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Figure S1: Capsid Model- Three different membrane deformation profiles under the influence of
clathrin imposed curvature for sp=25, 50 and 70 nm. For sp=70 nm, membrane shape is reminiscent of a
clathrin-coated vesicle. Inset (top): A schematic of the membrane profile explaining various symbols in
the surface evolution methodology. The full membrane profile is obtained by rotating the curve by 2n
about the z-axis. Inset (bottom) shows spontaneous curvature function experienced by the membrane due

to the clathrin coat assembly in the capsid model.
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Figure S2: Capsid Model- Curvature deformation energy of the membrane versus the area of the

clathrin coat, Ay(sg) for different values of sp: 25nm-70nm. Inset: vesicle neck-radius R(s() plotted

against coat area A(s()) for different values of sp: 25nm-70 nm.
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Figure S3: Epsin Shell Model- Radius R versus s in the epsin shell model.
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Figure S4: Epsin Shell Model- Determination of the range parameter b as a function of bending

rigidity.
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Figure S5: a) A schematic (corresponding to a mature bud in Fig. 3) showing membrane and
three concentric shells of epsin present on the membrane. These shells of epsin are 18.5 nm
(measured along the membrane arc-length, s) far from each other. Each shell of epsin imposes a
intrinsic curvature onto the membrane b)Epsin Shell Model- Comparison of curvature field

functions in the epsin shell model (solid line) and the capsid model (dashed line).
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Fig. S6. Energetics of the clathrin coated vesicular bud E, versus coat area, A, for the capsid model.



Text S1: Membrane Energy Minimization

Assuming axial symmetry, we introduce a surface of revoluipproach to model the membrane at equilibrium. We
consider a generating curgyeparameterized by arc lengtHying in thex — z plane. The curve is expressed as

7(0,51) — R3y(s) = (R(s),0, 2(s)) (S1.1)

wheres; is the total arc-length. This generating curve leads to bajlparametrization of the membrane expressed as
X :(0,s1) x (0,27) — R3 (S1.2)
X (s,u) = (R(s)cos(u), R(s)sin(u), z(s)) (S1.3)

wherew is the angle of rotation about z-axis. With this parametiizg the mean curvaturé and the Gaussian
curvatureK are given as follows respectively

Z/ + R(Z/RH _ ZI/RI)
R
K=—— S1.5
- (S1.5)
where the prime indicates differential with respect to largth s. The expressions obtained above for the mean
curvature and the gaussian curvature are quite complicatedimplify them, an extra variabl¢ where(s) is the

angle between the tangent to the curve and the horizonggdtdin, is introduced. The declation of this extra variable
introduces following two geometric constraints:

H=—

(S1.4)

R’ = cos(¢(s)) (S1.6)
2 = —sin(y(s)) (S1.7)
These two constraints lead to the following simplified eggiens for the mean curvature and the gaussian curvature.
H = + 208 sin(y(s)) (S1.8)
R(s)
K = g 5n() sin((s)) (S1.9)
R(s)
The membrane free enerdyis defined by
27 S1 K
E:/ / §[H—HO}2+EK+adA (S1.10)

wheredA is the area element given liydsdu, « is the bending rigidityr is the splay moduluss is the line tension.
Substituting forH, K, we obtain the following expression for the free energy

o ot sin(¥(s)) s sin(t(s))
E= / / R(s) H,)? + R R(s) + o) Rdsdu (S1.11)

We now proceed to determine the minimum-energy shape of gmabrane. The condition that specifies the the
minimum-energy profile is that, the first variation of the yyeshould be zero. That is

§E =0 (S1.12)



subject to the geometric constrair®s = cos(i(s)), 2’ = —sin(¢(s)). These constraints can be reexpressed in an
integral form as follows

/S1 R' — cos(¢(s))ds = 0 (S1.13)
0
/051 2"+ sin(y(s))ds =0 (S1.14)

Introducing lagrange multipliers, we solve our constrdimgtimization problem as follows. We introduce the La-
grange function/, n and minimize the quantity’

-7 (L4 2D 2E'MU suys1 '—cos(1(s))ds Slz’sin s))ds
F_/O /O (2[w+ R(s) H,]* + Ry Rs) )Rdd+/0 R (¢())d+n/0 z;ll(;())d

Since the integrand of the double integral is independent &f simplifies to

F=2r /081 {HR [w’ + sin(9(s)) _ HO} + Ry sin(Y(s)) + oR+ v [R' — cos((s))] +n [z’ + sm(w(s))]} ds

2 R(s)
(S1.16)
The minimization problem is then expressed as
0F =0 (S1.17)

We denote the integrand of functional in Eq. S1.16.as

L= ? {1#’ + w - Ho] + Ry sin(Y(s)) + oR+ v [R — cos((s))] +n [z + sin((s))]  (S1.18)
So, we get

F—or / Lds (S1.19)

We interpretF' in as a functional of the variables, R, z, 1, n,v. We denote variableR, z, ¢, n, v by p;. Now the
“generalized” or (non-simultaneous) variatidd¥' is expressed as

AF = 27TA/ L(s,p;)ds (S1.20)
0

For a detailed description of terminology used and the fahg method, readers are referred to [1]. Performing the
generalized variation, we get

st /9L d OL OL OL
AF = — — =) op; — Ap; L- A S1.21
/o <apz» dsap;>5pd”[ap; ”]0 *K ap;p’) } (5121

At equlibrium, the integral in Eq. S1.21 should be zero, WH&ads to following Euler-Lagrange eqgns.

oL _d oL _, (S1.22)

Jp;  ds Op] N

Therefore, the boundary conditionssatare specified by the relationship

{8L

o] Apl} + [(L aLpé) As} =0 (S1.23)

0 Ip; 0



To simplify the boundary conditions, we define a new functibifanalogous to Hamiltonian) which is of the form

H=—-L+yp, oL (S1.24)
o
Now, the boundary term simplifies to
s oL o
bi 0

The above two key equations results in the following seriesquations that describe the membrane equilibrium
profile.

oL d 0L
oL d OL
R AR 0 (S1.27)
oL d 0L
i = (S1.28)
oL _ (S1.29)
v
oL _ (S1.30)
an
[HAs)S = 0 (S1.31)
oL 1°
LW au| = (S1.32)
oL 1°
[ s =0 (S1.33)
oL . 1™
{az,m_ C= (S1.34)
[M,Ay o~ 0 (S1.35)
o',
{aLM — 0 (S1.36)
on' 1,
Recall that
. 2
L= % {w’ + w — HO] + Ry sin(Y(s)) + R+ v(R — cos(¢(s)) +n(2 + sin((s))  (S1.37)

We now take the spontaneous curvatlife= ¢(s) whereg(s) is an appropriately chosen function. The lagrandian
becomes

R [y S0

L= R(s)

- as(s)} + R/ sin(1(s)) + oR + V(R — cos((s)) + (= + sin((s))  (S1.38)

The Lagrangian depends on the arc-lengttdue to the (in general) spatially-varying spontaneousature,s(s).
Hence the Hamiltoniari is not a conserved quantity alongThis is in contrast to the conserved Hamiltonian in [2]
and [3] since those authors assumed a constant spontanewasice along the membrane.

Since for a topologically-invariant transformation, thentribution to gaussian curvature to functiortalis con-
stant, we do not expect to see any terms involvirg following expressions. The Eq. S1.26 results in the feifg



expression

) cos()sin() Weos(y) wsin(¥) meos(d)
= 2 — 5t T TP (S1.39)

Note that in the above expression, we retainghe@) term since, in general, spontaneous curvature can be adaonct
of arc-length s.
The Eq. S1.27 gives the following expression for
K = o(s))?  ksin®(y)

v = 5 Y +o (51.40)

The Eq. S1.28 gives the following expressionfor

7 =0 (S1.41)

The Eq. S1.29 gives the following expression
R’ = cos(¢(s)) (S1.42)

The Eq. S1.30 gives the following expression
2 = —sin(y(s)) (S1.43)

Since,s is fixed whens = 0, As = 0 whens = 0. Hence, Eq. S1.31 reduces to
[~HAs], =0 (S1.44)

Since,As # 0 whens = s;, we conclude that at = s;, H = 0. Deriving H from L, we get

R, siny 2
o (-9

A similar result was obtained by Seifert [3] where they shdweat when the total arc-length is not known a priori
(i.e. s1 is free) the HamiltonianH (s1) = 0.
From Eq. S1.32, we get

— 0R + vcosyp —nsiny =0 (S1.45)

K [R (u/ n 5221/’ - ¢) Aw] ~0 (S1.46)
0
From Eq. S1.33, we get
[VAR]) =0 (S1.47)
From Eq. S1.34, we get
nAz]gh =0 (S1.48)

There are no terms involving andr’ in definition of L in S1.38. Hence, Eq. S1.35 and S1.36 does not provide any
information. Since we have second order ODE«offirst order ODE forR, z, v, n and sinces; is also unknown, in
total we need 7 boundary conditions. Equation S1.45 prewidavith 1 equation. We still need to provide 6 additional
equations. For clarity is zero when the curve has zero radius.

We consider few example cases for the boundary conditions:



S1.1 Casel

At s = 0, let's specifyy) = 0, R = 0 andz = 0. So, ats = 0, Ay, AR, Az are all zero. Since, we have not specified
¥, R,z ats = s1, we haveAy, AR, Az are all non-zero at = s;. Use of Eq. S1.46, S1.47 and S1.48 tells us that at

, siny(sy) B
R(s1) (v/f (s1) + Ry as(sl)) =0 (S1.49)
v(si) = 0 (S1.50)
n(si) = 0 (S1.51)
If we assume in S1.49 that(s;) # 0, then we have
p sin(sy) B
(1/’ (51) + “R(s) ¢(51)> =0 (51.52)

Substitution of this relation into Eq. S1.45 along with usiBq. S1.50 and S1.51 results in{s;) = 0 which
invalidates our assumption. SB,has to be zero at;, i.e. the curve has both its ends at the z-axis and so it |okés |
a sphere. Hence, this boundary condition is not applicabléhe pinned membrane.

S1.2 Casell
At s = 0, let's specifyy) = 0, R = 0 andz = 0 and ats = s, we specifyyy = 0, R = Ry andz = zy. With these
conditions, Eq. S1.45 reduces to

v(s1) = o Ry; (S1.53)
S1.3 S2 Numerical Algorithm
S1.3.1 Analytical Solution for initial guess

Wheno = 0, we expect the solution to b = ¢, R’ = cosy) andv = 0. In this section, we show that above three
equations are indeed a solution to the Eq. S1.39, S1.40 aA@ @heno = 0. Now, H = ¢ tells us that

W+ Szgw =4 (S1.54)
We differentiate S1.54 w.r.to s and uBé = cost to get
, .
o = ~Yleos(v) n cospsinap b (S1.55)

R R?

Now, above equation along with= 0 satisfies eq. S1.39. Substituting= 0 andvy’ = —% + ¢ in S1.40, we get

st 2 stnap 2
(%) - (%)
This proves that whes = 0, H = ¢, R’ = cosy andr = 0 are the solution. Note we assume= 0 so that it also
satisfies the boundary condition, i.e(s;) = 0. This analytical solution might provides us with a very gaoitial
guess whemr # 0. However, sincéd = ¢ is a first order differential equation, it satisfies only omaibdary condi-
tion. Hence, in general, solution éf = ¢ will not satisfy both boundary conditions for. Hence, in generall = ¢
is not a solution for our systenti = ¢ satisfies both boundary conditionsj‘[]él P'ds =0, i.e. fosl “'7";’/’ — ¢ds = 0.
So, we rather use a different approach to calculate thalimgjtiess: We know that fap to satisfy both the boundary
conditions,j’(f1 1’ds has to be zero. Wheﬁf1 ¢ds = 0, then, we know that’ = ¢ provides us with a good intial
guess consistent with the boundary conditions. Wﬁ?ﬂqﬁds # 0, we definee = fosl ¢ds. Then we know that

K
0=73

(S1.56)




S1

(¢ —¢/s1)ds = 0. Now, we define our initial guess to & = ¢ — ¢/s;. Integrating this expression, we get
¥ = [; ¢ds — es/s1 as our initial guess.

S1.3.2 Numerical Solution

We specify guess value far, and then calculate the guess value fousing the method outlined in section S1.3.1.
Once initial value ofy is available, we also calculate initial value &f and v using Eq. S1.42 and Eq. S1.40
respectively. Then we solve the Eq. S1.39, S1.40, S1.42 artB&long with the boundary conditions specified in
section S1.2 and Eq. S1.53 numerically. From the resultsesfe calculations, we calcula s, ). Convergence of
R(s1) to Ry within some tolerance by varying indicates the converged membrane profile.
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Text S2: The Capsid Model

In order to account for the effect of clathrin coat size on membrane deformation, we further simplify our
model for curvature induction and assume that the clathrin-coat assembly acts as a capsid imposing a
constant and radially symmetric mean radius of curvature field on the membrane with Ho = 0.08 nm™ [1].
This value is consistent with the typical clathrin-coated spherical vesicles imaged in neuronal cells [1];
thus, we set Hq(s) = 0.08 nm™ if s<sy and Ho(s) = 0 if s>sq, S, is the length of the clathrin coat assembly.

The close agreement between the membrane profiles obtained using the capsid model and the epsin shell
model is evident from comparing Fig. S1 and Fig. 3. Our results also make clear that it is the embedded
epsins on the clathrin coat that provide a major contribution to H,. Fig. S2 depicts the energy of
membrane deformation and the neck radius as a function of coat size for the capsid model. The energy of

deformation of the fully mature bud is found to be ~25«.

1. Chiu SW, Jakobsson E, Mashl RJ, Scott HL (2002) Cholesterol-induced modifications in lipid

bilayers: a simulation study. Biophys J 83(4): 1842-1853.



