
A discussion of hybrid atomistic-continuum

methods for multiscale hydrodynamics∗

Hettithanthrige S. Wijesinghe and Nicolas G. Hadjiconstantinou
Mechanical Engineering Department

Massachusetts Institute of Technology

Cambridge, MA 02139

May 14, 2004

Abstract

We discuss hybrid atomistic-continuum methods for multiscale hy-

drodynamic applications. Both dense fluid and dilute gas formulations

are considered. The choice of coupling method and its relation to

the fluid physics as well as the need for timescale decoupling is high-

lighted. In particular, by relating the molecular integration timestep

to the CFL timestep, we show that compressibility is important in

determining the choice of a coupling method. Appropriate coupling

techniques for various flow regimes are discussed and proposed. We

also discuss recently developed incompressible and compressible hy-

brid methods for dilute gases. The incompressible framework is based

on the Schwarz alternating method which provides timescale decou-

pling; the compressible method is a multi-species, fully adaptive mesh

and algorithm refinement approach which introduces the direct simu-

lation Monte Carlo at the finest level of mesh refinement.

1 Introduction

By limiting the molecular treatment to regions where it is needed, a hybrid
method allows the simulation of complex thermo-fluid phenomena which
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require modeling at the microscale without the prohibitive cost of a fully
molecular calculation. In what follows we provide an overview of this rapidly
expanding field and discuss recent developments. We also describe archety-
pal hybrid methods for incompressible and compressible flows; the hybrid
method for incompressible gas flow is based on the Schwarz alternating cou-
pling method; the hybrid method for compressible flow is the recently de-
veloped [34] flux-coupling based, multispecies adaptive mesh and algorithm
refinement scheme that extends adaptive mesh refinement by introducing the
molecular description at the finest level of refinement.
Over the years a fair number of hybrid simulation frameworks has been

proposed leading to some confusion over the relative merits and applicability
of each approach. Original hybrid methods focused on dilute gases [28, 29,
10, 20], which are arguably easier to deal with within a hybrid framework
than dense fluids, mainly because boundary condition imposition is signifi-
cantly easier in gases. The first hybrid methods for dense fluids appeared a
few years later [26, 16, 17, 11]. These initial attempts have led to a better
understanding of the challenges associated with hybrid methods.
To a large extent, the two major issues in developing a hybrid method is

the choice of a coupling method and the imposition of boundary conditions
on the molecular simulation. Generally speaking, these two can be viewed as
decoupled, in the sense that the coupling technique can be developed on the
basis of matching two compatible and equivalent over some region of space
hydrodynamic descriptions and can thus be borrowed from the already exist-
ing and extensive continuum-based numerical methods literature. The choice
of coupling technique is further discussed in Sections 2.1-2.3. Boundary con-
dition imposition can again be considered in a decoupled sense and can be
posed as a general problem of imposing “macroscopic” boundary conditions
on a molecular simulation. In our opinion, this is a very challenging prob-
lem that has not been, in general, resolved to date completely satisfactorily.
Boundary condition imposition on the molecular subdomain is discussed in
Section 2.4. Boundary condition imposition on the continuum subdomain is
generally well understood, as is the process of extracting macroscopic fields
from molecular simulations (typically achieved through averaging).
In Section 3 we give a brief description of the direct simulation Monte

Carlo (DSMC), the dilute gas simulation method used in this work. In Sec-
tion 4 we demonstrate a hybrid scheme suitable for low speed, incompressible
gaseous flows based on the Schwarz alternating method. The current paper
introduces Chapman-Enskog boundary condition imposition in incompress-
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ible hybrid formulations. Subsequently, in Section 5 we discuss a recently
developed multispecies compressible formulation [34] for gases which intro-
duces the molecular simulation as the finest level of refinement within a fully
adaptive mesh refinement scheme. We finish with some concluding remarks.

2 Developing a hybrid method

2.1 The choice of coupling method

Coupling a continuum to a molecular description is meaningful in a region
where both can be presumed valid. In choosing a coupling method it is there-
fore convenient to draw upon the wealth of experience and large cadre of cou-
pling methods nearly 50 years of continuum computational fluid dynamics
have brought us. Coupling methods for the compressible and incompressible
formulations generally differ, since the two correspond to two different phys-
ical and mathematical hydrodynamic limits. The compressible formulation
lends itself naturally to time explicit flux-based coupling while incompressible
formulations are typically coupled using either state (Dirichlet) properties or
gradient (Neumann) variables.
Given that the two formulations have different limits of applicability

and/or physical regimes in which each is significantly more efficient than
the other, care must be exercised when selecting the ingredients of the hy-
brid method. In other words, the choice of a coupling method and continuum
subdomain formulation needs to be based on the degree to which compress-
ibility effects are important in the problem of interest and not on a preset
notion that a particular coupling method is more appropriate than all others.
The latter approach was recently pursued in a variety of studies which en-
force the use of a compressible, time explicit, flux matching coupling scheme
to steady and essentially incompressible physical problems. This approach
is not recommended. On the contrary, for an efficient simulation method,
similarly to the case of continuum solution methods, it is important to allow
the flow physics to dictate the appropriate formulation, while the numerical
implementation is chosen to cater to the particular requirements of the latter.
Below, we expand on some of the considerations which influence the choice
of coupling method under the assumption that the hybrid method is applied
to problems of practical interest and therefore the continuum subdomain is
appropriately large. Our discussion extends to timescale considerations that
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are more complex but equally important to limitations resulting from length-
scale considerations, such as the size of the molecular region(s).

2.2 Timescale decoupling

It is well known [31] that the timestep for explicit integration of the com-
pressible Navier-Stokes formulation, τc, scales with the physical timestep of
the problem, τ∆x(= ∆x/U , where ∆x is the numerical grid spacing and U is
the characteristic velocity), according to

τc ≤
M

1 +M
τ∆x (1)

where M is the Mach number. As the Mach number becomes small, we are
faced with the well-known stiffness problem whereby a) the numerical effi-
ciency degrades due to disparity of the timescales in the system of equations
and b) the accuracy of the compressible solution degrades due to mismatch of
magnitudes between fluxes in the original equations and corresponding terms
in the numerically added artificial viscosity [36]. For this reason, when the
Mach number is small, the incompressible formulation is used which allows
integration at the physical timestep τ∆x. In the hybrid case matters are com-
plicated by the introduction of the molecular integration timestep, τm, which
is at most of the order of τc (in some cases in gases when ∆x ≤ λ, where λ is
the molecular mean free path) and in most cases significantly smaller. One
consequence of equation (1) is that as the global domain of interest grows, the
total integration time grows, and transient calculations in which the molecu-
lar subdomain is explicitly integrated in time become more computationally
expensive and eventually infeasible. The severity of this problem increases
with decreasing Mach number and makes unsteady incompressible problems
very computationally expensive. New integrative frameworks which coarse
grain the time integration of the molecular subdomain are therefore required.
Fortunately, for low speed steady problems implicit (iterative) methods

exist which provide solutions without the need for explicit integration of the
molecular domain to the global problem steady state. The particular method
used here is known as the Schwarz method and is discussed further in Section
4. This method decouples the global evolution timescale from the molecular
evolution timescale (and timestep) by achieving convergence to the global
problem steady state through an iteration between steady state solutions of
the continuum and molecular subdomains. Because the molecular subdomain
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is small, explicit integration to its steady state is feasible. Although the
steady assumption may appear restrictive, it is interesting to note that the
vast majority of both compressible and incompressible test problems solved
to date by hybrid methods have been steady.
A variety of other iterative methods may be suitable as they provide for

timescale decoupling. The choice of the Schwarz coupling method, which uses
state variables instead of fluxes to achieve matching, was motivated by the
fact (as explained below) that state variables suffer from smaller statistical
noise and are thus easier to prescribe on a continuum formulation.
The above observations do not preclude the use of the compressible for-

mulation in the continuum subdomain for low speed flows. In fact, precon-
ditioning techniques which allow the use of the compressible formulation at
very low Mach numbers have been developed [31]. Such a formulation can,
in principle, be used to solve the continuum subproblem while this is being
coupled to the molecular subproblem via an implicit (eg. Schwarz) iteration.
What should be avoided is a compressible, time-explicit, flux based coupling
procedure for solving essentially incompressible steady state problems.
The issues discussed above have not been very apparent to date because

in typical test problems published so far, the continuum and atomistic sub-
domains are of the same size (and, of course, small). In this case the large
cost of the molecular subdomain masks the cost of the continuum subdomain
and also typical evolution timescales (or times to steady state) are small. It
should not be forgotten, however, that hybrid methods make sense when the
continuum subdomain is significantly larger than the molecular subdomain.

2.3 Statistical Noise Considerations

The use of a compressible formulation based on flux coupling in the M → 0
limit leads to two additional disadvantages. The first, continuum subdo-
main stiffness (see Equation 1), may be remedied by implicit timestepping
methods [38] or preconditioning approaches [31]. The second, more serious
disadvantage, is linked to adverse signal to noise ratios (compared to non-
flux-based schemes) in connection with the averaging required for imposition
of boundary conditions from the molecular subdomain to the continuum sub-
domain. More specifically, in the case of an ideal gas (where compressible
formulations are typical) it has been shown in [19] that, for the same number
of samples, flux (shear stress, heat flux) averaging exhibits relative noise, Ef ,
which scales with Esv, the relative noise in the corresponding state variable
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(velocity, temperature) according to,

Ef ∼
Esv

Kn
(2)

Here Kn = λ/L is the Knudsen number based on the characteristic length-
scale of the transport gradients, L, and λ is the mean free path which is
expected to be much smaller than L since, by assumption, a continuum sub-
domain is present. It thus appears that flux coupling will be significantly
disadvantaged in this case, since the number of samples required to make
Ef ≈ Esv scales as 1/Kn2 times the number of samples required by state-
variable averaging.
On the other hand, Schwarz-type iterative methods based on the incom-

pressible physics of the flow require a fair number of iterations for conver-
gence (O(10)). These iterations require the re-evaluation of the molecular
solution. This is an additional computational cost that is not shared by time
explicit approaches. At this time, the best choice for incompressible unsteady
problems appears to be an explicit incompressible approach such as the one
used by O’Connell and Thompson [26]. We should recall however that unless
time coarse-graining techniques are developed, large, low-speed, unsteady
problems are currently too expensive to be feasible by any approach (see
discussion in Section 2.2).

2.4 Boundary condition imposition

Consider the molecular region Ω on the boundary of which, ∂Ω, we wish to
impose a set of hydrodynamic (macroscopic) boundary conditions. Typical
implementations require the use of particle reservoirs R (see Fig 1) in which
particle dynamics may be altered in such a way that the desired boundary
conditions appear on ∂Ω; the hope is that the influence of the perturbed
dynamics in the reservoir regions decays sufficiently fast and does not prop-
agate into the region of interest, that is, the relaxation distance both for the
velocity distribution function and the fluid structure is small compared to
the characteristic size of Ω.
In a dilute gas, the non-equilibrium distribution function in the continuum

limit has been characterized [8] and is known as the Chapman-Enskog distri-
bution. Use of this distribution to impose boundary conditions on molecular
simulations of dilute gases results in a robust, accurate and theoretically ele-
gant approach. Typical implementations [14] require particle generation and
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Figure 1: Continuum to atomistic boundary condition imposition using reser-
voirs.

initialization within R. Particles that move into Ω within the simulation
timestep are added to the simulation whereas particles remaining in R are
discarded. More details on implementation are provided in Section 4.
Unfortunately, for dense fluids where not only the particle velocities but

also the fluid structure is important and needs to be imposed, no theoretical
results for their distributions exist. A related issue is that of domain termi-
nation; due to particle interactions, Ω, or in the presence of a reservoir, R,
needs to be terminated in a way that does not have a big effect on the fluid
state inside of Ω.
As a result, researchers have experimented with possible methods to im-

pose boundary conditions. It is now known that similarly to a dilute gas, use
of a Maxwell-Boltzmann distribution for the velocities leads to slip [16]. Li
et al. [22] used a Chapman-Enskog distribution to impose boundary condi-
tions to generate a dense-fluid shear flow. In this approach, particles crossing
∂Ω acquire velocities that are drawn from a Chapman-Enskog distribution
parametrized by the local values of the required velocity and stress bound-
ary condition. Although this approach was only tested for a Couette flow, it
appears to give reasonable results (within molecular fluctuations). Because
in Couette flow no flow normal to ∂Ω exists, ∂Ω can be used as symmetry
boundary separating two back-to-back shear flows; this sidesteps the issue of
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domain termination.
In a different approach, Flekkoy et al. [11] use external forces to impose

boundary conditions. More specifically, in the reservoir region they apply an
external field of such magnitude that the total force on the fluid particles in
the reservoir region is the one required by momentum conservation. They
then terminate their reservoir region by using an ad-hoc weighing factor for
the distribution of this force on particles within R that prevents particles
from leaving the reservoir region. In particular, they chose a weighing factor
that diverges as particles approach the edge of R such that particles do not
escape the reservoir region while particles introduced there move towards
Ω. Particles introduced into the reservoir are given velocities drawn from
a Maxwell-Boltzmann distribution, while a Langevin thermostat keeps the
temperature constant. The method appears to be successful although the
non-unique (ad-hoc) choice of force fields and Maxwell-Boltzmann distribu-
tion makes it not very theoretically pleasing. It is also not clear what the
effect of these forces are on the local fluid state (it is well known that even
in a dilute gas [25] gravity driven flow exhibits significant deviations from
Navier-Stokes behavior) but this effect is probably negligible since force fields
are only acting in the reservoir region. Delgado-Buscalioni and Coveney [9]
refined the above approach by using an Usher algorithm to insert parti-
cles in the energy landscape such that they have the desired specific energy,
which is beneficial to imposing a desired energy current while eliminating
the risk of particle overlap at some computational cost. This approach uses
a Maxwell–Boltzmann distribution however for the initial velocities of the
inserted particles. Temperature gradients are imposed by a small number of
thermostats placed in the direction of the gradient. Although no proof exists
that the disturbance to the particle dynamics is small, it appears that this
technique is successful at imposing boundary conditions with moderate error.
Boundary conditions on MD simulations can also be imposed through the
method of constraint dynamics [26]. Although the approach in [26] did not
allow hydrodynamic fluxes across the matching interface, this feature can be
integrated into this approach with a suitable domain termination.
A method for terminating molecular dynamics simulations with small

effect on particle dynamics has been suggested and used in [16]. This sim-
ply involves making the reservoir region fully periodic. In this manner, the
boundary conditions on ∂Ω also impose a boundary value problem on R,
where the inflow to Ω is the outflow from R. As R becomes bigger, the
gradients in R become smaller and thus the flow field in R will have a small
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effect on the solution in Ω. The disadvantage of this method is the number of
particles that are needed to fillR as this grows, especially in high dimensions.
We believe that significant contributions can still be made by developing

methods to impose boundary conditions in hydrodynamically consistent and,
most importantly, rigorous approaches.

3 The direct simulation Monte Carlo

The DSMC method was proposed by Bird [7] in the 1960’s and has been
used extensively to model rarefied gas flows. A comprehensive discussion of
DSMC can be found in the review article by Alexander et. al. [2]. The DSMC
algorithm is based on the assumption that a small number of representative
“computational particles” can accurately capture the hydrodynamics of a
dilute gas as given by the Boltzmann equation. Air under standard conditions
narrowly meets the dilute gas criterion. Empirical results [7] show that a
small number (≈ 20) of computational particles per cubic molecular mean
free path is sufficient to capture the relevant physics. This is approximately 2
orders of magnitude smaller than the actual number of gas atoms/molecules
contained in the same volume. This is one source of DSMC’s significant
computational advantage over a fully molecular simulation.
DSMC solves the Boltzmann equation using a splitting approach: the

time evolution of the system is approximated by a sequence of discrete
timesteps, ∆t, in which particles undergo successively collisionless advection
and collisions. Collisions are performed between randomly chosen particle
pairs within small cells of linear size ∆x. The flow solution is determined
by averaging the individual particle properties over space and time. This
approach has been shown to produce correct solutions of the Boltzmann
equation in the limit ∆x, ∆t → 0 [30]. The splitting approach eliminates
the computational cost associated with integrating the equations of motion
of all particles, but most importantly allows the timestep to be significantly
larger (see also below) than a typical timestep in a hard sphere molecular
dynamics simulation. This is another reason why DSMC is significantly more
computationally efficient than “brute force” molecular dynamics.
Recent studies [18, 15] have shown that for steady flows, or flows which

are evolving at timescales that are long compared to the molecular relaxation
times, a finite timestep leads to a truncation error that manifests itself in the
form of timestep-dependent transport coefficients; this error has been shown
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to be of the order of 5% when the timestep is of the order of a mean free
time and goes to zero as ∆t2. Quadratic dependence of transport coefficients
on the collision cell size ∆x was shown in [3].

4 The Schwarz method for incompressible for-

mulations

Although in some cases compressibility may be important, a large number
of applications are typically characterized by flows where use of the incom-
pressible formulation results in a significantly more efficient approach [31].
As explained in the introduction Section, our definition of incompressible
formulation is based on the flow physics and not on the numerical method
used. Although we have used here a finite element discretization based on
the incompressible formulation, we believe that a preconditioned compress-
ible formulation could also be used to solve the continuum subdomain prob-
lem if it could be successfully matched to the molecular solution through
a coupling method which takes into account the elliptic nature of the (low
speed) problem to provide solution matching consistent with the flow physics
as outlined in Section 2.
Here, matching is achieved through an iterative procedure based on the

Schwarz alternating method for the treatment of steady-state problems.The
Schwarz method was originally proposed for molecular dynamics-continuum
methods in [16] and extended in [17], but it is equally applicable to DSMC-
continuum hybrid methods [1, 33]. This approach was chosen because of
its ability to couple different descriptions through Dirichlet boundary con-
ditions (easier to impose on dense-system molecular simulations compared
to flux conditions, because fluxes are non-local in dense systems), and its
ability to reach the solution steady state in an implicit manner by using
only steady solutions from each subdomain. The importance of the latter
characteristic cannot be overemphasized; the implicit convergence in time
through exchange of steady solutions guarantees timescale decoupling that is
necessary for the solution of macroscopic problems: while the integration of
molecular trajectories at the molecular timestep for total times correspond-
ing to macroscopic evolution times is, and will for a long time be, infeasible,
integration of the molecular region to its steady state is feasible.
Within the Schwarz coupling framework, an overlap region facilitates in-
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formation exchange between the continuum and atomistic subdomains in the
form of Dirichlet boundary conditions. A steady state continuum solution
is first obtained using boundary conditions taken from the atomistic sub-
domain solution. For the first iteration this latter solution can be a guess.
A steady state atomistic solution is then found using boundary conditions
taken from the continuum subdomain. This exchange of boundary conditions
corresponds to a single Schwarz iteration. Successive Schwarz iterations are
repeated until convergence, i.e. until the solutions in the two subdomains
are identical in the overlap region.
The Schwarz method was recently applied [1] to the simulation of flow

through micromachined filters. These filters have passages that are suffi-
ciently small that require a molecular description for the simulation of the
flow through them. Depending on the geometry and number of filter stages
the authors have reported computational savings ranging from 2 to 100. The
approach in [1] used a Maxwellian velocity distribution and a “control mech-
anism” to impose the flow field on the molecular simulation. This approach,
although successful in quasi one-dimensional flows, is not very general; ad-
ditionally, it is well known that using a Maxwellian distribution to impose
hydrodynamic boundary conditions, in general, if uncorrected will lead to slip
(discrepancy between the imposed and observed boundary conditions). As
discussed in Section 2.4 general boundary condition imposition on dilute-gas
molecular simulations can be performed using the Chapman-Enskog velocity
distribution [14, 8]. This approach eliminates the need for a feedback correc-
tion since supplying the correct local distribution function eliminates slip. A
Chapman-Enskog procedure for the Schwarz method is described below.
Extensions of the Schwarz method to time-dependent problems is cur-

rently under investigation [32], although, as discussed in Section 2.3, when
the Mach number is low, the disparity between the molecular and hydrody-
namic timescales makes this a very stiff problem.
Before proceeding with an example, a subtle numerical issue associated

with the incompressible formulation should be discussed. Let Γ1 be the
portion of the continuum subdomain which receives boundary data from the
molecular subdomain. Due to inherent statistical fluctuations in this data
the boundary condition on the complete continuum subdomain boundary
(φ ⊇ Γ1) may not conserve mass exactly. Although this phenomenon is an
artifact of the finite sampling of the atomistic solution (if a sufficiently large
–“infinite”– number of samples are taken, the mean field obtained from the
atomistic simulation should be appropriately incompressible), it is sufficient

11



to cause a numerical instability in the continuum calculation. The most
common remedy is to apply a correction to vΓ1

, the atomistic boundary data
to be imposed on Γ1, namely

(vΓ1
.n)corrected = vΓ1

.n−

∫

φ
vφ.ndS
∫

Γ1

dS
(3)

where n is the unit outward normal vector to the boundary and dS is an
element of the boundary. This correction essentially removes the discrepancy
in mass flux equally across all normal velocity components of vΓ1

. Tests with
various problems [16, 17, 33] indicate that it is successful at removing the
numerical instability.

4.1 Driven cavity test problem

In this Section we discuss the Schwarz alternating method in the context
of the solution of the driven cavity problem. We pay particular attention
to the imposition of boundary conditions on the DSMC domain using a
Chapman-Enskog distribution which is arguably the most rigorous and gen-
eral approach. For illustration and verification purposes we solve the steady
driven cavity problem (see Figure 2), in which the continuum subdomain is
described by the Navier-Stokes equations solved by finite element discretiza-
tion. The hybrid solution is expected to recover the fully continuum solution
since the atomistic subdomain is far from solid boundaries and from regions
of large velocity gradients. This test therefore provides a consistency check
for the scheme.
Standard Dirichlet velocity boundary conditions for a driven cavity prob-

lem were applied on the system boundaries; the horizontal velocity compo-
nent on the left, right and lower walls were held at zero while the upper wall
horizontal velocity was set to 50 m/s. The vertical velocity component on all
boundaries was set to zero. Despite the relatively high velocity, the flow is
essentially incompressible and isothermal. The pressure is scaled by setting
the middle node on the lower boundary at atmospheric pressure (1.013× 105

Pa).
Figure 3 shows the detailed structure of the approach used for exchanging

boundary conditions between the two subdomains. By centering DSMC cells
on the finite element (FE) nodes we can directly impose the molecular solu-
tion onto the continuum calculation (after correcting for mass conservation
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Figure 2: Continuum and atomistic sub-domains for Schwarz coupling for
the two–dimensional driven cavity problem.

using Equation 3). The imposition of boundary conditions on the atomistic
subdomain is facilitated by the particle reservoir shown in Figure 3 which,
in this implementation acts also as part of the overlap region. Particles are
created at locations x, y within the reservoir with velocities Cx, Cy drawn
from a Chapman-Enskog velocity distribution f(C) given by [13],

f(C) = f0(C)Γ(C) (4)

where, C = C/(2kT/m)1/2 is the normalized thermal velocity,

f0(C) =
1

π3/2
e−C

2

(5)

and,

Γ(C) = 1 + (qxCx + qyCy + qzCz)

(

2

5
C2 − 1

)

− 2(τxyCxCy + τxzCxCz + τyzCyCz)

− τxx(C
2
x − C2z )− τyy(C

2
y − C2z ) (6)
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with,

qi = −
κ

P

(

2m

kT

)1/2
∂T

∂xi
(7)

τij =
µ

P

(

∂vi
∂xj

+
∂vj
∂xi

−
2

3

∂vk
∂xk

δi,j

)

(8)

here qi and τij are the dimensionless heat flux and stress tensor respectively
with µ, κ, P and v = (v1, v2, v3) being the viscosity, thermal conductivity,
pressure and mean fluid velocity. The Chapman Enskog distribution veloci-
ties can be generated using an “acceptance-rejection” scheme as detailed by
Garcia and Alder [13].
The number and spatial distribution of particles in the reservoir are cho-

sen according to the overlying continuum cell mean density and density gradi-
ents. After particles are created in the reservoir they move for a single DSMC
timestep. Particles that enter DSMC cells are incorporated into the standard
convection/collision routines of the DSMC algorithm. Particles that remain
in the reservoir are discarded. Particles that leave the DSMC domain are
also deleted from the computation.
The rapid convergence of the Schwarz approach is demonstrated in Fig-

ure 4. The continuum numerical solution is reached to within ±10% at the
3rd Schwarz iteration and to within ±2% at the 10th Schwarz iteration.
Our error estimate which includes the effects of statistical noise [19] and dis-
cretization error due to finite timestep and cell size is approximately 2.5%.
Similar convergence of the vertical velocity field is also observed.
The close agreement with the fully continuum results indicates that the

Chapman-Enskog procedure is not only theoretically appropriate but also ro-
bust. Despite a Reynolds number of Re ≈ 1, the Schwarz method (originally
only shown to converge for elliptic problems [23]) converges with negligible
error. This is in agreement with the findings of Liu [24] who has recently
shown that the Schwarz method is expected to converge for Re ∼ O(1). Ex-
tension of the the Schwarz method to flows with higher Re ∼ O(100) has
also been possible [12] provided suitable preconditioning is utilized.
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Figure 3: Schematic of the boundary condition imposition approach. Only
the bottom left corner is shown.

5 Adaptive mesh and algorithm refinement

for compressible formulations

As discussed above, consideration of the compressible equations of motion
leads to hybrid methods which differ significantly from their incompress-
ible counterparts. The hyperbolic nature of compressible flows means that
steady state formulations typically do not offer a significant computational
advantage, and as a result, explicit time integration is the preferred solution
method and flux matching is the preferred coupling method. Given that the
characteristic evolution time, τh, scales with the system size, the largest prob-
lem that can be captured by a hybrid method is limited by the separation of
scales between the molecular integration time and τh. Local mesh refinement
techniques [14, 34] minimize the regions of space that need to be integrated
at small CFL timesteps (due to a fine mesh), such as the regions adjoining
the molecular subdomain. Implicit timestepping methods [38] can also be
used to speed up the time integration of the continuum subdomain. Unfor-
tunately, although both approaches enhance the computational efficiency of
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the continuum sub-problem, they do not alleviate the issues arising from the
disparity between the molecular timestep and the total integration time.
As explained in the introduction, overwhelming computational costs can

be incurred when using a time explicit flux based coupling approach to cap-
ture steady phenomena where compressibility effects are negligible as is in
most cases in dense fluids. In this case the integration timestep of the contin-
uum subdomain also becomes of the order of the molecular timescale, while
the continuum subdomain is, presumably, much larger than the molecular
subdomain and evolves at a much longer timescale. For an example, see
in [11], where a compressible formulation for liquid flow results in a CFL
timestep of 0.17 τLJ where τLJ ≈ O(10−12s) is the Lennard-Jones timescale.
This appears to not have been fully appreciated by various groups which have
attempted to develop dense-fluid hybrid methods based on the compressible
continuum formulation and flux based matching procedures to solve steady
and essentially incompressible problems.
In hybrid continuum-DSMC methods, locally refining the continuum so-

lution cells to the size of DSMC cells leads to a particularly seamless com-
pressible hybrid formulation in which DSMC cells differ from the neighboring
continuum cells only by the fact that they are inherently fluctuating (the
DSMC timestep required for accurate solutions–see [3, 18, 15]–is very similar
to the CFL timestep of a compressible formulation). Thus a finite volume
formulation can be used to couple the two subdomains quite naturally. In
such a method [18, 19] the fluxes of mass, momentum and energy from DSMC
to the continuum subdomain given by particles leaving the DSMC region and
traveling towards the continuum subdomain can be used directly for finite
volume integration. Imposition of the continuum “interface conditions” onto
DSMC requires the use of reservoirs similarly to the procedure outlined in
Section 4.1. The flux of mass, momentum and energy from the continuum
to the atomistic domain is provided by the particles that upon initialization
in the reservoir at the continuum solution conditions travel into the DSMC
region. In this paper we review recent developments [34, 35] which embed
this methodology into an adaptive mesh refinement framework.
Another characteristic inherent to compressible formulations is the pos-

sibility of describing parts of the domain by the Euler equations of motion
[34]. In that case, consistent coupling to the molecular formulation can be
performed using a Maxwell-Boltzmann distribution [14].
In a recent paper [4], Alexander et al. have shown that explicit time-

dependent flux-based formulations preserve the fluctuating nature of the
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molecular description within the molecular regions but the fluctuation ampli-
tude decays rapidly within the continuum regions; correct fluctuation spectra
can be obtained in the entire domain by solving a fluctuating hydrodynamics
formulation [21] in the continuum sub-domain.

5.1 Fully adaptive mesh and algorithm refinement for

a dilute gas

The compressible formulation of Garcia et al. [14], referred to as AMAR
(Adaptive Mesh and Algorithm Refinement), pioneered the use of mesh re-
finement as a natural framework for the introduction of the molecular de-
scription in a hybrid formulation. In AMAR the typical continuum mesh
refinement capabilities are supplemented by an algorithmic refinement (con-
tinuum to atomistic) based on continuum breakdown criteria. This seamless
transition is both theoretically and practically very appealing.
In what follows we briefly discuss a recently developed [34, 35] fully adap-

tive AMAR method. In this method DSMC provides an atomistic descrip-
tion of the flow while the compressible two–fluid Euler equations serve as
the continuum–scale model. The continuum and atomistic representations
are coupled by matching fluxes at the continuum–atomistic interfaces and
by proper averaging and interpolation of data between scales. This is per-
formed in three steps; a) the continuum solution values are interpolated to
create DSMC particles in the reservoir region, here called buffer cells, b)
the conserved quantities in each continuum cell overlaying the DSMC re-
gion are replaced by averages over particles in the same region and c) fluxes
recorded when particles cross the DSMC interface are used to correct the
continuum solution in cells adjacent to the DSMC region. This coupling
procedure makes the DSMC region appear as any other level in an AMR
grid hierarchy. Similarly to the overlap region described for the Schwarz
method above, the Euler solution information is passed to the particles via
buffer cells surrounding the DSMC region. At the beginning of each DSMC
integration step, particles are created in the buffer cells using the continuum
hydrodynamic values.
The above algorithm allows grid and algorithm refinement based on any

combination of flow variables and their gradients. Density gradient based re-
finement has been found to be generally robust and reliable [34]. Concentra-
tion gradients or concentration values within some interval are also effective
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Figure 5: Moving Mach 10 shock wave though Argon. The AMAR algorithm
tracks the shock by adaptively moving the DSMC region with the shock front.

refinement criteria especially for multi-species flows involving concentration
interfaces. In this particular implementation, refinement is triggered by spa-
tial gradients exceeding user defined tolerances. This approach follows from
the continuum breakdown parameter method proposed by Bird [6].
Using the AMR capabilities provided by the Structured Adaptive Mesh

Refinement Application Infrastructure (SAMRAI) developed at the Lawrence
Livermore National Laboratory [27], the above adaptive framework has been
implemented in a fully three-dimensional, massively parallel form in which,
multiple molecular (DSMC) patches can be introduced or removed as needed.
Figure 5 shows the adaptive tracking of a shockwave of Mach number

10 used as a validation test for this method. Density gradient based mesh
refinement ensures the DSMC region tracks the shock front accurately. Fur-
thermore, as shown in Figure 6 the density profile of the shock wave remains
smooth and is devoid of oscillations that are known to plague traditional
shock capturing schemes [5, 37].
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Figure 6: Moving Mach 10 shock wave though Argon. The AMAR pro-
file (red dots) is compared with the analytical time evolution of the initial
discontinuity (blue lines). τm is the mean collision time.

20



6 Discussion

One of the most important messages of this paper is that boundary condi-
tion imposition on molecular domains is quite independent of the choice of
solution coupling approach. As an example, consider the Schwarz method
which provides a recipe for making solutions in various subdomains glob-
ally consistent subject to exchange of Dirichlet conditions. The imposition
of these boundary conditions can be achieved through any method and no
certain method is favored by the coupling approach. Flexibility in adopt-
ing appropriate elements from previous approaches, and the importance of
choosing the coupling method according to the flow physics are key steps to
the development of more sophisticated, next-generation hybrid methods.
Although hybrid methods provide significant savings by limiting molec-

ular solutions only to the regions where they are needed, solution of time-
evolving problems which span a large range of timescales is still not possible
if the molecular domain, however small, needs to be integrated for the total
time of interest. New frameworks are therefore required which allow timescale
decoupling or coarse grained time evolution of molecular simulations.
Significant computational savings can be obtained by using the incom-

pressible formulation when appropriate for steady problems. Neglect of these
simplifications can lead to a problem that is simply intractable when the con-
tinuum subdomain is appropriately large. It is interesting to note that, when
a hybrid method was used to solve a problem of practical interest [1] while
providing computational savings, the Schwarz method was preferred because
it provides a steady solution framework with timescale decoupling.
For dilute gases the Chapman-Enskog distribution provides a robust and

accurate method for imposing boundary conditions. Further work is required
for the development of similar frameworks for dense liquids.
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