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Regulation of Protein Mobility via Thermal Membrane Undulations

Frank L. H. Brown
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510

ABSTRACT The in-plane diffusivelike motion of membrane bound proteins on the surface of cells is considered. We suggest,
on the basis of theoretical arguments and simulation, that thermally excited undulations of the lipid bilayer may serve as
a mechanism for proteins to hop between adjacent regions on the cell surface separated by barriers composed of internal
cellular structure (e.g., the cytoskeleton). We specifically investigate the mobility of band 3 dimer on the surface of red blood
cells where the spectrin cytoskeletal meshwork defines a series of ‘‘corrals’’ on the cell surface known to hinder protein motion.
Previous models of this system have postulated that the cytoskeleton must deform to allow passage of membrane bound
proteins out of these corral regions and have ignored fluctuations of the bilayer. Our model provides a complemen-
tary mechanism and we posit that the mobility of real proteins in real cells is likely the result of several mechanisms acting in
parallel.

INTRODUCTION

Proteins that span the cell membrane mediate communica-

tion between the cell and its surroundings (Lodish et al.,

1995). Here we define communication in its broadest

possible sense to include the exchange of information,

materials and/or energy. A complete picture of how cells

function and interact with their immediate surroundings

requires a detailed understanding of how these membrane

bound proteins function, not only as single protein units, but

also as dynamic components of the membrane environment

where they reside.

One fundamental, and easily studied, property of

membrane bound proteins is protein mobility in the plane

of the membrane surface. Such mobility has consequences

for cellular functioning (Lauffenburger and Linderman,

1993; Giancotti and Ruoslahti, 1999; Berg and Purcell,

1977) and, interestingly, even such a simple observable can

exhibit vastly different quantitative and qualitative behaviors

depending on the specifics of the cellular system being

studied (Saxton and Jacobson, 1997). Many proteins exhibit

diffusive motion on the surface of the cell, which is

consistent with the simplest traditional models of the cell

membrane, e.g. the fluid mosaic model (Singer and Nicolson,

1972; Saffman and Delbruck, 1975). Some systems display

other forms of motion however. In extreme examples,

membrane bound proteins may show no motion on ex-

perimental time and length scales (Webb et al., 1981) or may

exhibit ballistic motion with a well defined velocity (Wilson

et al., 1996). Quite often it is impossible to characterize

protein motion as simply being stationary, diffusive or

ballistic (Saxton and Jacobson, 1997; Feder et al., 1996). In

these cases the motion is often referred to as being

anomalously diffusive, which simply means that the mean

square displacement of the protein grows with a nonintegral

power of time between 0 and 2. Many different models can

be invoked to explain these various dynamical behaviors for

membrane proteins (Jacobson et al., 1995; Saxton and

Jacobson, 1997). Quite generally it is necessary to know

something about the internal structure and biochemistry of

the cell to have a hope of understanding what factors

contribute to the observed mobilities.

The cellular cytoskeleton is often linked to the mobility (or

lack thereof) of proteins spanning the membrane surface

(Fleming, 1987; Saxton and Jacobson, 1997; Winckler et al.,

1999; Saxton, 1990b). Erythrocytes and, in particular, band 3

protein on the surface of erythrocytes have been particularly

well studied in this context (Cherry, 1979; Schindler et al.,

1980; Sheetz et al., 1980; Koppel et al., 1981; Sheetz, 1983).

The dense regular network of spectrin filaments attached to

the red blood cell membrane creates a series of corrals in

which proteins exhibit bound diffusive behavior (Fig. 1).

Occasionally, a protein may escape from its corral to a

neighboring corral and this infrequent hopping from corral to

corral to corral defines a random walk on a much slower time

scale than the diffusive motion observed within the confines

of the corral. This model for protein mobility where two

diffusion constants coexist (a microscopic diffusion constant

for motion within a corral and a macroscopic diffusion

constant for global motion over the surface of the cell)

because of the interference of the cellular cytoskeleton has

become known as the ‘‘matrix’’ (Sheetz, 1983) or ‘‘skeleton

fence’’ (Kusumi et al., 1993) model.

Though the basic picture of the skeleton fence model

seems to have held up to increasingly stringent experimental

tests (at least for red blood cells) (Tsuji and Ohnishi, 1986;

Tsuji et al., 1988; Edidin et al., 1991; Corbett et al., 1994;

Kusumi and Sako, 1996; Tomishige, 1997; Tomishige et al.,

1998), we still do not fully understand how global motion

over the cell surface occurs. Though we know that proteins

are occasionally able to escape from corrals on the red blood
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cell, we do not know what conditions allow this to happen.

In the language of physical chemistry, we have limited

understanding of the reaction coordinate for passage between

adjacent corrals. Previous theoretical studies have either

utilized very general models to fit the experimental data

(Saxton, 1995) or have assumed that rearrangements of the

spectrin network are necessary for a protein to escape

confinement (Saxton, 1989; Saxton, 1990a; Saxton, 1990b;

Boal, 1994; Boal and Boey, 1995; Leitner et al., 2000;

Brown et al., 2000). In this paper we present another

alternative, that the lipid bilayer itself may deform in such

a way as to promote passage of the membrane protein over

a spectrin filament (Fig. 1).

The dynamic nature of phospholipid bilayers is well

documented. In the red blood cell, for example, thermal

undulations of the membrane surface have been implicated

in the flicker effect (Brochard and Lennon, 1975). Under

appropriate concentrations of osmolites, cells and vesicles

enclose less volume than the surface area of the membrane

would suggest (Dai and Sheetz, 1995; Helfrich and Servuss,

1984), a fact clearly demonstrated when external stimuli act

to draw out the membrane surface (Fygenson et al., 1997).

And, thermally excited membrane undulations have been

implicated in microscopic mechanisms for cellular motility

(Peskin et al., 1993). The above observations rely upon the

fact that membranes typically enclose a volume less than

maximal for a given surface area. For some simple cellular

systems (e.g. the red blood cell where complex structures

like microvilli, coated pits, etc. do not exist), this excess area

is taken up by undulations of the bilayer surface. Such

undulations evolve in time as a result of thermal motion.

Theoretical work on lipid bilayers and related systems has

shown that fairly simple mathematical treatments of bilayer

dynamics are often in good agreement with experiment.

Models appropriate to the red blood cell under physiological

conditions typically include only a bending rigidity for

bilayer energetics (Helfrich, 1973) and treat dynamics within

the framework of linear response (Milner and Safran, 1987;

Schneider et al., 1984; Brochard and Lennon, 1975; Granek,

1997). The resulting equations for membrane dynamics are

well suited for simple simulation as well as analytical study

although we are unaware of previous studies to exploit this

fact. We will outline a simple Fourier space Brownian

dynamics algorithm that allows us to stochastically evolve

a thermal membrane surface forward in time. The ensemble

of evolving membrane shapes lead us to conclude that

thermal membrane undulations are likely to play a role in

global protein transport over the surface of erythrocytes.

The organization of this paper is as follows. In the next

section we present a brief review of the equations govern-

ing membrane dynamics in the linear response regime and

derive our Fourier space Brownian dynamics algorithm to

exploit the simplicity of these equations within a simulation

framework. The following sections make connection between

these dynamic membrane undulations and the regulation of

transmembrane protein transport on cell surfaces both

through theoretical arguments and simulation. Our results

indicate that thermal membrane undulations may play an

important role in the motion of transmembrane proteins. In the

last section we discuss our results and conclude.

A DYNAMIC MEMBRANE MODEL

A popular tool for dynamic studies of membrane systems

is molecular dynamics (MD) simulation (Tieleman et al.,

1997). MD simulation of lipid bilayers has become popular

because it clear that much biology depends upon the

dynamic properties of the lipid bilayer and the techniques

of MD are very well established. There are, however, many

interesting problems related to dynamic membrane behavior

that are completely inaccessible to MD simulation under

current computational limitations. The diffusion of mem-

brane bound proteins is one example, but essentially any

behavior that occurs on length scales longer than tens of

nanometers and time scales slower than tens of nanoseconds

is inaccessible to MD simulation. Dynamic simulations on

simplified bilayer models (where lipids are represented as

spheres or ellipsoids, etc.) have seen some discussion in the

recent literature (Drouffe et al., 1991; Goetz and Lipowsky,

1998; Shelley et al., 2001; Ayton et al., 2001), but such

techniques are in their infancy and it remains to be seen what

role they will play in the study of biology.

Previous theoretical studies of the properties of biological

membranes over length scales too large for direct MD

FIGURE 1 Schematic illustration of the be-

havior of transmembrane proteins in the red

blood cell. The cytoskeleton immediately

below the membrane hinders protein transport

by confining the protein temporarily to a local-

ized corral (a). Jumps from one corral to

another occur slowly and have previously been

postulated to result from dynamic reorganiza-

tion of the cytoskeletal matrix (either by

dissociation of spectrin tetramers (b) or thermal

fluctuations in the shape of the cytoskeleton (c))

or by infrequent crossing events where the protein is thermally kicked hard enough to force its way over a relatively static cytoskeleton (d). The present study

considers a different possibility—shape fluctuations of the lipid bilayer may allow for corral hopping (e).

Regulation of Protein Mobility 843

Biophysical Journal 84(2) 842–853



simulation have, in large part, concentrated on the static

elastic properties of lipid bilayers in the tradition of the work

of Helfrich (Helfrich, 1973). Thermal fluctuations of the

membrane surface have been theoretically implicated in

the temperature dependent interactions between membrane

bound inclusions (i.e. proteins) (Golestanian et al., 1996;

Goulian et al., 1993) and in changes to membrane rigidity

with temperature (Helfrich, 1985). The time dependence of

thermal fluctuations has been analytically examined through

the study of autocorrelation functions (Milner and Safran,

1987; Schneider et al., 1984; Brochard and Lennon, 1975;

Granek, 1997), which led to a purely physical explanation

of the flicker effect in erythrocytes (Brochard and Lennon,

1975). A recent study of the immunological synapse (Qi

et al., 2001) has utilized a time-dependent Landau-Ginzburg

model for membrane dynamics, but in a regime where

thermal fluctuations do not play an important role. The only

previous work we are aware of that has utilized a dynamically

fluctuating elastic membrane simulation is a study by Laradji

on polymer adsorption to membranes (Laradji, 1999). This

study simplified computation by suppressing fluctuations in

one of the two directions defining the membrane plane and

by ignoring hydrodynamic contributions to the dynamics.

We shall model a thermally fluctuating membrane surface

by converting the equations of linear response that have been

previously derived for membrane dynamics (Brochard and

Lennon, 1975; Schneider et al., 1984; Milner and Safran,

1987; Granek, 1997) into an efficient numerical scheme for

evolving a free membrane sheet in time. The starting point

for our algorithm is the Helfrich bending free-energy for

small deformations (Helfrich, 1973)

H ¼ Kc

2

ð
dx dyðr2hðx; yÞÞ2

¼ Kc

2L2
+
k

k4jhkj2; (1)

in its real space (top) and Fourier space (bottom)

formulations. Here h(x,y) is the displacement of the

membrane surface away from the xy plane that defines

the zero energy configuration of the membrane. Kc is the

bending modulus, L is the linear dimension of the membrane

surface and k are the wavevectors defining the displacement

in Fourier space, hk ¼
R
dx dy e�ik�rhðrÞ. The Fourier

description is appealing because each of the normal modes,

hk, is independent.

Under the low Reynolds number conditions of the cellular

environment (Purcell, 1977) an overdamped description of

the membrane’s dynamics is appropriate and the assump-

tions of linear response provide us with a Langevin de-

scription for the dynamics of each one of these modes

_hhkðtÞ ¼ �vðkÞhkðtÞ þ jkðtÞ (2)

where v(k) is the relaxation frequency for mode hk and jk is

the corresponding component of the (Gaussian white) noise

that is related to v(k) by the usual fluctuation-dissipation

relationship (VanKampen, 1992). These relaxation frequen-

cies, including hydrodynamic effects from coupling between

membrane and cytoplasm, have been calculated (Brochard

and Lennon, 1975; Schneider et al., 1984; Granek, 1997) as

vðkÞ ¼ Kck
3

4h
(3)

with h the viscosity of the surrounding solvent. In the case

of a cell membrane h is taken to be the viscosity of the

cytoplasm which dominates the (much lower) viscosity of

the surrounding water. To simulate the dynamics of Eq. 2

it is more convenient and completely equivalent to draw

displacements from the associated Ornstein-Uhlenbeck pro-

cess (VanKampen, 1992)

PðhkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bKck4

2pL2

r
exp �bKck

4

2L2
jhkj2

� �

PðhkðtÞjhkð0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bKck4

2pL2ð1 � e�2vðkÞtÞ

s

3 exp �bKck
4

2L2

jhkðtÞ � hkð0Þe�vðkÞtj2

ð1 � e�2vðkÞtÞ

� �
:

(4)

Here, PðhkÞ is the equilibrium probability distribution for the

mode hk and PðhkðtÞjhkð0ÞÞ is the conditional probability

density for the mode to take a value of hkðtÞ at time t given

a zero time value for the mode of hkð0Þ. Temperature, which

enters the through the random force and the fluctuation-

dissipation relationship, is found in b ¼ 1=ðkbTÞ where kb

is Boltzmann’s constant. These probability densities are

solutions to the Fokker-Planck formulation of Langevin Eq.

2. Although we have used times t and 0 in the equation, the

same probability arises for any times t, t9 with t � t9 ¼ t
because the process is Markovian. As the above probability

distributions are Gaussian, it is a simple matter to evolve hk
forward in time utilizing standard normal deviate generators

(Press et al., 1994).

The simplicity of Eq. 2 in k space has allowed for

arbitrarily large time steps with perfect accuracy. The

simulation scheme described here is essentially the tradi-

tional Brownian dynamics (BD) algorithm (Ermak and

McCammon, 1978), although this implementation is unusual

in that the dynamics are performed in Fourier space and the

dynamics are ultrasimple because the system is completely

harmonic. We believe this to be the first implementation

of a Fourier space based dynamic simulation algorithm

for membrane surfaces, but we note that Fourier space

Monte Carlo algorithms have been introduced previously by

Gouliaev and Nagle (Gouliaev and Nagle, 1998b, Gouliaev

and Nagle, 1998a). Fig. 2 displays a representative time

series of membrane structures computed using this algorithm

with parameters (Kc,h,L,T) chosen to represent the red

blood cell membrane and as tabulated in Table 1.
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CONNECTION TO PROTEIN MOBILITY

The motivating hypothesis for this study is that membrane

undulations may serve as a mechanism for global protein

transport over the surface of the red blood cell. In the

previous section, we derived a set of probabilistic equations

for the stochastic evolution of a square sheet of membrane

in the absence of tension and with periodic boundary

conditions. In this section we argue that these equations

imply an effective dynamic gating at the edge of the corral

regions that places the macroscopic diffusion coefficient

approximately in the range observed by experiment. In the

following section we discuss simulations that couple this

dynamic gating to protein diffusion to assess the more

quantitative implications of our model.

We shall approximate the geometry of a spectrin corral as

a square with sides of length 140 nm (Brown et al., 2000;

Tomishige, 1997; Tomishige et al., 1998). Though the

geometry of a true erythrocyte spectrin corral would more

correctly be represented as a triangle (Lodish et al., 1995;

Steck, 1989), this approximation allows for a simple

analytical treatment of the membrane surface (as shown

above) and has been invoked previously for other models of

transport in the band 3-red blood cell system (Leitner et al.,

2000; Brown et al., 2000). Additionally, corral shape is not

expected to strongly influence the escape of proteins out of

a corral region once an effective gating mechanism at the

corral boundary has been specified (Saxton, 1995).

We are interested in obtaining from the temporal evolution

implied by Eq. 4 the statistical prevalence of height

fluctuations larger than the dimension of the cytoplasmic

domain of band 3 in the direction normal to the membrane

plane. Recent experiments have shown this length to be

;6 nm (Zhang et al., 2000). Our model assumes that a

band 3 dimer will bump into the cytoskeleton as it laterally

diffuses unless the membrane is 6 nm or higher than base-

line. Inasmuch as the intention of this model is to assess

the importance of thermal membrane undulations, we neglect

motion of the cytoskeleton. The possibility of cytoskeletal

dynamics affecting intercorral jumps has been examined

elsewhere (Saxton, 1989, 1990a,b; Boal, 1994; Boal and

Boey, 1995; Leitner et al., 2000; Brown et al., 2000).

A cartoon for the relation between membrane, band 3

dimer and the spectrin cytoskeleton is displayed in Fig. 3.

Ideally, our model for membrane dynamics within the corral

region would include pinning to the cytoskeleton at

approximately four sites (the points of spectrin-membrane

attachment via ankyrin (Steck, 1989) at approximately the

midpoint of each spectrin chain segment). Unfortunately,

such pinning would render a dynamic model beyond the

realm of simple analytical treatment. Though theories do

exist to predict the conformations and partition function of

pinned or anchored membranes (see for example (Weikl and

Lipowsky, 2000)) we are unaware of any work dealing with

such interactions within a dynamic model and, as we will

argue, dynamic fluctuations are of paramount importance in

this system. We therefore simulate the membrane undu-

lations as though the membrane were a free sheet.

Interactions with the cytoskeleton are included indirectly

FIGURE 2 A time series of snapshots for

a dynamic membrane surface obtained from

one realization of the stochastic formula Eq. 4

utilizing physical parameters appropriate for

red blood cells under physiological conditions

(Table 1). The bottom row is identical to the top

row, but with the z axis expanded to emphasize

small wavelength fluctuations. Note that the

long wavelength modes are relatively stable

over this time scale, but shorter wavelength

excitations are evolving. This behavior is to be

expected from the k dependence in Eq. 3.

TABLE 1 Simulation parameters for band 3 on

erythrocyte membrane

Parameter Description Value Reference

Kc Bending modulus 23 1013 ergs *

h Cytoplasm viscosity 0.06 poise *

T Temperature 378C Body temp.

h0 Depth of cytoplasmic domain

of band 3

6 nm y

L Corral dimension 140 nm z,§,{

D Band 3 diffusion constant 0:53mm2 s�1 z,§

Np Initial number of dimers

per corral

33 {

l Lattice spacing (diameter

of dimer)

7 nm {

Dt Random walk time step 2.3 3 10�5 s {

*Brochard and Lennon, 1975
yZhang et al., 2000
zTomishige, 1997
§Tomishige et al., 1998
{Brown et al., 2000
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by truncating the sheet to the size of the corral (thus

eliminating modes of motion at longer wavelengths than

the corral dimension) and setting the k ¼ 0 mode of the

sheet initially equal to zero. Inasmuch as v0 ¼ 0, this

mode remains unexcited over all times. By virtue of

h0 ¼
R
dxdy hðrÞ, h0 ¼ 0 implies that the average height

displacement of the membrane over the entire corral is zero.

This restriction effectively pins the membrane to the plane of

the cytoskeleton by requiring that any fluctuation above the

cytoskeleton at a given r be compensated for by a negative

fluctuation elsewhere. Large fluctuations are effectively

quenched by this mechanism, albeit in a manner arguably

different than that imposed by a series of pinning sites across

the membrane surface. Interactions between the diffusing

protein and the cytoskeleton are also indirectly included in

our model. The local height of the membrane surface will

be used to model a dynamic gating function at the corral

boundaries. Proteins are free to pass when the gate is open,

but are otherwise trapped. This gating behavior will be

discussed further below.

The first question we may ask is what is the equilibrium

probability for h(r) to exceed the h0 ¼ 6 nm minimum

fluctuation height to allow protein hopping to occur?

Inasmuch as our membrane Hamiltonian is quadratic in

h(r), we know that the probability distribution for h(r) must

be Gaussian and, consequently, may be calculated from the

second moment of h(r) alone (VanKampen, 1992). This

calculation is conveniently carried out in Fourier space to

yield (angular brackets indicate averaging over the canonical

distribution defined by the Hamiltonian of Eq. 1)

hhðrÞhðrÞi ’ L2

4p3Kcb
(5)

so that

PðhÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2Kcb

L2

r
exp � 2p3Kcbh2

L2

� �
: (6)

From this we see that the probability for h to exceed h0 is

given by an error function ðerfcðxÞ[ 2=
ffiffiffiffi
p

p R ‘
x
e�t2dtÞ

Pðh[h0Þ ¼ hQðh0Þi ’
1

2
erfc h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3Kcb

L2

r !
: (7)

Here, Q(x) is the Heaviside step function. Fig. 4 plots this

function for h0 in the range of 2–10 nm. We see that for h0 ¼
6 nm the probability is ;15%. On this basis, we might

expect that we could model the macroscopic diffusion over

the surface of the cell as resulting from diffusion on a plane

with semipermeable barriers (spectrin filaments) that allow

FIGURE 3 A comparison between the structure of the membrane surface

in erythrocytes and our simplified model. In the cell, the lipid bilayer is

attached to the spectrin skeleton via ankyrin, a transmembrane protein that

attaches to the midpoints of each spectrin chain. A mobile protein has a

chance to escape the corral only when a fluctuation causes a gap of at least h0

between spectrin and the bilayer sheet. In this work we concentrate

on membrane fluctuations as opposed to rearrangements of the spectrin

network. In our model, the membrane within a corral region is modeled as an

elastic sheet subject to curvature energetics and thermal fluctuations within

a periodic square geometry. The sheet is pinned to baseline (the plane of the

cytoskeleton) by virtue of a vanishing amplitude for the k ¼ 0 Fourier mode

of the system. Fluctuations in height of this sheet at a given point in the x,y

plane mimic the shape fluctuations of the membrane surface within a corral.

Heights greater than h0 allow for passage of a protein dimer within our

model whereas smaller (or negative) displacements do not.

FIGURE 4 The equilibrium probability that h(r) exceeds h0 as a function

of h0. This plot is simply an error function as defined by Eq. 7. For h0 ¼ 6

nm, this probability is ;15%.
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passage of the protein in 15% of the cases when a protein

bumps into it. In fact, such a model would give agreement

with experiment only when the transmission probability is

lower by two orders of magnitude (Brown et al., 2000).

The resolution to this discrepancy is to consider the

dynamics of the system as opposed to the statics. Yes, there

is a protein sized gap between membrane and cytoskeleton

;15% of the time, but this number is irrelevant if such

openings are too short-lived to allow a protein to diffuse over

the cytoskeletal barrier (see a related discussion on transition

regions in the paper by Leitner et al. (Leitner et al., 2000)).

To address this question, consider the number correlation

function for greater than h0 fluctuations defined by

CðtÞ[ hQðhðtÞ � h0ÞQðhð0Þ � h0Þi � P2ðh[h0Þ
Pðh[h0Þ � P2ðh[h0Þ

: (8)

This function serves as a measure of the statistical prevalence

for a fluctuation with amplitude greater than h0 to last for

time t. We have evaluated this function by generating a time

series of membrane conformations in Fourier space via eq. 4,

transforming to real space and averaging over time. We

emphasize that the maximal k vector included in this

procedure was p/7 nm�1 which was chosen to neglect

fluctuations at the length scale of the band 3 dimer or shorter.

The result of this process is plotted in Fig. 5. The relevant

time scale to consider is the time associated with diffusive

motion of the protein over a distance comparable to

traversing the spectrin barrier. Because the radius of the

dimer and spectrin filament are each ;3–4 nm (Boal and

Boey, 1995; Tomishige, 1997; Zhang et al., 2000; Leitner

et al., 2000), we want to know the characteristic time for

diffusion of the dimer a distance of approximately l ¼ 7 nm

(this scale also corresponds to the level of precision in our

previous study (Brown et al., 2000) and will be used in the

simulations of the next section). Given that the microscopic

diffusion coefficient for a band 3 dimer is 0.53 mm2 s�1 we

estimate the time for barrier traversal to be approximately

Dt ¼ l2=4D ¼ 2:33 10�5 s. Our correlation function at a

time of 2.3 3 10�5 s (the ending point for the data in Fig. 5)

is ;9%.

Also plotted in Fig. 5 are two simpler functional forms for

correlation functions that we have fit to the data. The first fit

is a simple exponential decay. Clearly, this is a very poor

approximation—decaying much too slowly at early times

and too quickly at later times. This is not unexpected

because we would expect exponential decay for Markovian

jumping between two well-defined states with a physical

barrier to cross and we have no such barrier in this case;

h0 is just an arbitrary height within the context of the

fluctuating membrane equations. The second functional

form is obtained by assuming the membrane motion normal

to the plane at a given x,y point may be described as

diffusion in a harmonic well (i.e., the Ornstein-Uhlenbeck

process) of width implied by the Gaussian form of the

equilibrium probability distribution (Eq. 6). The value of the

effective diffusion constant, obtained by fitting to the true

correlation function, is determined to be ~DD ¼ 0:4mm2s�1.

We note that the functional form for this decay is given as

(Zhou et al., 1998)

CðtÞ ¼ 1

2
ffiffiffiffi
p

p
Pðh[h0Þ

ð‘
h0=

ffiffiffiffiffiffiffi
2hh2i

p� � dy erfcðHÞ
"

3 expð�y2Þ � Pðh[h0Þ
#,

ð1 � Pðh[h0ÞÞ

H [
h0=

ffiffiffiffiffiffiffiffiffiffiffi
2hh2i

p� �
� jyffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � j
2

p
j[ exp �

~DDt

hh2i

� �
: (9)

Though this functional form does a better job of reproducing

the decay of the correlation function, it still decays too slowly

at early times and too quickly at long times. The

superposition of all the modes of the membrane sheet

contribute to C(t) and so we should not be surprised that

a simple one-dimensional model is unable to reproduce the

decay exactly. In a qualitative sense, C(t) reflects many

superposed stochastic processes with a similar form to Eq. 9,

but with differing ~DD values and variances. The superposition

of these modes gives rise to decays over many different time

scales and hence we see both quickly and slowly decaying

components in the total correlation function. Long wave-

FIGURE 5 The number correlation function, C(t) as a function of time for

hðrÞ[h0 ¼ 6 nm height fluctuations as expressed in Eq. 8. The solid line

represents the results for our model. For comparison, the dashed line is an

exponential fit to this data and the dotted line is a fit to the data assuming the

stochastic process could be modeled as a diffusive motion in a 1D harmonic

well (see text and Eq. 9). The comparisons demonstrate that correlations

decay over multiple time scales (as expected from the wavevector

dependence of the decay constants in the model) and that the process is

more complex than might be expected. At a time of 2:33 10�5 s the function

has decayed to 9%.
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length undulations provide the slowly decaying tail of C(t)
and the short time dynamics are given by short wavelength

excitations superposed upon this. The fact that the correlation

function reflects relaxation over a distribution of timescales

suggests that it might be possible to fit the data to stretched-

exponential relaxation. Over the time scale displayed, we

find that we can indeed fit the correlation function with

the functional form CðtÞ ¼ expð�ðt=ð3:43 10�6 sÞÞ0:47Þ.
Within the resolution of Fig. 5, this fit is indistinguishable

from the data.

Returning to the question of protein mobility across the

cell surface, we now realize that both the equilibrium

probability to find a large membrane-cytoskeleton gap and

the probability that this gap will persist for Dt must

contribute to an effective permeability of the spectrin

network. Inasmuch as both of these contributions are of

order 10%, we expect a reasonable value for a transmission

probability to be of order 1%. This number is in better

agreement with previous statistical analyses (Brown et al.,

2000), but is still in error by an order of magnitude. To

see this, consider a simple mean-field type approach to

calculating the escape rate implied by such a permeability.

Breaking up the corral interior into a grid of points 7 nm

apart (as we shall do in the next section) leads to 400

enclosed points within a 140 nm 3 140 nm corral. Of these,

76 (19%) are adjacent to the corral boundary. The probability

for a single protein to escape over a Dt time step will be

approximately equal to 0:193 0:013 1=4 (i.e., the proba-

bility that the protein is next to the barrier times the

probability that the barrier is open over the characteristic

diffusive timescale times the probability that the protein

moves out of the corral as opposed to another direction). This

corresponds to a protein exit rate from the corral of about

20 s�1 which is approximately an order of magnitude faster

than that observed experimentally (Tomishige et al., 1998).

For completeness, we note that a threefold higher value of

the assumed bending modulus for the membrane, Kc, leads to

an effective permeability of 1.5 3 10�4 (Fig. 6). This strong

dependence on Kc and the complicated nature of C(t) should

make it clear that ambiguities in our physical parameters

will strongly affect the numerical value of these results.

Furthermore, we have demonstrated that the underlying

stochastic process is complex and hence characterizing the

dynamics of h(r) through a single two time correlation

function is insufficient to fully understand the dynamics

of the coupled protein-membrane-bilayer system. In the

following section we carry out further simulations to make

this ambiguity manifest. Still, on a qualitative level we see

that all physical parameters in the right ballpark for an

undulating membrane to contribute to the observed macro-

scopic diffusion of band 3 on erythrocytes. This certainly

does not exclude other mechanisms, but serves as a reminder

that in complex systems it is difficult, if not impossible, to

guess what the reaction coordinate for any particular process

may be. Based on very simple physical principles, the above

arguments suggest that membrane undulations are expected

to play a role in protein mobility on red blood cells.

SIMULATIONS

The arguments of the preceding section are appealing in their

simplicity, but required certain approximations. Some of

these approximations are physical in nature (square corrals,

homogeneous bending rigidity for the membrane, exclusion

of cytoskeletal motion, periodic boundary conditions with

pinning to the cytoskeleton approximated by no net trans-

lation of the sheet) and were invoked to provide a simplified

model to pinpoint the effect of a particular physical

phenomenon. The relationship between P(h), C(t) and the

protein’s macroscopic diffusion constant, on the other hand,

FIGURE 6 Figures analogous to Figs. 4 and 5, but using a value of

Kc ¼ 63 10�13 ergs for the bending modulus. The stiffening of the

membrane by a factor of three leads to obvious lowering of the probability

for the sheet to attain a height of h0 ¼ 6 nm as well as a reduced probability

that such a fluctuation will persist over the time scale of band 3 diffusion.
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was treated very qualitatively and this may be viewed as

a mathematical approximation that requires verification. In

this section we describe simulations that couple protein

diffusion to the membrane undulations, thus explicitly

demonstrating the shortcomings of the simplified treatment

above. These simulations lead us to the conclusion that our

lack of detailed microscopic understanding of the mem-

brane-protein-cytoskeleton system makes it impossible to

compare to experiment without introducing a fitting param-

eter in our model. The presence of such a parameter (and

indeed of similar parameters in all other dynamic models

discussed in the literature (Saxton, 1989, 1990a,b; Leitner

et al., 2000; Brown et al., 2000)) makes it impossible to

distinguish a membrane undulation mechanism as proposed

here from mechanisms involving cytoskeletal rearrangement

as discussed elsewhere. Given the qualitative agreement of

all these models with existing experiments, we feel it is likely

that some or all such mechanisms may contribute to the

global diffusion of proteins across the spectrin barriers

present in the red blood cell.

Our simulation methodology is similar to one published

previously (Brown et al., 2000). Global diffusivity of band 3

is studied by calculating the decay rate for proteins out of

a single corral. Proteins interact with the spectrin network

as described below, but not with one another. Individual

stochastic runs are seeded with an initial random distribution

of N0 ¼ 33 band 3 dimers per corral and the population is

allowed to decay over the course of 50,000 time steps as this

distribution of proteins slowly escape confinement. Statistics

were generated by repeating this process 10 times to generate

approximate decay curves. Protein diffusion is simulated as

a random walk on a square lattice with lattice spacing of

7 nm. The microscopic diffusion coefficient of the band 3

dimer, 0.53 mm2 s�1 then sets our simulation time step at

2.3 3 10�5 s. This spacing in time and space was chosen

for computational convenience and because further refining

of the mesh in space is impossible without a detailed

knowledge of the band 3, spectrin interactions. We do not

know the form of interaction between these two proteins and

hence spatial resolution at the scale (or below) of the

individual proteins would be ill defined. We shall see that

this lack of resolution does prove problematic, but no more

so than in other theoretical studies of this system.

We assume that undulations of the membrane surface only

affect diffusion of band 3 through modulation of interaction

between band 3 and spectrin and that this modulation is

entirely due to the z direction motion of band 3 relative to

spectrin as defined by the height of the membrane sheet

above the cytoskeletal network. Furthermore, we assume that

passage of band 3 over spectrin is only allowed when the

undulation is higher than h0 for some significant fraction of

the time step of our simulation. We will define ‘‘significant

fraction’’ in the following paragraphs. Our simulation

procedure is then as follows. We evolve the random walk

in time on the lattice. When a random step carries the protein

through a corral barrier we determine if that move is allowed

by the conformation of the membrane sheet over the entire

time step (the membrane fluctuations are sampled more

frequently than the random walk). If yes, the move proceeds

as anticipated. If no, the protein is returned to its position

before the attempted barrier jump. To avoid possible

spurious correlation effects resulting from our simplified

pinning procedure, we sample not one, but 4 equivalent but

stochastically independent membrane surfaces—one for

each of the sides of the square corral (Fig. 7).

In Fig. 8 we have plotted population decay curves for four

different sampling rates of membrane conformations ranging

from 10 to 100 sampling points over the duration of each

random walk step time. Clearly there is a dependence on

sampling frequency in these decay curves. Naively, one

might expect the limit of infinite sampling to be the case

we are interested in (unobstructed passage of band 3 over

spectrin) and presumably the most direct comparison to the

analytical work described above. We argue that this is not

FIGURE 7 An illustration of our simulation

methodology. 33 noninteracting protein dimers

(blue circles) are randomly paced within a corral

at t ¼ 0 and are allowed to undergo a random

walk. Proteins that attempt to cross over a

barrier in a given time step are reflected back or

allowed to make the jump depending on the

local height of the membrane surface at

the attempted crossing site over the duration

of the walk time step. Passage of the protein is

allowed only if hðrÞ[h0 at the site of attempted

crossing for each intermediate sampling time

within the random walk time step. Different

membrane sampling rates affect the rate of

protein loss from the corral (see Fig. 8). The

height distribution along each edge of the corral

is independently simulated as a single line

across a given realization of the stochastic process of Eq. 4. In total, four independent membrane sheets are evolved forward in time—one for each edge of the

corral. Four sheets were used to eliminate artificial correlation artifacts arising from the periodic boundary conditions on each sheet.
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necessarily true. As stressed earlier, we are not certain of the

microscopic interactions between all the components in this

system. Requiring the membrane to remain above h0 for

the duration of the diffusive crossing event is tantamount to us

saying that the only way for the protein to get over the barrier

is for the barrier to be completely unobstructed for 2.3 3

10�5 s. We simply can not make this determination and,

indeed, to find agreement with experiment (decay rate ;2–6

s�1 (Tomishige, 1997; Tomishige et al., 1998)) we must

assume a sampling rate of;10/Dt–40/Dt (4.43 105 s�1�1.7

3 106 s�1). We also point out that our analytical work

involving the number correlation function does not require

the fluctuations to remain above h0 at all times. Instead it

looks for the extra probability (beyond that expected for

measurement infinitely separated in time) that a system which

started above h0 is later above h0 again. Because our system

displays fluctuations of differing amplitudes and time scales

it is possible for a slow mode (long wavelength) to remain

excited over a time long compared to protein diffusive

motion. Superimposed on top of this we will see short-lived

short wavelength excitations which may knock the surface

under h0 without drastically changing the shape of the

membrane surface and with only minimal incursion below h0

(see Fig. 2). It is the relative importance of such brief

incursions that we are unable to account for theoretically and

which lead to the ambiguity in the model.

Our methodology does not allow for coupling between

protein motion and membrane dynamics except through the

gating effect we have used to model the band 3-spectrin steric

interaction. Because we cannot include more realistic forms

of coupling without resorting to a massive simulation, which

would require interaction strengths, etc. as inputs, we have

halted our study at this semi-quantitative level with a fitting

parameter. It is unlikely that a realistic simulation could be

performed on these length and time scales with current

computer capabilities, even if we were privy to the molecular

forces involved at the nanometer scale. Our study is thus

limited in its quantitative predictive power, but the

qualitative message seems clear. Membrane fluctuations

are expected to exist in erythrocytes under physiologi-

cal conditions and the magnitude and dynamics of these

fluctuations are in qualitative agreement with the observed

mobility of band 3 on the surface of red blood cells. Without

much more sophisticated modeling we are unable to

speculate as to the relative importance of this mechanism

as opposed to mechanisms involving cytoskeletal rearrange-

ment. We point out that our studies here are at a level of detail

comparable to previous studies and our results are similarly

robust. In all likelihood, the transport of transmembrane

proteins relies on a variety of different thermal motions to

enable passage through obstacles on the cell surface.

DISCUSSION

We regard this report to be a confirmation of plausibility. Our

model has used the simplest possible physical representation

of the lipid bilayer and has not properly accounted for the

interactions between bilayer, protein and spectrin cytoskel-

eton. Nevertheless, this picture has merit as a zeroth-order

model. The simplicity of the model has allowed for ana-

lytical and semi-analytical results to be obtained that surely

would not be derivable from more complicated theories/

simulations. Also, we have performed simple simulations

FIGURE 8 Simulation results for different

membrane gating sampling rates corresponding

to 103, 203, 403, and 1003 the random

walk sampling rate (1/Dt) of 4:353 104 s�1:

The solid lines represent individual simulations

with 33 random walkers and the dashed lines

exponential fits to decay curves obtained by

averaging over 10 such simulations. The inset

shows the decay rate as a function of sampling,

which demonstrates that even at a gate sam-

pling rate of 4.4 3 106 s�1 the results are not

converged. If viewed as a fitting parameter,

a gate sampling rate in the neighborhood of

103 to 403 ð4:43 105 s�1 � 1:73 106 s�1Þ
would lead to the best agreement with exper-

imental results. Histograms of escape waiting

times lead to exponential wait time distribu-

tions ðWðtÞ ¼ ke�ktÞ as expected for infrequent

opportunities to escape the corral.
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on the length scale of hundreds of nanometers and time

scale of seconds. It would be extremely difficult (if not

impossible given current computing limitations) to pursue

traditional simulation techniques such as molecular dynam-

ics or Brownian dynamics (even with simplified lipid/fluid

models) over such scales.

Over the course of this study we were forced to invoke

approximations to make the model more tractable to

simplified simulation and analysis. Among the most obvious

are our lack of pinning to the cytoskeleton, the use of

a constant Kc (even in the vicinity of the protein), and the

numerical value chosen for Kc which is based upon

experimental measurement over length scales far exceeding

those discussed here. Though these approximations are quite

severe, we believe that they represent the natural assump-

tions one comes to in studying this system. It is worth

mentioning that the value of 2 3 10�13 ergs used for Kc in

this study was taken directly from experimental measure-

ments on intact red cells (Brochard and Lennon, 1975).

Effects arising from protein inclusions and attachment to the

cytoskeleton are therefore present in this number in an

averaged sense. In the absence of more microscopically

obtained experimental data, we have used the numbers

available to us. This study has also implicitly assumed

protein lateral diffusion and membrane undulations to be

uncoupled processes (except for the gating effect at the corral

edge). It is possible for two such motions to become coupled

under certain circumstances (see for example (Kumar et al.,

2001)), but again we appeal to the fact that the band 3

diffusion constant D is an experimentally determined

parameter. Any correlations that we have neglected are thus

accounted for in D in an averaged sense (though explicit

correlation is neglected).

Though the quantitative results of our study are surely

affected by such assumptions, we do not believe that they

should alter our qualitative conclusion that thermal mem-

brane undulations play a role in protein transport over

membrane surfaces with underlying cellular structure.

Thermal fluctuations surely influence the behavior of lipid

bilayer surfaces and the estimates discussed in the current

work strongly suggest that such fluctuations may be just as

important as other mechanisms that have previously been

implicated in the global diffusivity of proteins on the surface

of cells.

For concreteness, we have concentrated in this work on

the diffusion of band 3 in red cells, but the physical

principles at play in this system should be applicable to other

cellular systems. Epithelial cells, nerve cells and fibroblasts,

as well as red blood cells, all seem to exhibit characteristics

of systems where the cytoskeleton hinders free diffusion

of membrane bound proteins (Fleming, 1987; Saxton and

Jacobson, 1997; Winckler et al., 1999; Sako and Kusumi,

1995). The physical constants necessary for our analysis are

less firmly characterized for these other systems than for

erythrocytes, but it seems reasonable to expect that dynamic

membrane undulations will affect the motion of membrane

bound proteins in these other cells as well.

In conclusion, we have presented a simple algorithm to

generate time series of thermal membrane undulations

derived from the elasticity equations of Helfrich (Helfrich,

1973) and the equations of linear response derived by many

authors (Milner and Safran, 1987; Schneider et al., 1984;

Brochard and Lennon, 1975; Granek, 1997). We have

utilized this approach to generate statistics on the duration

and amplitude of thermal membrane undulations over the

length scale of red blood cell corrals and have concluded that

these undulations appear to be capable of contributing to the

observed macroscopic diffusion constant of band 3 dimer

over erythrocyte membranes. Though the physical principles

discussed here were applied to the system of band 3 dimer on

the surface of erythrocytes, it seems plausible that similar

effects may exist in other cellular systems. Recent experi-

ments on cellular membranes utilizing single molecule

techniques (Fujiwara et al., 2002) and laser tweezers and

related mechanical techniques (Discher, 2000) hold promise

for investigating the effects discussed in this work and for

providing the necessary data to test advanced models of

protein mobility in red blood cells and other cellular systems.

APPENDIX

The text has referred to exponential fits on a number of occasions. We used

the following procedure to obtain approximate decay constants for data

collected over the range [0,X].

Suppose the data to fit is represented as the function f(x) (assumed

normalized to 1 at x ¼ 0). If this data was an exponentially decaying

function with decay constant k it would integrate toðX

0

dx e�kx ¼ 1

k
ð1 � e�kXÞ: (A-1)

In general f(x) is not a simple exponential and the integral over [0,X] is just

a number, but we find the exponential approximation to f(x) by requiring the

two integrals to equal one anotherðX

0

dx f ðxÞ[ IðXÞ ¼ 1

k
ð1 � e�kXÞ; (A-2)

so that we may obtain k from the relation

kIðXÞ ¼ 1 � e�kX; (A-3)

which is solved by Newton’s method. Numerical estimates of I(X) are

calculated by quadrature.
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