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Dynamic Strength of Molecular Adhesion Bonds

Evan Evans and Ken Ritchie
Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z1 Canada

ABSTRACT In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent
interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with
ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and
loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended
Kramers’ theory for reaction kinetics in liquids to bond dissociation under force and tested the predictions by smart Monte
Carlo (Brownian dynamics) simulations of bond rupture. By definition, bond strength is the force that produces the most
frequent failure in repeated tests of breakage, i.e., the peak in the distribution of rupture forces. As verified by the simulations,
theory shows that bond strength progresses through three dynamic regimes of loading rate. First, bond strength emerges at
a critical rate of loading (=0) at which spontaneous dissociation is just frequent enough to keep the distribution peak at zero
force. In the slow-loading regime immediately above the critical rate, strength grows as a weak power of loading rate and
reflects initial coupling of force to the bonding potential. At higher rates, there is crossover to a fast regime in which strength
continues to increase as the logarithm of the loading rate over many decades independent of the type of attraction. Finally,
at ultrafast loading rates approaching the domain of molecular dynamics simulations, the bonding potential is quickly
overwhelmed by the rapidly increasing force, so that only naked frictional drag on the structure remains to retard separation.
Hence, to expose the energy landscape that governs bond strength, molecular adhesion forces must be examined over an
enormous span of time scales. However, a significant gap exists between the time domain of force measurements in the
laboratory and the extremely fast scale of molecutar motions. Using results from a simulation of biotin-avidin bonds (Izrailev,
S., 8. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. 1997. Molecular dynamics study of unbinding of the avidin-biotin
complex. Biophys. J., this issue), we describe how Brownian dynamics can help bridge the gap between molecular dynamics

and probe tests.

INTRODUCTION

Held together by noncovalent chemical bonds, we might
expect that much of cell structure would dissociate within a
modest period if placed in a very dilute environment. How-
ever, when sealed in an isolated chamber on a microscope
stage, the structure of a single cell persists for a very long
time—beyond the limit of the viewer’s patience. By com-
parison, application of mechanical stresses can quickly rup-
ture and render the structure. Under external force, the
energetic state of a chemical bond continues to drop as the
constituents separate. Conceptually, this leads to an ultimate
state comparable to infinite dilution with no likelihood of
rebinding. Dissociation under force represents far from
equilibrium kinetics, and we can neglect the on rate of bond
association from distant regions beyond the domain of at-
traction. Thus, kinetic traps govern the strength of molecu-
lar attachments under external force. In contrast to equilib-
rium binding affinities, rupture strengths for weak
biochemical bonds are not constants but instead depend on
the rate of force application and duration of loading.
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An increased rate of bond dissociation under external
force was first emphasized by Bell (1978) using a phenom-
enological model for the off rate, which is an extension of
transition state theory for reactions in gases introduced by
Eyring and others (see the outstanding review by Hanggi et
al., 1990). In the model of Bell (1978), the off rate, v, is the
product of a natural vibration frequency, w,, of the bond in
vacuum and the quasi-equilibrium likelihood of reaching
the transition state with an energy barrier, E,, discounted by
mechanical energy f xg (force X displacement) to give v ~
w, expl — (E, — f-xglkgT]. The applied force, f, is
assumed to act directly along a reaction coordinate, x, to
reach xg at the transition state; kg7 sets the thermal energy
scale. Hence, the off rate should rise exponentially with
force, ie., v =~ v, exp(flfs), above a characteristic level,
fg = kgT/xg. The importance of Bell’s insight was to expose
the significant role of mechanical force in biological chem-
istry, but all features of the energy landscape are lumped
into one parameter—a length, xg. Recognizing this limita-
tion, we introduced a different model in which the off rate
was assumed to follow a power law at low forces in the
vicinity of fB, 1e., v~ v, ( f/fB)b, to capture variations in
rupture behavior from ductile (b < 1) to brittle (b > 1)
failure (Evans et al., 1991). Of more fundamental signifi-
cance, we showed that peaks observed in histograms of
bond strength arise because forces applied to the bonds
increase progressively in time (Evans et al., 1994; Evans,
1995).
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In this article, we critically examine the physics that
underlies bond strength. Extending the Brownian dynamics
theory of Kramers (1940; Hanggi et al., 1990) for kinetics in
liquids to force-driven dissociation of bonds, we demon-
strate that the off rate follows a general form given by v =
v, 8(f) exp[AE(f)kgT], where the functions g(f) and
AE,(f) depend on deformation of the energy landscape by
external force and the spatial variation of frictional interac-
tions between molecules. In the context of laboratory ex-
periments, the theory predicts three regimes of bond
strength with distinct dependencies on the rate of loading.
With the advent of ultrasensitive mechanical techniques, the
strength of molecular attachments can now be tested with
nanoscale resolution (e.g., atomic force microscope (AFM);
Hoh et al., 1992; Radmacher et al., 1992; Lee et al., 1994;
Florin et al., 1994; Moy et al., 1994; Williams et al., 1996;
biomembrane force probe (BFP); Evans et al., 1994, 1995;
and optical tweezers (OT); Ashkin et al., 1990; Kuo and
Sheetz, 1993). Along with other methods (e.g., Tees et al.,
1993; Alon et al., 1995), the techniques have been used to
probe many types of attachments to cell surfaces and solid
substrates. However, to date, no approach has been con-
trolled sufficiently well to discriminate between kinetic
models for unbonding or to measure the dependence of
bond strength on loading rate. On the other hand, Grubmul-
ler et al. (1996) and Izrailev et al. (1997) have demonstrated
new schemes to examine bond breakage under external
force in molecular dynamics (MD) simulations of biotin-
streptavidin and biotin-avidin bonds. At the slowest pulling
or loading rates (~10'? piconewtons (pN)/s), the rupture
forces derived from simulations are within a factor of 2 of
the forces measured in AFM experiments at rates of 10*
pN/s. Although satisfying in this respect, the molecular
simulations remain widely separated in time (eight orders of
magnitude or more in loading rate) from the physical realm
of mechanical probe experiments, and comparison of the
results with laboratory tests can be illusive. Therefore, with
a smart Monte Carlo (SMC) algorithm capable of spanning
the gap in loading rate, we have also performed Brownian
dynamics simulations of bond breakage to test the off rate
kinetics predicted by the theory of Kramers (1940) critically
and to examine how experimental measurements can be
connected with MD simulations.

THEORY

Brownian dynamics theory of unbinding under
constant force in liquid environments

In condensed liquids, the thermal impulses that drive dis-
sociation are dissipated rapidly by viscous coupling to the
environment. Hence, the prefactor v, in the off rate is not
governed solely by a vibration frequency w, of the bond;
viscous friction ultimately limits the kinetic process. This
important feature of kinetics in liquid environments was
first brought out in a famous article by Kramers (1940;
Hanggi et al., 1990). Kramers analyzed the thermal noise-
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driven escape of a particle over a potential barrier using the
Fokker-Planck approximation for Brownian motion through
a phase space. In such a microcanonical approach, the
unbinding kinetics are idealized as a steady flux of proba-
bility density along a preferential path from a deep energy
minimum outward over a barrier via a saddle point in the
energy surface. There can be many such paths, and the paths
can map out complex trajectories in phase space. However,
application of an external pulling force acts to collimate the
reaction path, which we define by the scalar coordinate x.
Assumed to be bounded by steeply rising energy in other
directions, a conceptual illustration of the energy landscape,
E(x), along this coordinate is sketched in Fig. 1 A. As shown
in Fig. 1, B and C, the external force contributes a disjoining
potential, —f- x, which tilts the energy landscape and mod-
ifies the shape, magnitude, and location of the energy bar-
rier, E,, at the transition state (x = x,¢), which is defined by
the maximum of the combined energies. We will use Kram-
ers’ approach to predict the rate of dissociation from the
bound state over these deformed landscapes. [To simplify
terms, energies will be normalized by kg7 (i.e., E = E/kgT
and f+ x = f- x/kgT) and distances by a microscopic length,
x, (i.e., x = x/x,) defined by the choice of the bonding
potential. Thus, forces are scaled by f, = kgT/x, (ie., f =
1)1

In the following analysis, dissociation under force is
assumed to be slowed sufficiently by viscous damping so
that there are many thermal impulses per escape, and the
external force is assumed stationary over the time scale of
these excitations. Because velocity distributions remain
nearly Maxwellian, dissociation can be modeled by spatial
diffusion of thermalized states over the barrier. The trans-
port of states out of the confining potential obeys the
Smoluchowski equation (Kramers, 1940; Hanggi et al.,
1990), which in one-dimension (1-D) is represented by the
flux J (#/time),

J(x) = D{(f — 0E/ax)p — dp/ox} (D

Here, p(x) is the local density (#/length) of states along the
reaction coordinate with the obvious normalization
fp+dx = 1; D (=D/kgT) is the local mobility or diffusivity
of states limited by viscous friction y (i.e., D = kgT/vy).
Assumed to be stationary (J = constant), Eq. 1 can be
integrated between bound and free states (@ — f) to give the
general result,

J= —{p-exp(E — f* X)}ar / f dx - exp(E — f* x)/D(x)
a—f
)

Appearing inside the integral (denominator), the viscous
impedance to diffusion may vary with separation along the
reaction coordinate. In general, two categories of viscous
damping can be envisioned. The first is an intrinsic friction
in which energy is dissipated directly in fast relaxation
processes internal to the molecular structure and coupled to
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FIGURE 1 (A) Conceptual view of the energy landscape along a reaction
pathway in unbonding. Idealized as distance, the x axis defines a general-
ized reaction coordinate in configuration phase space. The bound state is
labeled a, and the free state fis assumed to lie well beyond the range of the
potential. (B) Tilt and deformation of the energy landscape caused by
application of force to a bond defined by an inverse power law attraction.
The mechanical potential —f-x creates a well-defined transition state
located at the maximum in the combined energy, E(x) — f- x. The transi-
tion state moves inward, and the barrier height E, is reduced progressively
as force increases. (C) Tilt and deformation of the energy landscape caused
by application of force to a bond defined by a deep harmonic well. The
mechanical potential leads to a sharp cusp at the transition state instead of
the broadly curved maximum shown in (B). For the steeply rising potential,
the transition state remains fixed, and the minimum is shifted outward as
force increases.

the liquid environment through large conformational fluc-
tuations on slower time scales. The other is extrinsic friction
in which energy is dissipated by rigid body translations and
rotations of the molecules in the liquid, i.e., hydrodynamic
damping. Although both types of friction may depend on
location, we will assume that friction can be modeled by a
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constant, y,, plus a hydrodynamic interaction, vy, which is
consistent with the results and conclusions of Ansari et al.
(1992, 1994). For unbonding in three-dimensions (3-D), a
mobility tensor must be constructed to model hydrodynamic
impedance to longitudinal, transverse, and rotational move-
ments of the structures in the fluid environment (Batchelor,
1976). However, under a pulling force, the important quan-
tity is the principal value of the tensor along the direction of
force, which, to first order, increases with separation in the
range less than the Stokes radii of the molecular compo-
nents. The hydrodynamic interaction vy diminishes approx-
imately with distance along the reaction coordinate. Hence,
we will examine the following representative models for
mobility: 1) D = constant, dominated by intrinsic friction;
2) D =~ D_x/8, on the scale of the potential, dominated by
extrinsic hydrodynamic interaction. The minimum separa-
tion 8, is assumed to be maintained by short-wavelength
excitations (fluctuations) local to the binding pocket.
Under force, the free state at x; — % becomes a perfectly
adsorbing boundary at which the density of states, p; =~ 0,
and Eq. 2 lead to the following form for the off rate v:

v = (DIl l))exp(—E, + AE,) 3)

The diffusive nature of the unbonding kinetics is expressed
in the prefactor D/l,l,, which represents the frequency of
attempts to escape. The exponential exp(—E, + AE,) is the
quasi-thermal likelihood of reaching the top of the energy
barrier at the transition state x,,. The reduction AE, in the
height of the energy barrier results from tilt of the energy
landscape by the mechanical potential (—f* x), as shown in
Fig. 1, B and C. The density of states p, local to the
minimum at x, defines the length I, = 1/p,. Because most of
the states lie deep in the energy well, the length, [, is
effectively the departure from the minimum for a kg7 in-
crease in energy. Usually, a harmonic approximation local
to the energy minimum is used to represent /,,

l, = de -exp(—kx%2) = 2m/k,)"?

where k, is the elastic stiffness (curvature) of the harmonic
well. Given an effective mass m, the characteristic mechan-
ical resonance frequency w./27 of the bond would be (k,/
m)'?. The length , is the statistically weighted width of the
barrier defined by the integral in the denominator of Eq. 2.
For constant damping (D = D,), the barrier width is ex-

pressed by,

a—f

dx - exp[A(E — £+ x),] C)

where A(E — f+ x),, = E(x) — E,, — f* (x — x,,) is maximum
at the transition state x,,.. On the other hand, for strong
hydrodynamic interaction (D =~ Dx/§,, with §, ~ 1,), the
decrease in damping with separation contributes a weak
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logarithmic term to the argument of the statistical weight
inside the integral,

b=~ f dx - exp{A[E ~ f~x ~ In(x)]} &)
a—f

Hence, the transition state, defined at the maximum of [E —
f+x — In(x)], is displaced from x,.. Note for centrosymmet-
ric potentials in d dimensions and in the absence of force,
the barrier width integral has the form ~ [ dx-exp(E)/
[x37'D(x)]. Hence, a linear dependence of mobility on sep-
aration has an effect similar to increasing the spatial dimen-
sion in Kramers’ theory.

Isolating the force-dependent factors in Eq. 3, we obtain
a generic expression for the off rate under force given by,

v = vg(NexplAEy(f)] (6)

where g(f) =1/l,. The prefactor v, contains the Arrhenius
dependence on barrier energy scaled by a characteristic time
constant, 7, for diffusive escape,

Vo = (l/tD)exp(_Eb)

where tp, = /D (=lx,/D). The dimensionless functions
g(f) and AE,(f) determine the force-driven amplification
of the kinetics.

Given simple types of bonding potentials, the location of
the transition state and reduction AE, in barrier height are
readily found by algebraic manipulation. The principal task
is to determine the barrier width, /, defined by Eq. 4 or 5. If
the energy falls off sufficiently fast on either side of the
barrier, then asymptotic methods (saddle point integration)
can be used to evaluate the integral. However, the barrier
width diverges, and Kramers’ stationary flux treatment
breaks down in dimensions =2 when the energy monoton-
ically approaches a plateaux at zero force (cf. Fig. 1 A). In
such pathological situations, three-dimensional characteris-
tics of the kinetics and long-range diffusion are usually
taken into account to determine the off rate (see Hanggi et
al., 1990). On the other hand, a pulling force always leads to
a well-defined transition state amenable to simple analytical
treatment. From a purely phenomenological point of view
then, spontaneous dissociation of an isolated bond (at infi-
nite dilution) can be postulated to arise from a transient
repulsion that decays after unbonding. Conceptually, the
putative repulsion stems from the nonequilibrium initial
condition that molecular states beyond the region of strong
attraction must be suppressed at times ¢ = 0, and, in the
context of Kramers’ theory, a broad transition state remains
at zero force. We examine this postulate in the simulations
described later. To make specific predictions that can be
tested by simulations, we will analyze two types of attrac-
tive potentials, an inverse power law and a deep harmonic
well, which deform quite differently under force.
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Dissociation under force from an inverse power
law attraction

As illustrated in Fig. 1 B, we begin with the attractive
potential E ~ —A/x" (e.g., n = 6 for a van der Waals
interaction). The depth of the potential is fixed by an infinite
repulsive wall at the microscopic length x, = (A/E,)"",
which sets the location x,, (= 1) of the minimum and
defines A = E,. Derived from o(E — f-x)/ox = 0 for
constant damping, the transition state is located at x,, =
(fAf Y+t where f+ 1s the bare (zero temperature) strength
of the bond defined by the maximum attraction nE, at x, (=
1). Reduction in height of the energy barrier at x,, increases
with force according to,

AE, = EJ[(n + 1)(f/f=m)"/n+l — n(fif.)]

The transition state and minimum vanish with the barrier
when f = f,. Following our normalization convention,
forces are scaled by f, = kgT/x,. The sensitivity level for
force in laboratory measurements is set by the force fg
needed to lower the energy barrier by kgT, which de-
pends weakly on the binding potential; i.e., fg =~ n/{(n + 1)
[(n + DE,]"" — (n + 1)}. When f < E,, reduction in the
energy barrier is well approximated by AE, ~ (flfp)™®™ * "
~ (flf, p)-

To evaluate the barrier width /, in Eq. 4, the combined
energy is expanded to quadratic order near the transition
state as follows:

A(E = fx) = —Kslx — xts)2/2
=~ —[(n + l)f/x,s](x - xts)2/2

The elastic stiffness (curvature) is essentially proportional
to the force; i.e., K, = (8°E/dx?), = (n + 1)f/x,. Using the
expansion, the barrier width is approximated by,

Iy~ J dx - expl — ki (x — x,)¥2] = 2ml,)"
ts

which yields,
I, = [27,-/(" + l)nEb]IIZ(fw/f)(n+2)12(n+l)

Therefore, the off rate is predicted to increase with force
according to,

v = vg(flexplEL(n + D)™ — n(fIf} (D

with g(f) = 1/l,. When f < E,, the off rate closely follows
v ~ (flfp)"”? exp(fifg) for large n. Cutoff by a steep
repulsion at x,, the length scale /, in the prefactor v, is
estimated by the location of an energy level of kgT above
the minimum; i.e., [, = 1/(nEy).

Turning now to strong hydrodynamic interaction in
which molecular mobilities increase with separation on the
scale of the potential, all of the properties of the transition
state change in subtle but important ways. The transition
state is specified by solution to the equation, xy, = nE, —
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x®*D £, which now has an upper bound of (nE)'"™ as f —
0. Over the full range of force, a useful approximation for
the position is given by x, =~ (nEp)""/{1 + [(nEy)"™ —
1)(flfo)V*™* D}, The transition state and minimum vanish
at a force, f,., = nE, — 1, slightly below the zero temper-
ature bond strength. Best expressed in terms of x., the
reduction in the energy barrier is found to be,

AE, =f-[(n + Dxy/n — 1] + In(x) + 1/n

which approaches the expected limit E, at the force f,.
Recognizing where linear and logarithmic terms become
significant, integration of Eq. 5 yields the following approx-
imation for the barrier width:

L, =~ Quin)"*x g I(f* xy + n)
+ exp[—(f* x)/(f* % + n)]-In(1 + 1/f* x)

Therefore, the off rate is predicted to increase with force
according to,

v =v.g(flexp{f-[(n + Dxs/n — 1] + In(xy) + Un}
3

where again g(f) = U/, When 1 < f < f,, the off rate
approaches the result given in Eq. 7 for constant molecular
damping. Strong hydrodynamic interaction mainly affects
the increase in off rate under small forces, because the
barrier width diverges weakly as the logarithm of force
instead of ~1/f 2.

Dissociation under force from a deep
harmonic well

If the potential rises more steeply from the bound state than
an inverse power law, the mechanical disjoining potential
can lead to a quite different transition state with a sharp
discontinuous cusp, as illustrated in Fig. 1 C. To examine
this case, we model the potential as a deep harmonic well
with an elastic stiffness, k, = (2E,), where the distance
scale x, = (2E/k,)""*. The transition state is fixed at x,, =
2. However, as given by x,, = 1 + (f/f.,), the minimum
shifts progressively outward and, along with the transition
state, vanishes when the force reaches the bare strength of
the bond f,, = 2E,,. The thermal force scale is fg ~ 1 +
1/4E,. Relative to the displaced minimum, the reduction in
height of the energy barrier increases with force according
to,

AE, = 2E[(fiIf..) — (f/fm)2/2]

which for f < E, closely follows AE,, ~ ( flfg). Because the
minimum of the combined potential shifts on application of
force, there will be an initial transient in the kinetics at time
t = 07 as the distribution relaxes in the tilted landscape and
states begin to permeate the barrier region. The stationary
flux assumption in Kramers’ theory breaks down during the
transient. The characteristic ratio of time scale for the tran-
sient to time scale for diffusion past the barrier is
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~ exp{—Ey[1 — ( fl£.)*1}. The ratio shows that the initial
transient can be neglected when the force is below f/f,, ~
1 — 1/E,"2. In this range, the barrier energy exceeds kg7,
and the rate of dissociation is limited by permeation of
states through the barrier. These states have sufficient time
to equilibrate in the displaced harmonic well. At the other
extreme of high force, the rate of dissociation becomes
limited by a transient outflow of states from the initial
distribution independent of the small barrier at x,;. For now,
we ignore the initial transient and examine the lower range
of external force.

In calculating the barrier width, we can treat the molec-
ular friction as constant and neglect hydrodynamic interac-
tion over the scale of the harmonic well except at very small
forces. Local to the cusplike transition state, the energy falls
off linearly with distance on either side of the barrier so that
the integral in Eq. 4 is evaluated in two parts. From x,
inward to the displaced minimum x,,, the integral is repre-
sented by the function /,(y) = [? ds-exp[ — QE, — f)s +
E,s?], which is on the order of 1/2E, or less, where the
argument is defined by y = 1 — f/2E,. Adding the integral
from the transition state outward, we obtain the following
expression for the barrier width for constant damping:

ly= I(1 = flf.) + 1Uf

(As for inverse power law attraction, the main effect of
introducing strong hydrodynamic interaction is to replace
1/f by a weak logarithmic divergence in the barrier width as
the applied force approaches zero.) Therefore, below f/f,, ~
1 — 1/E,"?, the off rate is predicted to increase according
to,

v = vg(f)exp2E[(fIf) — (fIf.)’12]} €))

with g(f) = 1/, and the length scale /, implicit in v,
approximated by 1/p, ~ (m/E;)">. The off rate closely
follows the relation v ~ ( fifg) exp(f/fp).

Ultrafast dissociation under extreme forces

Under very large forces, the extreme tilt of the energy
landscape leads to ultrafast kinetics as the most prominent
of the energy maxima, EF (located at x7%), is overwhelmed
by the mechanical potential. Here, details of molecular
bonding are important, because the energy contour along
the reaction coordinate may be irregular with more than one
maximum in energy. Before reaching the ultrafast limit,
there can be a cascade of crossovers in which the position x,,
of the transition state jumps from one intervening maximum
to the next (as we will show later using results from simu-
lations of biotin-avidin by Izrailev et al., 1997). When the
most prominent barrier is eliminated, all states are essen-
tially unbound, and the kinetics of dissociation are only
transiently retarded by weak topographical features of the
highly tilted energy landscape. Naively then, for a single
barrier, the off rate should diverge as f — f,, (~max VE).
However, before this level of force is reached, the rate of
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dissociation can become limited by the transient outflow of
states from the initial minimum at t = 0" as approximated
by v ~ D-(f — f..). This is equivalent to the rate of free
transport, first diffusion then rapid drift driven by an excess
force (f — f.-), over the scale of the potential as if no
potential existed. For a harmonic well, this limit is reached
when £, = f. (1 — 1/E,'?). At even higher forces, the
distribution of velocities in phase space could begin to
distort from a Maxwellian distribution so that the kinetics
would deviate from the spatial diffusion limit modeled by
the Smoluchowski relation. Such consequences were con-
sidered by Kramers 50 years ago and examined in greater
detail more recently (Hanggi et al., 1990).

Spontaneous dissociation at zero force

At the other limit at which force goes to zero, the off rates
expressed in Eq. 7-9 also go to zero, because the barrier
width diverges in one dimension. For the reasons discussed
earlier, we hypothesize that a small intrinsic repulsion, f,
can be introduced to model the crossover to spontaneous
dissociation, and that this repulsion weakly augments the
action of external force. Thus, the off rate near f ~ 0 would
increase approximately as a low power of force for constant
damping,

v~ (filfs + flfe)°

with b ~ 1/2 given an inverse power law attraction or b ~
1 given a harmonic well. But for strong hydrodynamic
interaction, the form of the bonding potential is masked by
the logarithmic divergence in the barrier width near f ~ 0,
and the off rate would approach,

v~ Uln[f/(f + f)]

for all potentials. As we will describe in a later section,
simulations of bond rupture have been used to test this
phenomenological model for spontaneous dissociation. In
short, the results show that for both types of bonding po-
tential and strong hydrodynamic interaction in dimensions
=1-D, a level of force can be identified below which the
dissociation rate is independent of force. However, with
constant damping and inverse power law attraction in one
dimension, no crossover could be established in simulations
of bond rupture.

Most important at small forces, the reaction path followed
in unbonding may be strongly distorted by molecular me-
chanics and map out a highly curved trajectory in space.
Indeed, detachment may involve force-driven switching be-
tween several reaction paths in phase space. Although de-
tailed knowledge of the structure is needed to evaluate
unbonding trajectories for complex molecules, we can eas-
ily imagine qualitative categories of force coupling to the
energy landscape. At one extreme, external forces may be
leveraged mechanically to assist separation. This would tilt
the energy landscape downward at low force and reduce the
barrier more than expected. At the other extreme, separation

(10a)

(10b)
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may be sterically hindered in the direction of the applied
force so that significant elastic deformation of the structure
would be needed to begin unbonding (e.g., curved structures
that hook together). The energy landscape would tilt upward
under low force and augment the barrier more than ex-
pected. (Similar concepts were suggested many years ago
by Dembo et al. (1988), in which sterically hindered bonds
were labeled as catch bonds and ideal bonds as slip bonds.)
At some level of force, the reaction coordinate will line up
with the force to produce the idealized linear coupling.
Phenomenologically then, the characteristic force, fB, at
which the energy barrier is reduced by kg7 could be altered
significantly by molecular mechanics and not related simply
to a bond length, xg; e.g., fz would be <k, T/xg for leveraged
bonds and >k, 7/xg for hindered bonds. As such, the generic
form for the off rate under force can still be represented by
v = v, g(f) exp[AE,(f)], but g(f) and fB now reflect the
possibility of more complex mechanical couplings to the
energy landscape at low force.

Dissociation of bonds under dynamic loads
(increasing force)

In the previous section, we derived expressions for kinetics
of unbonding under constant applied force. The assumption
of stationary force is valid for fast molecular relaxation
times but fails to capture the feature that application of force
always involves a mechanical transient. Unlike MD simu-
lations, application of force in all mechanical experiments
occurs over a time scale much longer than relaxation times
for thermal impulses. In force probe techniques, a trans-
ducer is usually moved at a constant speed Ax/At relative to
a substrate in which the bond is anchored. Therefore, if we
neglect deformation of the substrate, the load on the bond
increases at a constant rate Af/Ar = k; (Ax/Af) set by the
speed and the transducer stiffness k; (force/displacement).
Given bond strengths on the order of 100 pN, the force ramp
would span periods of >10"3 s before bond rupture even
with the fast AFM (Af/At ~ 10*-10° pN/s). Much longer
periods of loading would be needed for more sensitive
techniques such as BFP (Af/At ~ 1-10° pN/s) and OT
(Af/At ~ 1-10 pN/s). Clearly, mechanical loading is ex-
tremely slow compared with thermal impulses lasting
<107'? 5. Hence, the probability of bond survival is no
longer a simple exponentially decaying function of time
determined by a constant off rate. The likelihood of bond
detachment under force represents a first-order kinetic pro-
cess with a time-dependent rate of dissociation, i.e., ¥[f(9)].
Within a small interval of time (z, ¢ + dr), the probability of
failure is expressed by,

p(t,f) = v(f)exp *j wUf(e)]-dr an

o=t

where exp{—J,_,, Y[f(#)]-dt'} is the likelihood of bond
survival to time ¢ (Evans et al., 1991; Evans, 1995). For the
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precise history f = (Af/Af) * t, force and time are directly
related so that force can be viewed as the independent
random variable. Introducing the generic form for off rate,
the probability density for failure can be expressed as a
dimensionless function of force f (= f/f,),

p(f) = (Ur)g( fexplAE,(f)]
(12)

exp{ — (1/r9 j g(y)exp[AE,(y)] dy

o—f

parameterized by the dimensionless loading rate ry = (Af/
Anlv, f,. The statistical distribution of rupture events is the
product of an off rate that increases in time and a likelihood
of bond survival that decreases with time, which can exhibit
a maximum at a specific time (=force) as illustrated in Fig.
2. As such, bond strength is a dynamic property defined by
the force f* for most frequent failure at the peak of the
rupture force distribution. The strength peak represents the
most likely period of survival (lifetime) of the bond under a
particular rate of loading but is not constant. Instead, bond
strength increases with the rate of loading. The location of

Rupture
Events

r,=0.01

Rupture

Events
(b)

Force

FIGURE 2 (A) Illustration of rupture forces predicted for bonds over
time and force in mechanical probe tests. Loaded by a ramp of force, the
off rate increases steadily, but the likelihood of bond survival decreases
simultaneously. Thus, the frequency of failure can reach a maximum at
some time equivalent to force; the peak defines the bond strength f*. (B)
Plotted versus instantaneous force; rupture force distributions shift with
loading rate r;.
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the peak and characteristic spread of the distribution are
obtained from derivatives of the distribution given in Eq.
12. The maximum (dp/df = 0) in the distribution defines the
location of the peak,

[V/Vo]f=p= = rf[a In V/af]f=fx (13)

which is solved to find the dependence of strength on
loading rate. The curvature [—(1/p)d°p/3f* = 1/A?] of the
distribution local to the maximum at f* provides a measure
of the spread A; in the distribution given by,

1/A% = [(6 In »/9f )* — (6°In WOf *)]p—p (14)

Readily determined from the dependence of the distribution
peak f* on the loading rate r¢ in Eq. (13), dissociation under
a ramp of force and the generic form for off rate lead to
three regimes of dynamic strength. These regimes are con-
firmed by SMC simulations described in the next section.

Brownian dynamics simulations of bond
breakage under a ramp of force

Simulation of molecular actions in liquids is challenging
because there are huge numbers of degrees of freedom. To
capture fine details of chemistry, all aspects of atomic
structure and interactions must be included, which is the
motivation for MD simulations. However, at present, MD
computations provide only a nanosecond glimpse of the
system, which hinders comparison with experiments that
probe molecular assemblies on NMR time scales or longer
(>107% s). At the other extreme, at which atoms are mod-
eled as structureless balls that interact via idealized poten-
tials, Monte Carlo methods can be used to simulate diffusive
relaxation of a system toward equilibrium. Here, random
displacements of the particles at each time step are accepted
or rejected by a Boltzmann energy-weighted criterion (Me-
tropolis et al., 1953). Some years ago, Rossky et al. (1978)
introduced a smart version of the Monte Carlo algorithm to
simulate overdamped Brownian dynamics in a liquid me-
dium. In this concept, force-driven displacements scaled by
particle mobilities are combined with randomly selected
diffusive movements to create trial steps at each time. New
positions are then accepted with modified Metropolis prob-
abilities based on joint Boltzmann and dynamic transition
probabilities. In this way, the system of particles obeys
overdamped Langevin dynamics, which can be efficiently
explored over many orders of magnitude in time with an
arbitrary scale set by the characteristic diffusion time. Using
this approach and a Pentium desktop computer, we have
simulated many millions of time steps in the course of bond
rupture under a ramp of force and explored an eight-order-
of-magnitude range in loading rate. The particular simula-
tions were set up: 1) to test the predictions of Kramers’
theory for bond dissociation under increasing force, espe-
cially at low force in one dimension, in which the theory is
nontrivial; and 2) to compare bond rupture in 3 dimensions
lations with that in one dimension. In the simulations, a
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tensile force was used to separate a spherical test particle
from another spherical particle anchored rigidly at a point.
As in the theoretical analysis, we compared constant damp-
ing with strong hydrodynamic interaction, in which damp-
ing decreases inversely with separation at close range. To
model Langevin dynamics properly, the dynamic transition
probability in the SMC algorithm was modified to include
the spatial gradient in diffusivity so that the trial movements
Ar for each time step At were statistically weighted by both
the Boltzmann factor and exp{—[Ar — (D - Af)f — VD%
(4D - Ap).

MATERIALS AND METHODS

Before the start of each simulation (¢ < 0), the bond was preequilibrated in
the potential at low temperature (E, = 80) to initialize the test particle close
to the energy minimum. Then, the temperature was jumped to the desired
level (3 < E, < 7) att = 0, and the disjoining force was increased at a
preset rate for ¢ = 0. Bond rupture was identified by the condition that the
test particle continued to move well beyond the location of the transition
state. During the simulation, every crossing of the transition state was
noted. As shown in Fig. 3, the time of final passage of the transition state
differed significantly from the time of first passage at slow loading rates
with many intervening passages and returns. At faster loading rates, the last
passage time approached the first passage time, which then became an
equivalent estimator of bond lifetime and strength. Because force increased
steadily over the simulation, the value of force at rupture was specified by
the time of final crossing of the transition state multiplied by the constant
loading rate. Bond strengths were examined at 55 loading rates over an
eight-order-of-magnitude range including rates at which loading quickly
overwhelmed the bonding potential.

At every loading rate, we performed 200 simulations of bond breakage
to provide statistics for the rupture force distribution. Even so, histograms
of rupture forces at set loading rates still contained statistical variations, as
illustrated by specific examples in Fig. 4. In the upper range of loading
rates at which mean rupture forces exceeded f, (= 1), every histogram had
an obvious peak. Here, either the theoretical probability distribution (de-
fined by Eq. 12 with the appropriate off rate expression) or a simple

<tIast> 4+

<tfirst> 3

&

@U%%%nm

0 ] 1 1
-10 -5 0 5 10

In( r;)

FIGURE 3 Average time of final passage of the transition state divided
by the average time of first passage in simulations of bond breakage under
constant loading rate. In the lower range of loading rates, many intervening
escapes and returns occur in Brownian diffusion before rupture on final
passage of the energy barrier. As loading rate increases, the last passage
time (f,,,) approaches the first passage time (f5,,)-
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Gaussian distribution would give equally good fits to the distribution and
to locate the peak (cf. Fig. 4, C and D). However, in the range of very slow
loading rates at which the mean rupture force was below f =~ 1, determi-
nation of the peak was more elusive, and the location became indistin-
guishable from zero force given the statistical variations in the histogram
(cf. Fig. 4, A and B). To assay for a peak, it was necessary to analyze the
exponential-like decay in rupture events in the histogram. At siow loading
rates, the decay parameter (in units of 1/force) multiplied by the loading
rate provided an estimator of the mean off rate [(v) ~ (1/0) f,_,, W¢') - dt'].
Labeled as an apparent mean off rate, we used this estimator to test the off
rate directly for sensitivity to force and to locate the crossover to sponta-
neous dissociation from force-driven kinetics. If the off rate was in a range
not sensitive to force, then the apparent mean off rate had to be independent
of the loading rate and vice versa because of the first-order kinetics defined
by the probability density in Eq. 12. Plots of the apparent mean off rates
versus loading rate in Fig. 5 demonstrate the crossover behavior. Modeled
by Eq. 10a or 10b, definition of the critical rate by this procedure estab-
lished an empirical assay for an intrinsic repulsion, f;. Based on the values
derived for intrinsic repulsion and the theoretical prescriptions for off rate
under force, probability distributions were calculated for the histograms as
shown by the curves superposed on the results in Fig. 4.

RESULTS

The 1-D simulations of bond breakage were performed for
the two types of bonding potential and the friction model
described in Theory. (For the inverse power law attraction,
exponents in the range of 1 = n =< 6 were examined, but
because the simulations verified the theoretical dependence
on this exponent, we only present results for n = 4.) To plot
the results and predictions on the same scale, loading rates
were normalized by the characteristic rate v, = (1/rp)exp
(—E,) set by the simulation parameters. The results inFig. 6
from simulations with an inverse power law attraction pro-
vide a comparison between models of constant intrinsic
damping and a strong hydrodynamic interaction that dimin-
ished with separation. In Fig. 7, results from simulations
assuming strong hydrodynamic interaction provide a com-
parison between the deep harmonic well and inverse power
law potentials. The theoretical predictions of strength su-
perposed on the simulation results in Figs. 6 and 7 yielded
exceptional correlations over the full range of loading rates.
In Figs. 6 A and 7 A, log(f*) versus log(ry) plots show that
strength increased as a weak power of rate under slow
loading, which defined the initial regime of strength. In the
simulations with strong hydrodynamic interaction, strength
emerged at a well-defined critical rate of loading for both
bonding potentials. Below the critical rate of loading, no
strength was perceived for the bond, because the peak in the
distribution of rupture forces stayed at zero force. Listed in
the figure legends, the critical rates were used to derive
empirical values for the intrinsic repulsion, f;, postulated in
Theory. At the critical rate, the time needed to reach the
level of the intrinsic repulsion was comparable to the spon-
taneous lifetime of the bond, i.e., fi/(Af/Af) ~ 1/ve_,,. By
comparison, in 1-D simulations with constant damping,
strength continued to decrease to miniscule levels as rates
were lowered; no critical rate was detected for the loading
rates examined. Next, as shown by the plots in Figs. 6 B and
7 B, strength continued to rise when r; > 1 but now in
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FIGURE 4 Histograms of rupture forces determined from 200 SMC simulations of bond breakage at widely separated loading rates. Superposed are
optimal fits of the generic form of the probability distribution based on theoretical prediction for the off rate under force.

proportion to the logarithm of the loading rate [f* ~ In(r)].
Independent of damping models, this fast loading regime
spanned many decades of loading rate. Finally, plotted on a
linear scale of loading rate in Figs. 6 C and 7 C, there was
crossover to an ultrafast regime when r; > ~exp(E,). On
this scale, forces quickly overwhelmed the energy barrier.
The regimes of strength at lower loading rates collapsed into
the vertical axis so that bond strength seemed to emanate
from a threshold at zero rate of loading. For the inverse
power law attraction, strength leveled off above the thresh-
old near the bare bond strength f,,, which correlated with the
value of E,, as expected from divergence of the off rate. But
with the deep harmonic well, strength continued to rise
weakly in proportion to the square root of the loading rate
for f > f.(1 — 1/E}?), retarded by transient outflow of
states from the initial minimum. Endemic to all types of
simulations, the continued rise in strength resulted from the
rupture criterion defined as the final passage of a fixed
position. Once forces overwhelm the bonding potential, all
states are unbound, and only the naked viscous friction of
the components is left to resist faster separation.

Last, we performed simulations of bond rupture in three
dimensions for two spherical particles held in an inverse
power law potential. Comparison of the results plotted in
Fig. 8 with Fig. 6 shows that simulations of bond breakage
in 3-D simulations gave nearly identical bond strengths to
those obtained in 1-D simulations except at very slow
loading rates. Under rates that led to large forces, it is not
surprising that 3-D kinetics look like 1-D kinetics, because

the reaction pathway is strongly collimated by force, and
unbonding is favored in one direction. By comparison,
under low rates and small forces, the reaction coordinate
becomes delocalized in 3-D simulations with many path-
ways for unbonding that have nearly equivalent energy
contours. For spherically symmetric potentials and weak
forces, these trajectories are distributed almost uniformly
over polar angle 0 relative to the direction of force. Inter-
estingly, for strong hydrodynamic interaction, the radial
gradient in molecular mobility contributes a bias to the
diffusive process analogous to a spherically symmetric
force ~ V [Iin(D)], which significantly stimulates unbinding
at weak forces. As noted earlier, strong hydrodynamic in-
teraction in the absence of force has the effect of increasing
the spatial dimension, which is consistent with the increases
found in critical loading rates for both 1-D and 3-D simu-
lations.

Rupture of biotin-avidin bonds in MD simulations

Unlike the idealized potentials treated earlier, energy land-
scapes of cell adhesion bonds and interfacial linkages in-
volve interactions between many molecular groups. An
example is the high affinity biotin-avidin complex bound
together by several hydrogen bonds. Recently modeled in
atomic detail, MD simulations were developed to determine
the strength of biotin-streptavidin (Grubmuller et al., 1996)
and biotin-avidin (Izrailev et al., 1997) bonds. In both
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FIGURE 5 Apparent mean off rates (a.u., arbitrary units) obtained from the decay in rupture events with rupture time demonstrate crossovers between
spontaneous dissociation and force-driven kinetics at slow loading rates. Results for 1-D simulations assuming strong hydrodynamic interaction are plotted
in (A) for inverse power law attraction and in (B) for a deep harmonic well. Results for 3-D simulations with inverse power law attraction are plotted in
(C) for constant damping and in (D) for strong hydrodynamic interaction. The arrows mark the crossovers used to define the critical loading rates, r{, and

to derive empirical values for intrinsic repulsion, f.

simulations, biotin was extracted from the binding pocket
by pulling on the outer end with a mechanical “spring,” but
the spring properties were quite different in each case. To
estimate an energy landscape appropriate for the kinetics of
unbonding in laboratory probe tests, we will use results
from the simulation of Izrailev et al. (1997) kindly provided
to us by Prof. Klaus Schulten and his group (Beckman
Institute, University of Illinois). In their simulation, a highly
extended spring was attached to biotin, and the spring
stiffness, k,, was increased from zero at a constant rate, k, =
¢ t. Because the magnitude of k, stayed low over the course
of detachment, fluctuations in spring force were small in
comparison with the mean level of force, which increased
steadily with time. Also, local diffusion was restricted min-
imally by the spring and allowed a good sample over local
fast degrees of freedom at the slowest force-driven detach-
ment, as shown by the profile of instantaneous energies in
Fig. 9 A. Here, we consider only the sequence of interac-
tions obtained when biotin was inside the binding pocket,
which represented a range of mean separation up to ~1.3
nm. Even though biotin is pulled out of the binding pocket
at speeds of ~1 nm/ns (= 1 m/s), the fluctuations in biotin
velocity remain Maxwellian, with a mean square value of
~12,000 m?%/s?, which exhibits a rapidly decaying correla-

tion in time. Ideally, if separated slow enough, local aver-
ages over the enormous fluctuations in potential should
yield a smooth potential (E) = E(x), where the mean force
f (x) sensed by the spring would equal 3E/dx, and the local
mean square fluctuation in position would reflect the cur-
vature of the smooth potential plus the spring stiffness, i.e.,
(8x) = kgT/(8°E/dx* + k). Optimizing the averaging win-
dow (At ~ 20 ps), the outcome of this coarse-graining
procedure is shown in Fig. 9 B along with a smooth poly-
nomial approximation that closely fits the averaged poten-
tial. In regions dense with many local states, derivatives of
the smooth polynomial are consistent with the values of
mean spring force observed in the simulation and the mean
square positional fluctuation calculated from the local dis-
tribution of states within an averaging window. However,
easily recognized in Fig. 9 A, regions with few states rep-
resented outward jumps in position, the most prominent of
which occurred between 0.4 and 0.8 nm. Over each jump
region, the form of the smooth potential had to be approx-
imated by analytic continuation with a cubic polynomial.
(To achieve better statistics in these regions, the spring
constant would have to be increased locally, and then the
mean field could by derived from the logarithm of the
distribution, taking proper account of the spring potential.)
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FIGURE 6 Strengths of bonds determined at fixed loading rates in 1-D
simulations for an inverse power law potential (exponent n = 4) with a
depth of E, = 5. A comparison of viscous damping models is presented;
the open triangles are results for strong hydrodynamic interaction, and open
squares are results for constant damping. The curves are theoretical pre-
dictions for bond strength. (A) log(f*) versus log(r;) shows that strength
emerges at a critical rate set by f; =~ 0.003 for strong hydrodynamic
interaction but seems to begin at zero rate for constant damping (closed
symbols along the rate axis signify zero strength); (B) f* versus log(r)
shows crossover to the fast loading regime; (C) f* versus r; shows
crossover to the ultrafast loading regime and the apparent threshold at zero
loading rate.

As shown by the relation for (8x°), the curvature of the
averaged potential became negative in this region, and fluc-
tuations were locally unconfined when 9°E/ox* < —k,.
These jumps revealed inner transition states along the dis-
sociation pathway. Applying an external force to the aver-
aged potential, as shown in Fig. 10 A, we see that the energy
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FIGURE 7 Strengths of bonds determined at fixed loading rates in 1-D
simulations assuming strong hydrodynamic interaction. A comparison of
bonding potentials is presented; open triangles are results taken from Fig.
6 for an inverse power law potential (exponent n = 4), and open circles are
results for a deep harmonic well, both specified with a depth of E, = 5. The
curves are theoretical predictions for bond strength. (A) log( f*) versus
log(r;) shows that strength emerges at critical rates set by f; =~ 0.003 for the
inverse power law attraction and f; ~ 0.18 for the harmonic well (closed
symbols along the rate axis signify zero strength); (B) f* versus log(ry)
shows crossover to the fast loading regime; (C) f* versus r; shows
crossover to the ultrafast loading regime and the apparent threshold at zero
loading rate.

barrier switches from the initial transition state at ~1.3 nm
to the inner transition state at ~0.6 nm once forces exceed
a mere 60 pN. Next, in Fig. 10 B, forces of ~280 pN lower
the energy barrier to the level of the initial minimum, which
would allow unencumbered diffusion past the barrier. Based
on the value of intrinsic friction y, ~2 X 107'" Ns/m
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FIGURE 8 Strengths of bonds determined at fixed loading rates in 3-D
simulations for an inverse power law potential (exponent n = 4) with a
depth of E, = 5. A comparison of viscous damping models in 3-D
simulations is presented; open triangles are results for strong hydrody-
namic interaction, and open squares are results for constant damping. The
curves (dashed) are predictions of 1-D theory calculated using the empir-
ical values of intrinsic repulsion derived from the critical loading rates in
Fig. 5 C and D. (A) log( f*) versus log(r) shows that strength emerges at
critical rates set by f; = 1.5 for strong hydrodynamic interaction and by
f; = 0.32 for constant damping (closed symbols along the rate axis signify
zero strength); (B) f* versus log(r;) shows crossover to the fast loading
regime; (C) f* versus r; shows crossover to the ultrafast loading regime
and the apparent threshold at zero loading rate.

implied by the simulation of Grubmuller et al. (1996), we
can estimate the characteristic time for diffusive passage of
the transition state. Recalling that #, = x x, /(kgT/y,) ~ 0.1
nm*/(2 X 10® nm?s), #, ~ 500 ps would represent the ex-
pected lifetime of the bond under a constant external force of
280 pN. However, if the rate of loading is > 280/t ~ 10'?
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FIGURE 9 Derivation of an approximate energy landscape for force-
driven dissociation of biotin-avidin bonds. (A) Instantaneous energies
computed along the detachment path in the slowest simulation (~500 ps)
of Izrailev et al. (1997) (kindly provided to us by Professor Klaus Schulten
and co-workers, Beckman Institute, University of Illinois). (B) Coarse-
grained average of the instantaneous energies (thin curve) and the smooth
polynomial fit used to estimate of the potential of mean force (thick curve).
Dashed segments in the thin curve represent jumps with few statistics. Over
these jumps, the smooth potential was connected by analytic continuation
with a cubic polynomial.

pN/s, then the bond would remain kinetically trapped, and
force would continue to rise. Finally, in Fig. 10C, forces of
> 400 pN completely eliminate the barrier as set by the
maximum gradient in the coarse-grained potential. For the
slowest detachment in the simulation of Izrailev et al.
(1997), the loading rate was almost constant at ~1.3 X 10'?
pN/s and led to a rupture force of ~450 pN after about 350
ps, which is consistent with the maximum potential
gradient.

In contrast to the simulation by Izrailev et al. (1997),
biotin was pulled from a streptavidin-binding pocket with a
very stiff zero-length spring, moved at constant speed, in the
simulation by Grubmuller et al. (1996). Because the value
of the spring constant was large (k, = 2800 pN/nm), the
spring force fluctuated strongly as biotin was forced to jump
from one local region of molecular attraction to the next
during separation. Because of the frequent jumps, biotin
moved almost steadily out of the binding pocket, and the
pulling force appeared to be augmented by a viscous drag
proportional to the speed of separation, which provided the
estimate of ~2 X 107" Ns/m for intrinsic friction. At the
slowest pulling speed, ~ 1.5 m/s, the maximum force along
the path was ~300 pN (when averaged over a few ps),
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FIGURE 10 Tilt of the smooth energy landscape in Fig. 9 B by external
force. (A) For forces =60 pN, the transition state shifts inward from the
outer barrier at ~1.3 nm to the inner barrier at ~0.6 nm. (B) Forces of
~280 pN lower the barrier to the level of the initial energy minimum,
which would allow free diffusion past the barrier for states starting at the
initial minimum. (C) When forces reach the level (~400 pN) of the
maximum gradient in the coarse-grained potential, all barriers are elimi-
nated, and the potential is completely overwhelmed by the applied force.

considerably less than for the slowest simulation of Izrailev
et al. (1997). The lower value of rupture force could have
been the consequence of convection of biotin through local
minima by the stiff-moving spring. As such, the character-
istic time needed for diffusion past local barriers would
have been greatly reduced to ~8 ps based on the spring
stiffness (i.e., kg77k, ~ (0.04 nm)?}. Thus, the mean spring
force would continue to rise above the local threshold
strength for about 8 ps, and the added force would be
proportional to the spring loading rate (k, X speed), which
is consistent with the results of Grubmuller et al. (1996) for
speeds slower than 10 m/s. Above 15 m/s, rupture forces
became erratic, perhaps because of insufficient time for
local thermal equilibration.

With the value of intrinsic friction and the coarse-grained
potential, we have used the theoretical approach developed
earlier to derive the full spectrum of strength for steady rates
of loading below 10'? pN/s. These estimates are not to be
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taken as accurate predictions but only serve to illustrate how
to bridge the enormous gap in time scales between MD
simulations and laboratory measurements. Plotted in Fig.
11, the calculations of strength show separate regimes of
logarithmic dependence on loading rate, f* ~ (kgT/x,)
In(Af/At) + const, where the break in slope results from the
switch in transition state from x,, of ~1.3 to ~0.6 nm at
forces above ~60 pN. Above 280 pN, there is crossover to
the ultrafast regime, in which drift kinetics lead to f* ~
(Fortp * AffAD'? with f,. = 280 pN. Superposed on the
calculated strengths in Fig. 11 are the ranges of force that
would be sensed by different force probe techniques. The
range for each technique is based on nominal loading rates
(i.e., the fastest loading rates, ~ 10*-10° pN/s, for the AFM;
intermediate loading rates, ~ 10-10° pN/s, for the BFP; and
the slowest loading rates, ~1-10 pN/s, for the OT). The
label MD notes the rupture force determined at the slowest
rate of loading, ~1.3 X 10'? pN/s, in the simulation of
Izrailev et al. (1997). As shown by the labels, the force
estimates for laboratory probes are governed by the inner
transition state except perhaps under very slow rates, <1
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FIGURE 11 Hypothetical strengths of biotin-avidin bonds calculated

over 12 orders of magnitude in loading rate using the energy landscape
shown in Fig. 9 B. The estimates of bond strength are plotted versus the
logarithm of loading rate (In(pN/s)). Breaks in the plot indicate the range
of rupture forces expected for different laboratory probe techniques based
on loading rates: i.e., the AFM for the fastest loading rates, ~10°-10° pN/s;
the BFP for intermediate loading rates, ~10-10" pN/s; and the OT for the
slowest loading rates. ~1—10 pN/s. The maximum strength predicted by
the coarse-grained potential is noted by the star. Also, the labet MD
represents the rupture force determined under the slowest rate of loading,
~10'2 pN/s, in the simulation of Izrailev et al. (1997).
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pN/s, but estimates for each technique yield a different
range of strengths.

CONCLUSIONS

Applied to situations of constant loading rate, Kramers’
Brownian dynamics theory predicts three generic regimes of
bond strength. These predictions have been confirmed by
SMC simulations of idealized bonds loaded under a ramp of
force in an overdamped environment (liquids). The power
of Kramers’ theory is demonstrated by the accuracy of the
predictions over the full range of strength, including subtle
effects of models for molecular mobility and sensitivity to
details of the potentials, i.e., constant damping vis a vis
separation-dependent damping, steepness of the potential
and specific exponents, etc. The theory and simulations
reveal the inherent dynamic nature of bond strength, which
provides important insights into how forces can be expected
to vary in tests of the same bonds with different types of
laboratory probes and how laboratory measurements can be
related to detailed molecular-scale simulations in MD.
Most relevant to biology, low strengths arise in a slow
loading regime that depends on how small forces deform the
bonding potential and initially shape the transition state in
the region of very weak attraction. For purely attractive
potentials that vanish monotonically at large distances, a
traditional challenge has been how to overcome the patho-
logical feature of Kramers’ theory in one dimension, in
which no spontaneous dissociation is predicted in the ab-
sence of external force. As a possible rationalization, we
have postulated that crossover from force-driven kinetics to
spontaneous dissociation can be introduced empirically by
simply defining a small intrinsic repulsion. As such, bond
strength begins once the loading rate is sufficient to produce
forces above the inherent repulsion on the time scale of
spontaneous dissociation. Here, simulations have provided
crucial tests of a crossover to spontaneous dissociation and
the critical rate hypothesis. But as shown earlier, identifi-
cation of a critical loading rate is nontrivial and depends on
the model of molecular damping, the type of bonding po-
tential, and spatial dimensionality. For strong hydrodynamic
interaction in which damping diminishes with separation at
close range, nonzero critical rates were found in all simu-
lations. Significantly, the value of intrinsic repulsion de-
rived from the observed critical rates increased by 300-fold
between 1-D and 3-D simulations, which implies that cur-
vature of a bonding surface affects the crossover from
spontaneous to force-driven dissociation for large molecular
complexes. Although a critical rate of loading was found in
simulations with strong hydrodynamic interaction, no criti-
cal rate could be established in 1-D simulations with con-
stant damping even at the most lethargic rate, at which bond
strength dropped to less than 1/1000 of the thermal force
scale. This result does not rule out the existence of a critical
loading rate for constant damping in 1-D simulations but
merely sets an upper bound. On the other hand, at higher
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rates of loading, the bond strengths measured in 1-D and
3-D simulations were indistinguishable for both models of
viscous damping. In this less intriguing fast regime, bond
strength rises essentially as the logarithm of the loading rate
over an enormous span in loading rate determined by the
reciprocal of the Arrhenius factor. The logarithmic depen-
dence stems from the exponential amplification in the like-
lihood of reaching the top of the energy barrier as force rises
above the characteristic thermal force. Ultimately, at ex-
treme rates of loading, an ephemeral ultrafast regime is
entered in which the mechanical potential quickly over-
whelms the most prominent energy barrier along the reac-
tion pathway, leaving all states free to unbind.

It is clear that strengths of molecular linkages must be
tested under controlled loading over a wide range of rates.
When applied this way, probe techniques can be used as a
dynamic force spectroscopy to reveal prominent features of
the energy landscape along a force-driven pathway to rup-
ture. With cautious respect for inherent uncertainties, mea-
surements on laboratory time scales can be compared with
predictions of MD simulations on extremely fast time scales
using Brownian dynamics simulations. Derived from aver-
ages over the nanosecond time frame set by current MD
computations, the potential of mean force and frictional
damping along the selected reaction coordinate should be
coupled with a collective mechanical model of the siow
configurational excitations to provide the best Brownian
dynamics abstraction. As shown by the simple analysis of
biotin-avidin results (Izrailev et al., 1997) in the previous
section, rupture forces derived from MD simulations can
significantly exceed levels expected for force probe mea-
surements, and there is no a priori reason to correlate
laboratory tests of bond strength with the apparent threshold
seen in MD. The apparent threshold should be merely
viewed as the level of force sufficient to eliminate kinetic
barriers to unbonding and predicts only an upper bound for
forces in probe measurements.
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