy barriers were calculated as shown in Fig. 8. The
interfacial tension from this analysis is 0.31 in LJ units, with
an error of magnitude of 0.01 LJ unit (same as that for the
free energy calculations). Previous studies”* for repulsive
LJ systems interacting with an ™ potential (n=8) have re-
ported y=0.5 (for T"=1.03) for a bcc solid in contact with a
liquid phase. This value is expected to decrease for n= 12,7
and therefore the interfacial tension calculated in this work
appears to be compatible with literature results. Figure 7
shows the results of this finite-size analysis. Two remarks are
in order: (i) We note that the finite-size effects are surpris-
ingly large. (ii) Since it is difficult to distinguish between the
two correction terms in Eq. (6), our estimates for y depend
strongly on the range of system sizes employed for subse-
quent extrapolations. As mentioned above, the solid phase in
our interfacial configurations exhibits a bcc-like character;
the interfacial tension calculated above is therefore that be-
tween a bulk bce and a liquid phase, and not between a fcc
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FIG. 5. The normalized probability histograms of different local invariants
for thermally equilibrated liquid, bec, and fcc configurations.
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solid and a liquid phase. For much larger system sizes we
expect the interfacial configurations to consist of slabs of the
two thermodynamically stable, coexisting phases—Iliquid
and fcc solid—separated by two interfaces. Our results imply
that there is a bcc layer of finite thickness at these interfaces.
In view of the more complicated internal structure of the
interfaces we also expect additional contributions to Eq. (6)
that could arise, e.g., from the long-range elastic interactions
between the two interfaces across the crystalline portion
(which could affect the finite-size dependence of the mea-
sured interfacial tension). Similar difficulties in extracting an
accurate value of the interfacial tension from finite-size scal-
ing have been encountered at interfaces between the isotropic
and nematic phases of rods.*?

It is instructive to compare the value of interfacial ten-
sion predicted by the finite-size extrapolation above with that
estimated on the basis of classical nucleation theory (CNT).
The radius R of the solid nucleus can be estimated by
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FIG. 6. Snapshots of various configurations seen in a typical trajectory.
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Q6 — Qé (Qg - Qé) form a stable bcc crystal—defective bee crystals transform
= : (8) into fcc crystals—we have extrapolated the free energy curve

(4n/3)R> Ve

The above equation is a “lever rule” expression stating that
the amount of solid in the system should be proportional to
its Qg order parameter. In Eq. (8), Q. and Q; are order pa-
rameters for the crystal and the liquid phase, and V is the
volume for the crystal phase. The value of Q is taken as that
of a thermally equilibrated bcc crystal, 0.38, and Q; is taken
to be 0.04. To find the radius R from Eq. (8) we should use
the value of Q6C that corresponds to a defective bcc crystal.
This value, R, can then be substituted in the free energy
expression of CNT,
AG(Qg) = 4myR* - 4—7TR3A—“,
3 Ue

9)

where vy denotes the interfacial tension between the liquid
and the bcc structure inside the nucleus, and A is the free
energy difference between the liquid and the bcc crystal per
particle. Since in our simulations we do not spontaneously

corresponding to the defective bcc crystal to estimate Au.
The construction is shown in Fig. 8; we estimate the free
energy difference between the liquid and the hypothetical
bee crystal to be 35kpT for this system size. This value is
similar to that employed in Ref. 20 namely, 40kgT. Equation
(9) can be used to fit our data in the 0.10-0.15 region for the
864-particle system. The curve below 0.1 is shown to de-
scribe what CNT would predict. Figure 3 yields y=0.27,
which is in reasonable agreement with the estimate provided
by finite-size scaling. Figure 8 shows the free energy curve
predicted by CNT.

IV. EFFECT OF SUPERCOOLING

Several literature reports have discussed the change in
the structure of the critical nucleus as a function of changes
in the bond order parameter.ﬂ’44 It is also of interest to con-
sider how the structure of the critical nucleus changes with
the extent of supercooling. An ensemble of configurations
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FIG. 9. Structural composition of critical and precritical nuclei at different
degrees of supercooling.

corresponding to the top of the free energy curve was exam-
ined to extract the structural properties of the critical nucleus.
In this work, nuclei formed at the top of the barrier are called
critical, and nuclei formed just before the barrier are referred
to as precritical. For example, in the case of 864 particles the
nuclei formed in the order parameter range in the vicinity of
the free energy peak (0.05 order parameter unit on both sides
of the peak) are called critical, and nuclei formed just before
the peak (0.05 below the critical nuclei range) are called
precritical. The properties of critical and precritical nuclei
are always calculated by averaging over all the configura-
tions in the relevant order parameter range. Several literature
reports have discussed the change in the structure of critical
nuclei as a function of changes in the bond order parameter.
Most of these studies have been conducted at constant super-
cooling, in the vicinity of 20%. Note, however, that previous
works relied on a coexistence temperature which differs sig-
nificantly from that calculated here by finite-size scaling, and
the actual extent of supercooling may have been different
from the reported extent of supercooling. We consider how
the structure of the critical nucleus changes with supercool-
ing. By applying reweighing techniques, we can generate
high-precision free energy curves for different degrees of
supercooling, and then generate an ensemble of critical nu-
clei along the path characterized by the order parameter. Fig-
ure 9 shows the free energy profiles at different temperatures
obtained by histogram reweighing.

The structural analysis of critical nuclei was again per-
formed using the procedure outlined in the literature.”' As
there were many precritical nuclei in the system, the proper-
ties of precritical nuclei were calculated by averaging over
all the nuclei formed in the simulation. The size of precritical
nuclei ranged from 25 to 50 particles. That of critical nuclei
ranged from 100 to 200 particles. Figure 10 shows that, as
we increase the degree of supercooling, the bcc character of
the precritical nuclei increases. At the same time, the bcc
character of the critical nuclei decreases. These results reveal
an important aspect of crystallization that has generally been
overlooked: at high degrees of supercooling, a substantial
structural rearrangement takes place in going from a (small)
precritical nucleus to a critical nucleus. However, this is not
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FIG. 10. Free energy profiles obtained at different temperatures using his-
togram reweighing.

the case for a low degree of supercooling, where the precriti-
cal nuclei can already be rather large. Unfortunately, the
mechanism underlying such a rearrangement cannot be un-
ambiguously deduced from our work. In the past, kinetic
explanations have been advanced for the structural rear-
rangement of critical nuclei,* but thermodynamic explana-
tions of the structural changes, e.g., explanations based on
the effects of local pressure, surface tension, and the shape of
nuclei, are also conceivable.

V. CONCLUSIONS

In summary, we have presented a simple and effective
simulation technique that permits calculation of the free en-
ergy profile associated with a phase transition, including that
between a crystal and a liquid, with a high degree of preci-
sion. The method relies on density of states Monte Carlo
sampling in an expanded ensemble defined in terms of one or
more order parameters. It can be implemented within a par-
allel tempering framework, thereby facilitating its implemen-
tation on parallel processors. For crystallization, we use the
bond orientation as an order parameter. The concomitant free
energy curves are accurate and precise and, as shown in this
work, can easily be reweighed to arrive at a relatively com-
plete characterization of melting curves, extent of supercool-
ing, and critical (or precritical) nuclei. An additional by-
product of the proposed method is that it permits calculation
of the solid-liquid (or vapor-liquid) surface free energy, a
quantity that is otherwise difficult to determine in simula-
tions but that is essential for thermodynamic analysis of crys-
tallization.
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