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ABSTRACT 
 

UNCOVERING THE FUNCTIONAL EFFECTS OF BIOMOLECULAR 

MUTATIONS THROUGH COMPUTER SIMULATIONS 

Peter Huwe 

Ravi Radhakrishnan 

 

Amino acid substitutions, or mutations, in proteins have been implicated in a host of 

human diseases.  Protein mutations are heterogeneous in nature.  Some mutations 

hamper protein function, while others may induce hyperactivity in the protein, and still 

others may leave the protein’s activity relatively unaffected.  Uncovering the functional 

effects of individual mutations is vital to understanding disease etiology, to engineering 

biomolecules to optimize function, and developing therapeutic agents.  Using computer 

simulations in conjunction with, or in lieu of, traditional wet lab experiments may reveal 

the phenotype of mutations and provide insight into molecular mechanisms underlying 

changes in protein activity.  In this work, we employ molecular modeling and computer 

simulations to (1) understand how Activation-Induced Cytidine Deaminase (AID) activity 

can be optimized through selective mutations; (2) describe how polymorphisms in 

Mitochondrial Transcription Factor A (TFAM) affect protein stability and DNA binding; (3) 

predict whether Anaplastic Lymphoma Kinase (ALK) mutations identified neuroblastoma 

patients constitutively activate the protein and drive progression of the disease.  Our 

results effectively recapitulate and provide molecular context to experimental results 

while also demonstrating the potential for future use of simulations in clinical diagnostics. 

 



vii	  
	  

 

TABLE OF CONTENTS 

 

ABSTRACT	  ..................................................................................................................................	  VI	  

LIST	  OF	  FIGURES	  ......................................................................................................................	  IX	  

LIST	  OF	  TABLES	  .........................................................................................................................	  X	  

CHAPTER	  1:	  INTRODUCTION	  ...............................................................................................	  2	  

1.1	  Overview	  ..........................................................................................................................................	  2	  

1.2	  Biological	  background	  of	  amino	  acid	  substitutions	  ............................................................................	  2	  

1.3	  Predicting	  the	  effects	  of	  mutations	  in	  silico	  .......................................................................................	  3	  

1.4	  Molecular	  Simulations	  ......................................................................................................................	  4	  

CHAPTER	  2:	  FUNCTIONAL	  DETERMINANTS	  FOR	  DNA	  TARGETING	  BY	  
ACTIVATION-‐INDUCED	  CYTIDINE	  DEAMINASE	  ...........................................................	  10	  

2.1	  Introduction	  ....................................................................................................................................	  10	  

2.1.1	  Synopsis	  .......................................................................................................................................	  10	  

2.1.1	  Background	  ..................................................................................................................................	  11	  

2.1.2	  Experimental	  collaboration	  ..........................................................................................................	  15	  

2.3	  Methods	  .........................................................................................................................................	  23	  

2.3.1	  Molecular	  Modeling	  .....................................................................................................................	  23	  

2.3.2	  System	  Preparation	  and	  MD	  Simulations	  .....................................................................................	  25	  

2.3.3	  Analyses	  .......................................................................................................................................	  26	  

2.4	  Results	  ............................................................................................................................................	  27	  

2.4.1	  AID-‐WT	  interactions	  with	  hotspot	  and	  coldspot	  ssDNA	  ................................................................	  27	  
Table	  2.1.	  Solvent	  accessible	  surface	  area	  for	  side	  chain	  residues.	  .........................................................	  30	  



viii	  
	  

2.4.2	  AID-‐WT	  vs.	  Y114F	  .........................................................................................................................	  33	  

2.4.3	  R119G	  and	  cvBEST	  ........................................................................................................................	  33	  

2.5	  Discussion	  .......................................................................................................................................	  34	  

CHAPTER	  3:	  UNDERSTANDING	  THE	  MOLECULAR	  CONSEQUENCES	  OF	  HUMAN	  
TFAM	  VARIANTS	  ....................................................................................................................	  39	  

3.1	  Overview	  ........................................................................................................................................	  39	  

3.2	  Experimental	  Collaboration	  ............................................................................................................	  44	  
Table	  3.1	  Summary	  of	  in	  vitro	  results.	  ......................................................................................................	  48	  

3.3	  Computational	  methodology	  ..........................................................................................................	  49	  

3.3.1	  Molecular	  modeling	  of	  TFAM	  variant	  complexes	  ..........................................................................	  49	  

3.3.2	  Molecular	  Dynamics	  simulations	  of	  TFAM	  constructs	  ...................................................................	  50	  

3.3.3	  TFAM-‐mtDNA	  Contact	  Analysis	  ....................................................................................................	  50	  

3.3.4	  Hydrogen	  Bonding	  .......................................................................................................................	  51	  

3.3.5	  Salt	  Bridges	  ..................................................................................................................................	  51	  

3.3.6	  Helix	  Bending	  ...............................................................................................................................	  52	  

3.3.7	  DNA	  bending	  ................................................................................................................................	  52	  

3.4	  Results	  ............................................................................................................................................	  54	  

3.4.1	  HMG	  Box	  A	  mutations	  ..................................................................................................................	  54	  
Table	  3.2.	  TFAM-‐mtDNA	  contact	  occupancies	  for	  selected	  residues.	  ......................................................	  56	  
Table	  3.3:	  Selected	  Hydrogen	  bond	  occupancies.	  ....................................................................................	  57	  
Table	  3.4.	  DNA	  end-‐to-‐end	  distances.	  ......................................................................................................	  59	  

3.4.2	  Linker-‐region	  mutations	  ...............................................................................................................	  61	  

3.4.3	  HMG	  Box	  B	  and	  C-‐terminal	  tail	  mutations	  ....................................................................................	  62	  

3.5	  Discussion	  .......................................................................................................................................	  65	  

CHAPTER	  4:	  ANAPLASTIC	  LYMPHOMA	  KINASE	  (ALK)	  MUTATIONS	  IN	  
NEUROBLASTOMA	  PATIENTS	  ............................................................................................	  70	  

4.1	  Introduction	  ....................................................................................................................................	  70	  

4.1.1	  Role	  of	  Anaplastic	  Lymphoma	  Kinase	  in	  Neuroblastoma	  ..............................................................	  70	  



ix	  
	  

4.1.2	  ALK	  Structure	  and	  Function	  ..........................................................................................................	  73	  

4.2	  Experimental	  and	  Clinical	  Collaboration	  ..........................................................................................	  79	  
Table	  4.1.	  Clinical,	  genomic,	  and	  survival	  characteristics	  of	  overall	  patient	  cohort.	  ................................	  83	  

4.3	  Computational	  Methods	  and	  Data	  ..................................................................................................	  90	  

4.3.1	  Molecular	  modeling	  .....................................................................................................................	  90	  

4.3.1	  Molecular	  dynamics	  (MD)	  ............................................................................................................	  91	  

4.2.2	  Hydrogen-‐bond	  analysis	  ...............................................................................................................	  93	  
Table	  4.2.	  Hydrogen	  bond	  occupancies.	  ..................................................................................................	  96	  

4.2.3	  Hydrophobic	  destabilization	  analysis	  ...........................................................................................	  96	  
Table	  4.3.	  SASA	  values.	  .............................................................................................................................	  98	  
Table	  4.4.	  FEP	  results.	  ............................................................................................................................	  100	  

4.2.4	  Principal	  component	  analysis	  (PCA)	  ...........................................................................................	  102	  

4.3	  Results	  ..........................................................................................................................................	  104	  
Table	  4.6.	  Computational	  prediction	  of	  effects	  of	  ALK	  TKD	  mutations.	  .................................................	  107	  

4.4	  Discussion	  .....................................................................................................................................	  108	  

CHAPTER	  5:	  PERSPECTIVES	  ............................................................................................	  114	  

BIBLIOGRAPHY	  .....................................................................................................................	  118	  

INDEX	  ......................................................................................................................................	  126	  
 

LIST OF FIGURES 
 

Figure	  2.1.	  Homolgy	  model	  of	  AID	  and	  ssDNA.	  .............................................................................	  24	  

Figure	  2.2.	  Hotspot	  vs.	  coldspot	  contact	  analysis.	  ........................................................................	  30	  

Figure	  2.3.	  Molecular	  dynamics	  simulations	  of	  AID	  interactions	  with	  DNA.	  ................................	  32	  

Figure	  3.2.	  DNA	  end-‐to-‐end	  distances	  as	  a	  measure	  of	  bending.	  .................................................	  53	  

Figure	  3.3.	  TFAM	  local	  helix	  mean	  bending	  and	  flexibility.	  ...........................................................	  58	  

Figure	  3.4:	  Salt	  Bridge	  distances	  for	  residue	  219.	  .........................................................................	  63	  



x	  
	  	  

Figure	  4.2.	  	  Overlay	  of	  inactive	  (red)	  and	  active	  (green)	  ALK-‐TKD	  structures.	  ..............................	  77	  

Figure	  4.3.	  	  Distribution	  of	  ALK	  mutations	  in	  neuroblastoma	  patients.	  ........................................	  81	  

Figure	  4.5.	  	  Solvated,	  ionized	  WT	  ALK	  ...........................................................................................	  92	  

Figure	  4.6.	  Hydrogen	  bonding	  networks	  for	  inactive	  and	  active	  ALK	  TKD.	  ...................................	  94	  

Figure	  4.7.	  Mutation	  site	  hydrophobicity.	  ....................................................................................	  97	  

Figure	  4.8.	  Thermodynamic	  cycle.	  ..............................................................................................	  101	  

 

LIST OF TABLES 
 

Table	  2.1.	  Solvent	  accessible	  surface	  area	  for	  side	  chain	  residues.	  ..............................................	  30	  

Table	  2.2.	  Hydrogen	  Bonding	  Interactions	  Between	  AID	  and	  5’-‐AGCT-‐3’.	  ...................................	  37	  

Table	  3.1	  Summary	  of	  in	  vitro	  results.	  ..........................................................................................	  48	  

Table	  3.2.	  TFAM-‐mtDNA	  contact	  occupancies	  for	  selected	  residues.	  ..........................................	  56	  

Table	  3.3:	  Selected	  Hydrogen	  bond	  occupancies.	  ........................................................................	  57	  

Table	  3.4.	  DNA	  end-‐to-‐end	  distances.	  ..........................................................................................	  59	  

Table	  4.1.	  Clinical,	  genomic,	  and	  survival	  characteristics	  of	  overall	  patient	  cohort.	  ....................	  83	  

Table	  4.2.	  Hydrogen	  bond	  occupancies.	  .......................................................................................	  96	  

Table	  4.3.	  SASA	  values.	  .................................................................................................................	  98	  

Table	  4.4.	  FEP	  results.	  .................................................................................................................	  100	  

Table	  4.5.	  Eigenvalues.	  ................................................................................................................	  114	  

Table	  4.6.	  Computational	  prediction	  of	  effects	  of	  ALK	  TKD	  mutations.	  .....................................	  107	  



2	  
	  

Chapter 1: Introduction 
 

1.1 Overview 
In this thesis, we detail the efforts to uncover the functional effects of amino acid 

substitutions in three protein systems, chiefly using molecular dynamics-based 

approaches. 

1.2 Biological background of amino acid substitutions 
The central dogma of molecular biology, first proposed by Francis Crick, explains the 

usual flow of genetic information in organisms.  DNA is transcribed into RNA, and an 

RNA triplet—or codon—is translated into an amino acid.  Amino acids strung together 

and folded into three-dimensional conformations comprise proteins.  Protein function is 

predicated on sequential amino acid composition and structural arrangement.  DNA can 

accrue mutations through random errors in replication, through damage by radiation or 

chemicals or viruses, through nucleotide editing enzymes, or by other means.  When a 

single nucleotide mutation results in a codon for a different amino acid, the replacement 

is termed a missense mutation. Mutations occurring in germ cells are heritable across 

generations, while mutations arising in somatic cells are not heritable.    

 

Point mutations are responsible for a host of human maladies.  A single glutamic acid to 

valine substitution in hemoglobin is responsible for sickle cell anemia.  An arginine to 

tryptophan substitution in phenylalanine hydrolase compromises the enzyme’s ability to 

convert phenylalanine to tyrosine, resulting in the disease phenylketonuria (PKU) 

(Guldberg et al., 1996).  Over 39 different missense mutations in beta-
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hexosamiminodase A have been identified that are capable of causing the fatal disease 

Tay-Sachs (Gravel et al., 1991; Myerowitz, 1997).  But perhaps the most infamous 

manifestation of mutations lies in the field of cancer.  Cancer can be caused by 

mutations that diminish protein activity, such many of those found in the p53 tumor 

suppressor, or by mutations that elevate protein activity, such as those found in the 

serine-threonin protein kinase B-Raf (Garnett and Marais, 2004).  Indeed, databases 

such as the Catalogue of Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2008, 

2011) have currently recorded over 1.4 million somatic mutations that are associated 

with some form of cancer.  The mammoth task of classifying these mutations as 

disease-causing or neutral is ongoing. 

 

 

1.3 Predicting the effects of mutations in silico 
An amino acid substitution could result in increased enzyme activity (gain-of-function), 

decreased enzyme activity, destabilization or misfolding of the protein, or no change in 

activity.  Currently there are many available methods for predicting functional 

consequences of amino acid substitutions in proteins. These methods are generally 

focused on mutations associated with disease.  Algorithms such as PolyPhen-2 

(Adzhubei et al., 2010), SIFT (Kumar et al., 2009), MutPRED (Li et al., 2009), the 

consensus classifier PredictSNP (Bendl et al., 2014), and related methods generally 

estimate the likelihood of a given mutation having a deleterious effect based on 

evolutionary sequence conservation, physiochemical properties of amino acid 

substitutions, structural constraints, and other criteria. Unfortunately, the logic of 
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conservation-based algorithms is not appropriate for predicting gain-of-function 

mutations, such as those seen in oncogenic kinase domains (Gnad et al., 2013).  A 

recent analysis of >400 activating substitutions (Molina-Vila et al., 2014) revealed that 

most driver mutations in oncogenic kinases do not occur at conserved residues at all, 

and that their accurate prediction will require explicit attention to kinase regulatory 

mechanisms.  Furthermore, most existing phenotype predictors fail to provide accurate 

molecular mechanisms that underpin phenotype.  Knowledge of such mechanisms is 

valuable for protein engineering, understanding disease pathogenesis, and the design of 

pharmacologic agents.  To this end, many groups have turned to molecular simulations 

to tweeze out the functional effects of biomolecular mutations. 

 

 

1.4 Molecular Simulations 
In nature, atomic interactions are governed by quantum mechanical forces.   In order to 

accurately simulate molecular interactions at the quantum level, one must solve 

Schrodinger’s equation, ĤΨ = ΕΨ, where Ĥ is the Hamiltonian or energy operator, Ψ is 

the wave function, and E is the corresponding energy of the system.  The wave function 

is simply a mathematical function that can be used to calculate any physical property 

associated with the system in question, but the wave function itself has no physical 

meaning.  Unfortunately, Schrodinger’s equation can only be solved for small systems, 

generally less than 200 atoms.  In order to simulate molecular interactions of larger 

systems, approximations must be made.  A widely used method for simulating complex, 

many atom systems is molecular dynamics (MD).  Rather than solving for quantum 
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equations, molecular dynamics relies on Newtonian mechanics and is based on the idea 

that statistical ensemble averages are equal to time averages of a given system.  

Quantum mechanical forces are approximated by a sum of relatively simple equations—

such as harmonic spring equations or Coulomb’s equation. 

 

One initiates what your dynamics simulations by first defining the initial coordinates of 

the bodies (atoms) in the system.   For example, in biomolecular simulations these initial 

coordinates might be found in a protein data bank (PDB) file that contains the Cartesian 

coordinates (X, Y, Z) of every single atom in a protein, nucleic acid, or lipid and the 

surrounding solvent.   Each of these atoms are then given an initial velocity, typically 

based on a Maxwell-Boltzman distribution of velocities at a specified temperature.  

These atoms are subjected to a force field potential, which is typically the sum of bonded 

and non-bonded terms.  These terms are parameterized to match crystallographic, 

spectrographic, and quantum mechanical data.  

 

Bond-stretch terms, angular terms, and proper and improper dihedral terms comprise the 

bonded terms of the force field potential.  The bond-stretch term is a harmonic potential 

approximating the energy of bond-stretching vibrations between two atoms along a 

covalent bond.  Harmonic force constants (Kb) and ideal bond length (b0) are 

parameterized to be specific to the type of bond and the elements involved. The angular 

term is a harmonic potential approximating the energy of bending vibrations in the angle 

(θ) formed between two covalent bonds connecting three atoms. Harmonic force 

constants (Kθ) and ideal angle (θ0) are parameterized to be specific to the type of bond 

and the elements involved. The proper dihedral term is a tosional angle potential function 
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that approximates the energetic barriers between two atoms separated by three covalent 

bonds that is associated with steric in directions that occur on rotation around the middle 

bond. The cosine function reflects the periodic nature of this potential. In some force 

fields, an improper dihedral function is used to maintain chirality or planarity among 

atoms which are separated by more than three covalent bonds. 

 

Electrostatic and van-der-Waals terms make up the non-bonded portion of the force field 

potential. The van-der-Waals (VDW) term approximates the repulsive forces 

experienced between two atoms in very close proximity (less than the van-der-Waalss 

radius) and the attractive dispersion forces experienced between atoms that are farther 

apart (greater than the VDW radius).  A Lennard-Jones 6-12 potential is usually used to 

model these VDW forces. In order to speed up calculations, a cutoff radius value is 

usually defined, beyond which the energy of the Lennard-Jones potential is 

approximated to be zero. The electrostatic term approximates electrostatic interactions 

between two atoms, and it is modeled by a Coulomb potential. 

 

The sum of these terms is used to calculate the total potential energy function of the 

system (Jarosaw Meller, 2001): 
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The derivative of this potential energy function yields force, which is the product of mass 

and acceleration. This is solved for all atoms in a time step of a trajectory and used to 

advance the velocities and positions of each atom in each successive time step.  

Additional algorithms, such as the Nosé-Hoover Langevin piston method (Martyna et al., 

1994), maybe used to regulate the temperature or pressure of the system.  Many MD 

force fields, such as CHARMM (MacKerell et al., 1998), GROMOS (Oostenbrink et al., 

2004), AMBER (Case et al., 2005), or OPLS (Jorgensen and Tirado-Rives, 1988), exist 

for simulating biomolecular systems. This work was done using the CHARMM27 force 

field (MacKerell et al., 1998). 

 

A typical workflow for performing a molecular dynamics simulation involves (1) obtaining 

structural coordinates, (2) solvating the system, (3) ionizing the system, (4) minimizing 

the system (5) heating the system, (6) equilibrating the water box volume, (7) generating 

the trajectory, and (8) analyzing the trajectory.  Each of these steps are expounded upon 

below. 

 

Typically, structural coordinates are obtained from a repository of crystal structures or 

nuclear magnetic resonance (NMR) spectrographic structures—such as the Protein Data 

Bank (PDB), or the structural coordinates can be generated from homology modeling 

techniques.  Any missing hydrogens or amino acids may be modeled on to the structure.  

To simulate physiological conditions, the biomolecule is surrounded by implicit or explicit 

solvent. Implicit solvation represents solvent (e.g. water) as a continuous medium, rather 

than individual solvent molecules.  By contrast, explicit solvation involves modeling 

thousands of solvent molecules around biomolecule interest. Ions can be placed within 
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this explicit solvent box to mimic physiological ionic conditions.  The system is then 

subjected to an energy minimization, using methods such as conjugate gradient 

(Hestenes and Stiefel, 1952) or steepest descent (Brereton, 2010), to alleviate any 

unfavorable  steric interactions. The temperature of the simulation is then slowly 

increased from 0 K to the desired temperature.  Once at the desired temperature, a 

constant temperature and pressure (NPT) ensemble can be applied to equilibrate the 

density and volume of the solvent box and remove any unphysical “vacuum bubbles.”  A 

production simulation can then be run using a constant volume and temperature (NVT) 

ensemble, which is computationally cheaper than NPT.  Once the simulation has run for 

desired length, it can be analyzed to learn statistical features about the structure, 

dynamics, and energetics of the system. 

 

There are quite a few limitations and potential pitfalls inherent to MD.  Firstly, much like a 

traditional experiment, the results of a simulation may be skewed if the system (or 

sample) is not prepared properly.  Secondly, force field parameters are only imperfect 

approximations of true quantum mechanical forces.  Thus, any shortcomings in the force 

field parameterization will be carried over into the simulation, potentially resulting in 

unphysical results.  Thirdly, reactions that involve the breaking or forming of covalent 

bonds cannot be modeled with MD.  Instead, hybrid schemes such as that employ 

quantum mechanics (such as QM/MM) must be used for such reactions. Fourthly, 

modeled systems are isolated; they are devoid of many of the constituents of the cellular 

milieu.  Important interacting pieces may be absent from the puzzle, thus distorting our 

view of the picture.  And fifthly, simulation timescales are limited by the resources 

available to the investigator.  Important transitions may not occur within the simulation 
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due to timescale limitations.  A closely related issue is that the system may have 

difficulty escaping local energy minima, resulting in biased statistics.  These limitations 

are starting to be overcome with advanced sampling methods and the advent of micro- 

and millisecond timescale MD simulations on specialized supercomputers (Shaw et al., 

2009). It is important to be mindful of the limitations of MD when running, analyzing, and 

drawing conclusions from simulations.  Coupling in silico experiments with traditional wet 

lab experiments is a useful paradigm for co-validation and complementation of results. 

 

Here, we present the results of molecular simulations coupled with wet lab experiments 

to elucidate the functional effects of biomolecular mutations on three disease-associated 

protein systems: activation-induced cytidine deaminase (AID), mitochondrial transcription 

factor A (TFAM), and anaplastic lymphoma kinase (ALK). 
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Chapter 2: Functional determinants for DNA 
targeting by Activation-Induced Cytidine 
Deaminase 

 

2.1 Introduction 

2.1.1 Synopsis 
Antibody maturation is a critical immune process governed by the enzyme Activation-

Induced Deaminase (AID), a member of the AID/APOBEC DNA deaminase family. 

AID/APOBEC deaminases preferentially target cytosine within different preferred 

sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue 

protein loop within the family. To identify the key functional characteristics of this protein 

loop responsible for activity in AID, our collaborators in the Kohli laboratory at the 

Perelman School of Medicine at the University of Pennsylvania developed a 

methodology (Sat-Sel-Seq) that couples saturation mutagenesis, with iterative functional 

selection and deep sequencing. This deep mutational analysis revealed dominant 

requirements for residues with the loop while simultaneously yielding variants that 

enhance deaminase activity. We employed molecular modeling and molecular dynamics 

simulations to independently verify the potential modes for DNA substrate engagement 

that have to date been unsolved by conventional structural studies. Our computational 

studies give molecular context to the Sat-Sel-Seq results and help to validate it as a 

useful approach that further expands the repertoire of techniques for deep positional 

mutation and high-throughput analysis of protein function.  
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2.1.1 Background 
Enzyme families often share a central well-structured catalytic core, with variable regions 

surrounding the active site core (Khersonsky and Tawfik, 2010). Specificity is often 

encoded by variations in the loops surrounding the active site.  For example, the 

sequence of the catalytic loop of kinase determines whether it is a tyrosine kinase or a 

serine/threonine kinase.  Thus, it is important to decipher the functional determinants 

that reside within these smaller regions of a larger protein. These mechanisms of 

competing conservation of core functions and divergence for specialization are evident in 

the family of AID/APOBEC cytosine deaminase enzymes, which play an important role in 

adaptive and innate immunity. 

 

Activation-Induced Deaminase (AID) is the chief B-cell enzyme that governs two 

diversity-generating reactions that are essential for antibody maturation: somatic 

hypermutation (SHM) and class switch recombination (CSR). In SHM, deamination of 

cytosine bases within the variable region genes of the immunoglobulin (Ig) locus 

populates the gene with rogue uracil bases. Error-prone repair of these uracil lesions 

generates a diverse population of related B-cells that contain variations within the 

complementarity determining regions (CDRs) of the Ig gene. Variations in the CDRs can 

result in enhanced antigen binding, increasing the effectiveness of adaptive immune 

responses. In CSR, the second diversity generating reaction governed by AID, 

deamination results in a change in antibody isotype that can alter the type of immune 

response that results upon antigen recognition.  CSR results from the introduction of 

uracil lesions into opposite strands of DNA in the switch regions upstream of constant 

genes. Resolution of the resulting dsDNA breaks (DSBs) juxtaposes the variable region 
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encoding antigen specificity with different constant regions (Cm, Cg1 etc.) to change the 

antibody from IgM to an alternative isotype. The related subfamily of APOBEC3 

enzymes (APOBEC3A-H in the human genome) play a role in innate immune response 

to retroviruses such as HIV, by targeted deamination of cytosines on the minus strand of 

cDNA produced upon reverse transcription after cell infection resulting in multiple blocks 

to viral replication (Harris et al., 2003). Deamination can lead to degradation and prevent 

viral integration, and the rare retrotranscripts that are able to integrate are typically highly 

mutated and non-functional.  

 

As part of their mechanism for targeting DNA for deamination, AID/APOBEC enzymes 

engage cytosine in the context of its neighboring nucleotides within DNA. AID prefers to 

mutate WRC motifs (W = A/T, R = A/G), which are therefore highly populated within its 

target CDRs and switch regions in the Ig locus (Hackney et al., 2009). APOBEC3 

enzymes are also directed to various hotspot motifs for deamination, with well 

characterized targeting of CCC by A3G and TC for A3A as examples (Chen et al., 2006; 

Conticello, 2008; Liddament et al., 2004). Targeting of preferred “hotspot” sequences by 

the deaminases can be essential to their physiological function, as altered hotspot 

targeting of AID compromises SHM and CSR function (Kohli et al., 2010; Wang et al., 

2010).  

 

Hotspot targeting has also been key to deciphering the role of APOBEC3 family 

members in driving mutagenesis in cancerous cells.  Abberrant AID expression and 

abnormal AID targeting has been shown to induce double-stranded DNA breaks (DSBs) 

and point mutations, leading to tumorigenesis (Park, 2012)(Park, 2012) and is not 
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restricted to the Ig genes.  AID-induced DSBs in BCL6 and IRF4 can result in 

translocations that lead to diffuse large B cell lymphoma (DLBCL) and multiple myeloma 

(Jankovic et al., 2010; Robbiani et al., 2009). In acute lymphoblastic leukemia (ALL) and 

chronic myelogenous leukemia, BCR-Abl kinase induces aberrant AID expression, 

promoting blast crisis, drug resistance, and dysregulation of tumor suppressor genes 

(Feldhahn et al., 2007; Gruber et al., 2010; Klemm et al., 2009).  Some studies have 

suggested that AID an be induced by chronic inflammation, leading to AID-iduced 

mutations of c-myc, Kras, p53, and beta-catenin (Morisawa et al., 2008). AID leaves 

distinctive mutational signatures of clustered mutations at cytosines within a 

characteristic TC sequence context (Burns et al., 2013; Roberts et al., 2013). 

 

While the lack of a DNA-bound structure for any AID/APOBEC family member leaves 

many open questions, structure-guided experiments by several groups have helped to 

localize some of the determinants for deamination targeting. In particular, one highly 

divergent 9-11 amino acid protein loop situated between the b4 strand and a4 helix was 

suggested to be a candidate for conferring sequence preferences to the enzymes. In 

early studies, selective point mutations in this loop—here referred to as the hotspot 

recognition loop—altered the spectrum of deaminase activity (Langlois et al., 2005). 

Even more strikingly, when the loop from one family member was replaced by the loop 

from a second family member, the sequence targeting of the acceptor enzyme was 

noted to shift to that of the donor (Carpenter et al., 2010; Kohli et al., 2009, 2010; Wang 

et al., 2010). Some studies suggest that as little as a single point mutation in this loop 

can be sufficient to alter preference from CC to TC (Rathore et al., 2013). 
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Given the significance of the hotspot recognition loop in AID and other members of the 

APOBEC family, we aimed to elucidate the specific functional requirements of the 

residues within this loop. Building on precedents for characterizing deeply mutated 

proteins, our collaborators in the Kohli lab developed a methodology to efficiently reveal 

the functional determinants in a small region by generating a library of barcoded 

saturation mutants, with iterative functional selection and deep sequencing (Sat-Sel-

Seq). The Sat-Sel-Seq results revealed dominant and tolerant side-chain requirements 

for each of the hotspot recognition loop positions by their sequential evolution through 

rounds of selection. As a means of validating the Sat-Sel-Seq methodology and 

providing structural and mechanistic context to the results, we performed molecular 

modeling and molecular dynamics simulations on AID variants. We constructed 

homology models of WT-AID bound to a preferred (hotspot) and disfavored (coldspot) 4-

base single-stranded DNA (ssDNA) substrate.  Simulations of these complexes revealed 

modes of substrate binding and specificity. We followed this by modeling and simulating 

several AID variants—Y114F, R119G, and cvBEST—bound to the hotspot substrate. 

Our simulations helped reveal key interactions and mechanisms governing engagement, 

specificity, and activity of AID with its DNA substrate.  Our simulations agreed with and 

provided residue-specific mechanistic insights into experimental results. 
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2.1.2 Experimental collaboration 
To determine the functionality of hotspot recognition loop residues, alanine scanning 

mutagenesis and a novel high throughput screening method (Sat-Sel-Seq) were 

employed.  The Sat-Sel-Seq method was developed and carried out by Kiran S. Gajula 

in the laboratory of Rahul M. Kohli at the Perelman School of Medicine at the University 

of Pennsylvania.  Below is a brief overview of the method and results, which are 

expounded upon in: 

 
Kiran Gajula, Peter J. Huwe, Charlie Mo, Daniel Crawford, James Stivers, 
Ravi Radhakrishnan, and Rahul Kohli. High-throughput mutagenesis 
reveals functional determinants for DNA targeting by Activation-Induced 
Deaminase. In Review (Nucl. Acids Res.) 

	  

	  

Alanine Scanning Mutagenesis 

By swapping segments between family members, prior studies have isolated the key 

determinants of hotspot recognition to a narrow region within AID, spanning Leu113-

Pro123 (Carpenter et al., 2010; Kohli et al., 2009; Wang et al., 2010). In order to 

understand the molecular basis for the function of this loop, Gajula et al. first employed 

classical alanine scanning, mutating each amino acid position to alanine (or in the case 

of Ala121 generating A121G). Gajula focused efforts on AID expressed with deletion of 

the C-terminal exon (referred to as AID-WT hereafter), and expressed it as an N-terminal 

MBP fusion protein for in vitro assays. This previously characterized variant of AID 

results in enhanced solubility for in vitro assays and enhanced deaminase activity, 

making for a larger dynamic range for analysis of mutants, without altering enzymatic 

specificity (Kohli et al., 2009).  
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Two well-established complementary assays were used to measure deaminase activity. 

In a bacterial cell based assay, overexpression of AID in a cell line that co-expresses a 

protein inhibitor of uracil DNA glycosylase (UGI), results in an increased frequency of 

genomic transition mutations. C!T or G!A transition mutations in rpoB, the gene 

encoding RNA polymerase B, can confer resistance to the antibiotic rifampin and 

fluctuation analysis can be employed to calculate the mutational frequency as a function 

of population size (Coker et al., 2006). In the complementary in vitro deamination assay, 

purified AID mutants are reacted with fluorescent end-labeled ssDNA substrates 

containing a single C in an AGC hotspot sequence context. Products with the target 

cytosine converted to uracil can then be detected by treatment with uracil DNA 

glycosylase (UDG) followed by alkali-induced fragmentation of the resulting abasic site.  

 

The rifampin mutagenesis assay and the in vitro deamination assay demonstrated 

similar activity patterns from the alanine scanning mutagenesis. Within the loop, the N-

terminal residues Leu113, Tyr114 and Phe115 appeared essential in both the assays, 

with rates comparable to the negative controls. The central residues spanning Cys116 to 

Lys120, along with Pro123, were generally tolerant of alanine mutations, though all 

showed decreased activity relative to AID-WT. Both the A121G and E122A mutants 

showed decreased activity relative AID-WT, although curiously this manifests to a 

greater extent with the in vitro assay than with the rifampin-based bacterial assay. 

Although the patterns are consistent, the differences in the assays points to the 

importance of using complementary assays to measure deaminase function. Differences 

could be related to either cellular factors altering protein activity in the rifampin assay or 
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to altered in vitro properties of purified deaminases, such as aggregation. Taken 

together, the consensus of the two approaches suggested the essentiality of the N-

terminal region, with more flexibility in the central and C-terminal regions of the protein 

loop.  

 

Sat-Sel-Seq for High-throughput Analysis of Hotspot Recognition Loop 

While alanine scanning mutagenesis assisted in generally localizing functionally 

important residues, the data failed to reveal a detailed molecular picture of essential and 

alterable residues in the loop. Gajula et al. therefore next developed a method for high-

throughput structure-function analysis of the targeting loop. Deep mutational scanning 

generally involves generation of combinatorial libraries focused on the introduction of 

random or specific mutations into regions within a target protein (Araya and Fowler, 

2011). Selection for function can then be applied to filter out the poorly active mutants 

and enriching for beneficial mutations. Finally, high-throughput sequencing (HTS) can 

quantify the abundance of each variant in the input library as well as in the subsequent 

libraries obtained after various selection rounds (Araya and Fowler, 2011; Goldsmith and 

Tawfik, 2013). 

 

Gajula designed the method to specifically reveal the determinants of function within a 

small region of a larger protein. The strategy for generation of the initial saturation 

mutagenesis libraries employed a cassette mutagenesis approach (Wells et al., 1985), 

which allows for high efficiency library generation. The mutagenic cassette 

oligonucleotides contained two key features: a degenerate NNS codon at a single site 

within the targeting loop of AID and a second silent mutation at the codon immediately 3’ 
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to the randomized codon. This silent mutation serves as an internal barcode that 

remains unchanged and marks the position of the original NNS codon. Twelve total 

saturation mutant libraries were generated, one for each position within the hotspot loop 

and a duplicate library for Phe115 with a different silent mutation barcode to assess 

assay reproducibility. The NNS codon renders each library inclusive of all twenty amino 

acids and a single stop codon. While the library is not equally represented for these 

variants, the use of an NNS codon allows for economical mutagenesis, and the change 

in codon frequency can be tracked across generations of selection.  

	  

The rifampin mutagenesis assay offers the ability to couple functional enzymatic activity 

to selection. We introduced our initial Generation 0 (G0) libraries into the selection strain. 

After inducing expression of the library of AID variants, rifampin resistant colonies were 

isolated and the AID-expression plasmids were recovered resulting in the Generation 1 

(G1) library. A portion of the library was then transformed into a naïve selection strain 

and selection for rifampin resistance was iterated over multiple cycles. Based on pilot 

screening, we saw that highly restrictive positions became fixed by the end of three 

cycles of selection and we therefore generated plasmid libraries from G0 through G3 at 

each position. 

 

To analyze the impact of selection on the saturation mutant libraries at each position, 

barcoded PCR primers, specific to the generation number, were used to amplify the 

region of the AID gene centered around the loop. The PCR reaction products (4 

generations x 12 positional libraries) were pooled and analyzed in a single run using 454 

pyrosequencing. The reads were analyzed for the presence of two barcodes – one in the 
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primers corresponding to the generation number and the second within the loop region 

encoding the identity of original diversified position. Within each bin, the codons at the 

diversified position were catalogued and the overall frequency of each member was 

tracked across the generations.  

	  

Distinctive patterns of selection appeared that revealed the functional requirements 

within the loop. Several positions evolved towards their wild-type residue over the 

selection cycles, notably Leu113, Tyr114, Cys116 and Glu122. In these selections, by 

G3, Leu113 and Tyr114 are both >90% wild-type in all reads and Cys116 (84%) and 

Glu122 (72%) also trend towards fixation. The Phe115 position shows a second pattern, 

where the degenerate codon evolves to Tyr, Phe, His and Trp in order of decreasing 

frequency, suggesting the importance of the shared aromatic character for residues at 

position 115. For each of these positions there was general concordance with the results 

from alanine scanning mutagenesis. 

   

At other positions, alternative distinctive patterns emerged involving evolution away from 

the native residue. At most of these positions, variability remains high, but a trends 

towards selection can be observed over generations. For example, at Glu117, polar 

residues were favored, but the variability remained high after three cycles of selection, 

suggesting that this is a tolerant position. In the case of Arg119, each successive 

generation saw an expansion of a non-native Gly residue. Since we know that the wild-

type residue is tolerated at each of these positions, the rate of evolution away from the 

native residue points to the extent to which particular mutations may outcompete the 

wild-type sequence. 
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To provide an integrated picture of the selection at each position, the distribution of each 

amino acid in G3 was weighted at each position and expressed as a logo plot. In 

agreement with alanine scanning mutagenesis data, the N-terminal residues were less 

tolerant to alteration than the C-terminal residues. In the C-terminal end of the loop, 

multiple positions trended towards Arg. This alteration could reflect the higher 

abundance of Arg in the starting saturation mutant library (three of the NNS codons 

encode Arg) or arise from enhanced DNA electrostatic interactions. When the logo 

diagram was corrected for the distribution of amino acids in the starting population, the 

preference for Arg diminished at many positions, but it remained a statistically enriched 

residue. 

 

Loop Residue Covariation, Mutation Validation and Target Sequence Specificity 

Gajula next aimed to understand why certain mutations were preferred in the Sat-Sel-

Seq procedure. Across all positions, mutants that represented >20% of the total count in 

G3 were selected and evaluated in the context of the two complementary assays. In the 

rifampin assay, the majority of selected variants had activity equivalent to or greater than 

AID-WT, within the limits of statistical significance. When the individual point mutants 

were purified and evaluated using the in vitro deamination assay, all of the variants that 

were favored over AID-WT in Sat-Sel-Seq showed increased deaminase activity. 

Amongst the variants, one notable mutation at R119G demonstrated an enhancement in 

activity in both the Rif assay (~4-fold) and the in vitro enzymatic assay (at least 3-fold). 
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Having narrowed the list of tolerated mutations at each position in the targeting loop, 

Gujala et al. next evaluated the effect of covariation of residues. Gujala and coworkers 

generated a plasmid library containing all preferred residues (>20% from G3 library) as 

well as wild-type residues (even when these residues were not >20% in G3). The library 

contained an equal proportion of 384 different variants and was at least 10-fold 

overrepresented in the starting population. The library was subjected to several rounds 

of rifampin-resistance based selection. After six rounds of selection, the pooled plasmid 

population appeared static as judged by sequencing of the pooled plasmid library and 

individual colonies were sequenced to determine the distribution of mutations (data not 

shown). Several positions remained mixed after these rounds of selection, including 

F115F/Y, E117E/T, D118D/A/R/P, and A121A/R/P. One of these positions was found to 

deviate from Sat-Sel-Seq results, where WT Pro123 consistently outcompeted P123R in 

the co-variant selection. Most strikingly, two positions that emerged in Sat-Sel-Seq, 

R119G and K120R, again showed a clear shift away from the WT residue and emerged 

as critical alterations in the co-variation analysis. 

 

Given that Sat-Sel-Seq and subsequent co-variation selected for enhanced deaminase 

activity, two AID variants were chosen for additional detailed analysis: the R119G point 

mutant and the sequence selected in the covariation experiment (cvBEST, 

D118A/R119G/K120R/A121R). In both the rifampin mutagenesis assay and in the in 

vitro deamination assay, R119G and cvBEST showed enhanced activity relative to AID-

WT. The majority of these enhancements were attributable to the R119G mutation, with 

additional effects arising from the mutations cvBEST.  
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The R119G and cvBEST hyperactive variants were next tested for their ability to target 

DNA in different sequence contexts. Using the in vitro deamination assay, AID and the 

hyperactive variants were assayed against sixteen related oligonucleotide substrates 

containing cytosine in different XXC sequence contexts (X = A, 5-methylcytosine, G, T) 

(Kohli et al., 2009). The rates of product formation for each substrate were measured 

and used to assess the sequence targeting specificity. While product formation was 

increased for both preferred and disfavored substrates, the relative rates were only 

slightly altered.  R119G and cvBEST displayed only a slight loss of specificity for 

hotspot.  Despite the significant differences in the composition of the targeting loop, the 

consensus deamination target remained WRC for R119G and cvBEST, demonstrating 

that hotspot recognition is largely tolerant to rate-enhancing alterations in the AID 

targeting loop. 
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2.3 Methods 

2.3.1 Molecular Modeling 
Modeller 2.0 (Fiser and Sali, 2003) was used to generate 1000 homology model 

structures of AID (residues 1-181) using the crystal structure of A3G (PDB 3IQS) 

(Holden et al., 2008), which has 46% sequence identity, as a template. Residue-by-

residue energy profiles generated by the discrete optimized protein energy (DOPE) 

statistical potential (Shen and Sali, 2006) was used to analyze the generated models 

and select a structure showing best fit between the target and template (Figure 2.1a). 

The model was further refined with extensive molecular dynamics (MD) simulations prior 

to data collection. The model was equilibrated by constructing an ionized water box (see 

below) around the protein and subjecting it to a 40 ns constant volume and temperature 

(NVT) molecular dynamics simulation (details below). A four base, single-stranded DNA 

segment was modeled in the structure based on the published models of APOBEC3A 

(Bulliard et al., 2011). Specifically, we aligned our AID model to the APOBEC3A 

structure with bound RNA.  We then mutated the strand to ssDNA.  The AID-WT/ssDNA 

structure was subjected to an additional 15 ns of NVT MD simulations. At this point, the 

nucleobase sequence was mutated to the favored and disfavored substrate (i.e. hotspot 

and coldspot), ensuring that the models have an RMSD of 0 Å (Figure 2.1b).  
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Figure 2.1. Homolgy model of AID and ssDNA.  

(A) Model assessment. The Discrete Optimized Protein Energy (DOPE) profiles for the template 

(A3G) and selected target (AID homology) structures are shown. The selected AID homology 

structure in red showed good good fit to the template structure in blue.  The selected model was 

further refined with extensive MD simulations. (B) Model of AID bound to DNA. Shown is the 

homology model of AID(1-181), based on the structure of A3G (PDB 3IQS), with bound ssDNA 

containing either a hotspot (AGCT) or coldspot (GCCT) sequence, colored red and blue 

respectively. The alternations in nucleobase composition were done after pre-equilibration of the 

model, making the starting point for MD simulations identical (RMSD 0 Å between AID in two 

structures). 
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model, making the starting point for MD simulations identical (RMSD 0 Å between AID in two structures).
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2.3.2 System Preparation and MD Simulations 
Visual Molecular Dynamics (VMD) was used to prepare systems for simulation 

(Humphrey et al., 1996). The VMD Mutator Plugin (Version 1.3) was used to generate 

Y114F, R119G, and cvBEST mutant structures. The structures were solvated with the 

VMD Solvate Plugin (Version 1.5) with 12 Å of TIP3P H2O padding. Each system was 

ionized and neutralized using the VMD Autoionize Plugin (Version 1.3) to randomly place 

0.15 M Na+ and Cl- ions with a minimum distance of 5 Å between ions and protein or 

any two ions. All MD simulations were performed using NAMD (Version 2.8) with the 

CHARMM27 force field parameters (MacKerell et al., 1998; Phillips et al., 2005). Periodic 

boundary conditions were used throughout the simulations. Long-range electrostatic 

interactions were treated with the particle mesh Ewald algorithm (Essmann et al., 1995). 

Rigid waters were constrained with the SETTLE algorithm (Miyamoto and Kollman, 

1992). All other constraints were treated with the RATTLE algorithm (Andersen, 1983). 

Bonds between hydrogens and heavy atoms were constrained to their equilibrium 

lengths. A smooth switching function at 10 Å with a cutoff distance of 12 Å was applied 

to long-range Van der Waals’ forces. An integration time step of 2 fs was chosen. 

 

A conjugate gradient energy minimization was applied to the solvated, ionized systems 

before the systems were gradually heated to 300 K. The volume of the solvation box was 

equilibrated with constant temperature and pressure (NPT) simulations at 300 K and 1 

atm using a Nosé-Hoover Langevin piston (Feller et al., 1995; Martyna et al., 1994). 

Harmonic constraints were applied to the N4 atom of the target cytosine, OD1 atom of 
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D89, and the active site Zn2+ ion for 40 ns of NVT trajectory. After the initial 40 ns 

equilibration, harmonic constraints on the cytosine were released, and the simulation 

was carried out for an additional 120 ns (for a total of 160 ns). All analyses were only 

performed on the final 120 ns of NVT trajectory with unconstrained DNA. 

 

2.3.3 Analyses 
Contact analysis was performed using the residueDistanceMatrix function implemented 

in the TCL-VMD distance matrix utilities (Version 1.3). The function measures the 

minimum distance between atomic centers of closest atoms between protein residues 

and ssDNA bases. By strictly measuring minimum distances between DNA and protein 

residues, all interactions, regardless of hydrophobic or hydrophilic, can be collectively 

analyzed. Distance data are parsed into 0.1 Angstrom bins and plotted as histograms.  

Hydrogen bond occupancy analysis is used to describe important interactions identified 

through contact analysis.  Hydrogen bond occupancy analysis and solvent accessible 

surface area (SASA) were computed as noted in Tables 2.1 and 2.2.  
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2.4 Results 
Molecular Dynamics Modeling of AID-DNA interactions. The structure of AID remains 

unsolved and the interactions between AID and its DNA substrate remain a point of 

conjecture based upon unliganded structures of related APOBEC3 family members 

(Holden et al., 2008; Kitamura et al., 2012; Prochnow et al., 2007). In an effort to provide 

a mechanistic explanation of the selection data from the Sat-Sel-Seq, we generated a 

homology model of AID-WT using the crystal structure of A3G as a protein template 

(Holden et al., 2008) (Figure 2.1) and docked a tetranucleotide DNA fragment anchoring 

the target cytosine in association with the active site Glu58. Several models of AID and 

the DNA were constructed. These included (i) AID-WT with its hotspot and coldspot DNA 

substrates, and (ii) the mutants Y114F, R119G, and cvBEST with the hotspot substrate. 

Each of these DNA-enzyme complex models were subjected to molecular dynamics 

(MD) simulations, and the final 120 ns of each trajectory was analyzed.  

 

2.4.1 AID-WT interactions with hotspot and coldspot ssDNA 
MD simulations of the hotspot (AGCT) and coldspot (GCCT) substrate complexes with 

AID-WT revealed differences in specific protein-DNA contacts. For this modeling, the 

underlying hypothesis is that perturbed interactions between a specific protein residue 

and DNA nucleotides results in reduced deaminase activity. Within this analytical 

framework, the distribution of residue-to-DNA time-averaged distances revealed that WT 

residues Tyr114 and Arg119 make consistent contacts with the hotspot substrate (Figure 

2.2). Conversely, only Tyr114 was found to consistently contact the coldspot substrate. 

With the hotspot substrate, Tyr114 formed aromatic stacking interactions with -1 

Guanine throughout the trajectory, and occasionally wedged between the -1 Gua and -2 
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Ade. Arg119 formed significant hydrogen bonding interactions with -1 Gua N7/O6 and 

more transient electrostatic interactions with the phosphate linkage between -1 Gua and 

-2 Ade (Table 2.2). The side chains of residues Leu113 and Phe115 are buried (Table 

2.1) and form hydrophobic contacts with one another. This helps to shape the 

surrounding protein architecture, positioning Tyr114 for stacking interactions and the 

backbone amide of Leu113 for potential hydrogen bonding interactions with the DNA 

(see below). It should be noted that our unconstrained in silico tetranucleotide substrate 

displayed greater dynamics than might be expect with longer physiological substrates 

that would be constrained by both the upstream and downstream DNA.  Although this 

presented the challenge of potentially destabilizing some intermolecular interactions, it 

also conferred the advantage of allowing for greater exploration of conformations and 

binding poses. 
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Figure 2.2. Hotspot vs. coldspot contact analysis.   

Measuring minimum distances between DNA and protein residues ensures that all interactions, 

regardless of hydrophobic or hydrophilic, are collectively analyzed. A matrix of the distance 

between atomic centers of the closest atoms between each DNA base and protein residue is 

computed. These results are summarized in the histograms in Figure 2.11. (a) Arg119 to DNA 

distance. Arg119 makes extensive close interactions with both the 2nd and 3rd hotspot bases.  By 

comparison, Arg119 makes extremely few interactions with coldspot DNA.  This may be an 

important residue for sequence specificity. (b) Tyr114 to DNA distance. Tyr114 makes similar 

close contacts to both 2nd base of both hotspot and coldspot DNA.  (c) L113 to DNA distance. 

Neither hotspot nor coldstop bases make consistent strong interactions with L113. Hotspot’s 

median distance is slightly greater, however its 1st quartile distance is slightly less than coldspot.   

Residue Side Chain 
Size, Å2 

AID-WT, Å2 
(% Accessible) 

Y114F, Å2 
(% Accessible) 

R119G, Å2 
(% Accessible) 

cvBEST, Å2 
(% Accessible) 

113 163.7 
 

36.9 
(22.5%) 

- 
 

14.2 
(8.7%) 

35.0 
(21.4%) 

114 190.6 (F) 
209.6 (Y) 

116.5 
(55.6%) 

73.2 
(38.4) 

- - 

115 196.7 
 

5.6 
(2.9%) 

- 
 

- - 

Table 2.1. Solvent accessible surface area for side chain residues.  
Solvent accessible surface area (SASA) for Residues 113, 114 and 115 were computed in VMD 

using a probe with radius of 1.4 Å. Reported values represent the average solvent exposed 

surface area of a given residue side chain (backbone included) over the NVT trajectory (in Å2) or 

are scaled (for % Accessible) relative to the average total surface area of the residue (solvent 

exposed area plus buried surface area). 
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Figure 2.3. Molecular dynamics simulations of AID interactions with DNA.  

(a) Residue-to-DNA median distances (2nd quartile) between targeting loop residues and the 

hotspot and coldspot DNA sequences.  For each frame in a trajectory, distances between the 

atomic centers of the closest atoms of a protein residue and the tetranucleotide substrate are 

measured. Bars represent 2nd distance quartiles, while “error bars” below and above represent 

the 1st and 3rd distance quartiles, respectively.  Using quartile values in the histograms, rather 

than means and standard deviations, better approximates the true distribution of individual 

contacts (Fig 2.8) without being skewed by outliers. Representative images showing the 

interactions of Leu113, Tyr114, Phe115, and Arg119 to the hotspot DNA are depicted in the two 

upper-right panels. (b) Residue-to-DNA time-averaged distances between the AID-WT, Y114F, 

R119G and cvBEST loops and hotspot DNA, calculated from the sampled distances in the 120 ns 

simulation trajectories. Notably, the Leu113 backbone oxygen forms closer interactions in the 

R119G and cvBEST mutants. Snapshots of R119G and cvBEST interacting with the hotspot DNA 

are shown in the lower-right two panels.  
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2.4.2 AID-WT vs. Y114F 
To specifically evaluate the importance of the Tyr114 residue, we additionally simulated 

the Y114F mutant bound to the preferred hotspot substrate. Based on residue-to-DNA 

distances, substrate binding was much more robust with the native tyrosine as 

compared to the Y114F mutant (Figure 2.3b). Interestingly, the simulations reveal that 

the hydroxyl group does not make critical specific DNA contacts (Table 2.2). Rather, the 

Tyr hydroxyl promotes transient solvent interactions that prevent the side chain from 

becoming buried and thereby permit stacking interactions with the -1 Gua and -2 Ade. 

Tyr114 is only 44.4% buried in AID-WT, while the Y114F residue is 61.6% buried (Table 

2.1). 

 

2.4.3 R119G and cvBEST  
We next evaluated the DNA substrate interactions of two AID variants with enhanced 

deamination activity, R119G and cvBEST. Although contacts between Arg119 and DNA 

were abolished as a result of the mutations, the backbone carbonyl oxygen of residue 

Leu113 now showed increased hydrogen bonding with N1/N2 of the -1 Gua in both 

models (Figure 2.3b). Moderate and strong hydrogen bonds had occupancies of 0.2% in 

WT, 22.6% in R119G, and 73.7% in cvBEST (Table 2.2). Note these values do not 

include weak hydrogen bond (3.2-4.0Å) present in the trajectories.  Thus, in these 

variants with enhanced activity, MD simulations suggest that removing one mode of 

substrate binding observed in the WT simulation results in a compensatory mode of 

substrate engagement.  
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2.5 Discussion  
In this work, our collaborators have performed high-throughput mutagenesis on a 

targeted region of the B-cell mutator AID and we have performed extensive molecular 

dynamics simulations of the enzyme to gain insight into its targeting mechanism. While 

prior biochemical studies have highlighted the importance of a key protein loop in 

targeting (Carpenter et al., 2010; Kohli et al., 2009, 2010; Langlois et al., 2005; Nabel et 

al., 2013, 2014; Rathore et al., 2013; Wang et al., 2010), its functional requirements 

have remained unclear.  Despite numerous available structures of AID/APOBEC family 

members (Holden et al., 2008; Kitamura et al., 2012; Prochnow et al., 2007), no 

structures yet exist with bound nucleic acid. Our work explored the enigmatic interface 

between AID and its nucleic acid substrates and revealed molecular insights into the 

modes for DNA substrate engagement. 

 

The collective results indicate that the N-terminal segment of the targeting loop is 

required for deaminase function. Beginning at the N-terminal end of the targeting loop, 

the wild-type residue Leu113 was highly selected in Sat-Sel-Seq.  Our simulations 

revealed that this residue forms backbone hydrogen bonds to with the hotspot substrate.  

This hydrogen bonding with the -1 Gua is weak in the WT simulation and enhanced in 

MD simulations of the hyperactive R119G and cvBEST variants (Table 2.11). Because 

the L113 carboxy oxygen lies at the bottom of a deep ravine, it is uniquely positioned to 

to be accessed by purines.  Our MD simulations suggest that this buried side chain can 

contribute to shaping active site architecture in concert with Phe115 and its importance 

is further supported by its high conservation (Leu or Ile) across the AID/APOBEC 

deaminase family. The adjacent residue at Position 114 also shows selective drive 
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towards the wild-type Tyr residue in Sat-Sel-Seq and is fittingly highly conserved across 

the family. The MD simulations suggest that Tyr114 stacks with the -1 residue of the 

target sequence and that the preference for Tyr over Phe results from solvent 

interactions that prevent the side chain’s burial (Table 2.1) rather than hydroxyl hydrogen 

bonding interactions with DNA. Finally, in Sat-Sel-Seq, Phe115 evolved to any aromatic 

residue (Tyr, Trp, His). This aligns well with our modeling/simulation results that define 

its role as a buried aromatic residue that can engage in hydrophobic interactions with 

Leu113 to shape the active site. Notably, the discovery of the requirement for aromatic 

character at Phe115 is a clear example of the insights attainable through deep 

mutagenesis in Sat-Sel-Seq that would not be revealed by conventional Ala scanning 

mutagenesis approaches alone. Taken together, the residues spanning Leu113-Phe115 

form an important and largely immutable scaffold for all AID/APOBEC deaminases to 

engage with their substrates.  

 

More flexible modes of DNA recognition are apparent in the loop positions downstream 

from the N-terminal region. One of the most interesting interactions originates from 

Arg119. In MD simulations Arg119 is highly engaged with hotspot -1 residue, which 

seemed contradictory to the enhanced deamination activity of the R119G mutant. The 

slight decrease in WRC (where W equals A or T and R equals A or G)  sequence 

preference in the R199G and cvBEST variants combined with our simulation results 

displaying preferential binding of R119 to hotspot over coldspot suggest that R119 plays 

a larger role in specificity than activity. The increased in vitro activity the R119G and 

cvBEST variants was reasonably accounted for in our simulations by the mutation to a 

glycine allowing for enhanced interactions between the backbone amide carbonyl of 
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Leu113 and the -1 purine. Notably this interaction would not be possible with a smaller 

pyrimidine. These multiple binding modes of AID suggest a flexibility in the recognition of 

a preferred hotspot sequences. In line with this conclusion, when the sequence 

preferences of the R119G and cvBEST variants of AID were characterized, the overall 

preference for WRC sequences was largely preserved despite the presence of up to four 

mutations in cvBEST, demonstrating multiple modes of sequence specificity.  In line with 

this conclusion, a separate study examining zebrafish AID concluded that the overall 

loop architecture and its flexibility, as opposed to specific residues, were important for 

the enzyme’s ability to target 5-methylcytosine for deamination (Abdouni et al., 2013). 

This finding of relative tolerance in the targeting loop from AID stands in contrast to a 

study on A3G where a single point mutation was able to convert the enzyme from 

preferred targeting of CC to TC hotspot motifs (Rathore et al., 2013). AID is 

distinguished from its APOBEC3 relatives in the size of its recognition loop (11 amino 

acids versus 9-10 in most APOBEC3 enzymes) and in targeting cytosine following a -1 

position purine (as opposed to pyrimidine). These features may explain AID’s distinct 

molecular modes of substrate recognition. 

 

In addition to revealing the functional requirements within the targeting loop of AID, this 

work yielded several hyperactive variants. In a prior study, random mutagenesis was 

coupled to a lac papillation mutagenesis assay to yield hyperactive AID variants which 

were associated with higher rates of pathological chromosomal translocations (Wang et 

al., 2009). Interestingly, the only hyperactive mutations that localized to the targeting 

loop (F115Y, K120R) also emerged as preferred residues in the Sat-Sel-Seq approach. 

Despite the fact that our approach was directed at the targeting loop only, the overall 



37	  
	  

mutation rate of cvBEST was nearly as high as the best variants selected through 

mutagenesis of the entire AID gene (Wang et al., 2009). This result suggests that the 

primary determinants for enhancing the mutagenesis activity lie in the loop region.  This 

new mechanistic understanding of how AID variants can induce increased activity—even 

in nonpreferred substrates (Figure 2.2c)—provides new insights into AID’s off-target 

activity associated with cancer. 

 

In antibody maturation, targeting of WRC hotspot sequences within the Ig locus is 

essential to proper SHM and CSR, and these sequences are fittingly enriched in CDRs 

and switch regions (Kohli et al., 2010; Wang et al., 2010; Zarrin et al., 2004). Our 

biochemical data and MD simulations suggest that DNA targeting can occur in multiple 

binding modes through the dynamic hotspot recognition loop. The results potentially 

reflect on the delicate balance between specificity and flexibility that are required for AID 

activity. Between best (hotspot) and worst (coldspot) substrates there is a ~30-fold level 

of discrimination by WT-AID (Kohli et al., 2009), far below the exquisite selectivity seen 

in other nucleic acid modifying enzyme such as DNA glycosylases or restriction 

endonucleases. In line with the hypothesis that diversity is best generated by 

“haphazard” deamination (Jaszczur et al., 2013), the multiple modes of interacting with 

DNA substrates could provide a mechanism for increasing the scope of antibody 

diversity while preserving the advantages of targeting CDRs and switch regions. While 

our studies provide a surrogate molecular level view, further biochemical studies on 

other deaminase family members, and ultimately high resolution structural insight into 

the DNA binding mode of AID/APOBEC deaminases, will be key to resolving how these 

deaminases can achieve targeted and purposeful mutation of DNA.  This work 
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establishes the utility of deep mutagenesis combined with molecular dynamics 

simulations for providing insight into a poorly defined interface between an enzyme and 

its substrate and should be generalizable to other proteins with small regions that 

encode critical functional determinants. 
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Chapter 3: Understanding the molecular 
consequences of human TFAM variants 
3.1 Overview 
Mitochondrial respiratory function is dependent the expression of normal subunits 

encoded by both the nuclear and mitochondrial genomes.  The mammalian 

mitochondrial genomic DNA (mtDNA) includes multiple copies of a 16.6 kb circular 

double-stranded DNA molecule containing 37 genes which encode 13 proteins plus the 

tRNAs and rRNAs required for their expression.  The mitochondrial genome is present in 

hundreds to hundreds of thousands of copies per cell. Issues involving mitochondrial 

genome stability are a frequent cause of bioenergetic crisis. MtDNA errors in the form of 

point mutations, deletions, and depletion are direct causal agents for primary 

mitochondrial disorders. Although 1/200 live births are carriers of mtDNA variation, 

disorders manifest at a much lower frequency of 1/5000 live births.  This is presumed to 

be the result of high copy number buffering sequence variation, as threshold levels of 

mutation must be reached to manifest meaningful dysfunction. MtDNA deletions, which 

are generally considered a more severe form of mutation, often involve loss of sequence 

in multiple essential genes, and they thus phenotypicically manifested at a lower rate.  

Depletion of mtDNA is usually caused by mutation of POLG, the polymerase required for 

mtDNA replication, and it leads to a host of health conditions.  

 

Somatically acquired instability of mtDNA may contribute to a number of other 

pathologies. For example, accumulation of mtDNA point mutations, deletions, and 



40	  
	  

depletion have each been associated with aging. Mitochondria are the primary site of 

redox chemistry, and escape of electrons can form reactive superoxide molecules. 

Mitochondrial superoxides are converted by superoxide dismutase into hydrogen 

peroxide, which is membrane permeable. Hydrogen peroxide can be converted (by 

fenton chemistry) to hydroxyl radicals, which are highly reactive with DNA. Indeed, the 

mitochondrial DNA (mtDNA) is more sensitive than nuclear DNA to hydrogen peroxide 

exposure, and other oxidative agents, and is also more slowly repaired. Given the close 

proximity of mtDNA to the electron transport chain (ETC), a major source of reactive 

oxidant species (ROS), metabolic dysfunction affecting mitochondrial function or redox 

homeostasis could increase the likelihood of accumulated mtDNA damage. 

 

Depletion of mtDNA content causes primary mitochondrial disease and may contribute to 

disease susceptibility in other conditions, including diabetes, heart disease, and 

neurodegeneration. Regulation of mtDNA transcription and mtDNA copy number in the 

mitochondria remains relatively poorly understood. A primary determinant of mtDNA 

levels is thought to be mitochondrial transcription factor A (TFAM), a protein encoded by 

nuclear DNA.  In animal models, overexpression of TFAM has been shown to confer 

mtDNA and cellular protection from oxidative damage during myocardial infarction. In 

separate mouse sudies, TFAM overexpression has been shown to ameliorate delayed 

neuronal death caused by transient forebrain ischemia. 
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Figure 3.1. Human TFAM structure and location of TFAM polymorphisms.  

Left: Rendered structure of human TFAM bound to LSP DNA from Ngo et al., 2011, which 

contains 28 bp DNA of the TFAM binding site and lacks the c-terminal 15 aa of mature 

TFAM. Polypeptide is gradient colored from blue at N-terminus to red at C-terminus. 

Helices I-III of HMG box A and B are indicated. DNA forms a U-turn when bound to TFAM 

and extends toward the viewer. Right: The position of polymorphisms in human TFAM 

studied. ∆exon5 forms an in-frame deletion between the brackets, linking B-II to the linker 

region. 
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TFAM is a member of the high mobility group (HMG) box family of DNA binding proteins. 

Mature TFAM is a 7-helix protein composed of two HMG box domains—separated by a 

linker domain—and a 25-residue C-terminal tail. TFAM has dual functions in transcription 

and packaging.  TFAM is binds specifically to the mtDNA Light Strand Promoter region 

(Figure 3.1)—allowing the mitochondrial RNA polymerase to initiate transcription—as 

well as nonspecifically to other segments of mtDNA. Additionally, TFAM binding imposes 

significant kinking in the mtDNA structure upon binding, resulting in a U-turn in the 

double helix.  This kinking plays a major role in mtDNA nucleoid formation. 

 

Single-nucleotide polymorphisms (SNPs) in TFAM have been associated with disease 

states (Alzheimer’s disease, Parkinson’s disease), but no association correlation has yet 

been made with mtDNA content. . Most recently a TFAM SNP has been shown to 

associate with dementia, but without clear, consistent changes in mtDNA levels. This 

same SNP has been suggested to alter splice variation in TFAM, leading to loss of exon 

5 (∆exon5). Numerous other sequence variants are identified in public databases, 

however, the ability of function of these protein to regulate mtDNA copy number in 

cultured cells or quantitatively bind and bend DNA has never been evaluated. In this 

study, our collaborators used a system that capitalizes on negative mtDNA copy number 

effects of TFAM overexpression to focus on TFAM packaging activity. It was found that 

stable WT TFAM overexpression in HEK293 cells, which already contain high levels of 

TFAM and mtDNA, caused a significant decrease in mtDNA levels. By also tracking 

TFAM levels, our collaborators identified multiple TFAM mutant alleles that code for 

unstable protein or lack the normal mtDNA control function. The latter category showed 

deficits in DNA binding affinity and DNA bending activity.  
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To gain structural insight into these results, we performed molecular dynamics 

simulations of the full-length TFAM bound to the mitochondrial light strand promoter 

(LSP) DNA binding site.  Structural modeling provided an avenue for examining protein-

DNA interactions in the unstructured c-terminal tail as well as extended DNA interactions 

which were not observed in available crystal structures.  Our in silico analysis 

rationalized the observed instability of some TFAM allele, and depicted changes in 

intramolecular and DNA contacts that are predicted to alter the DNA binding activity in 

vitro and mtDNA copy number control in cells. In this study, we examine several of these 

coding variants and stratify them based on function: normal, modest dysfunction, severe 

dysfunction, and unstable. Taken together, these data provide a molecular framework for 

understanding the role of TFAM variants in pathogenesis, and it supports the 

examination of specific TFAM variants for dysregulated mtDNA copy number or disease 

susceptibility in patient populations and animal models. 
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3.2 Experimental Collaboration 
In vitro experiments were performed by collaborators—Chris Hoeger in the laboratory of 

Brett Kaufman, Ph.D., at the University of Pennsylvania School of Veterinary Medicine 

and Chris Malarkey in the laboratory of Mair Churchill, Ph.D., at the University of 

Colorado School of Medicine. These experiments combined synergistically with our 

computational studies to provide a molecular understanding into the functional 

consequences of these TFAM mutations.  Below is a brief summary of the in vitro 

results.  For complete experimental details, please refer to:  

Peter J. Huwe*, Christopher Hoeger*, Christopher Malarkey*, Jill E. 
Kolesar, Yumiko V. Taguchi, Mair Churchill, Ravi Radhakrishanan, and 
Brett A. Kaufman. Human TFAM variants deficient in mtDNA copy number 
control. In preparation. 

 

 

Variant selection 

 TFAM sequence variants were identified in the single nucleotide polymorphism 

database (dbSNP). We excluded those located in the mitochondrial targeting sequence 

(aa 1-45) and conservative amino acid substitutions such as serine for threonine. 

Variants studied included V109G, R233C, Q100E, Q108E, T144K, E219K, A105T, and 

Δexon5 (Figure 3.1). 

 

TFAM and mtDNA copy number 

Eight human TFAM (TFAM) alleles (Q100E, A105T, Q108E, V109G, T144K, E219K, 

R233C, and ∆exon 5 (∆5)), were first assessed for effects on both mtDNA copy number 

and TFAM expression levels. After retroviral transduction into HEK293 cells, total 
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genomic DNA was isolated and analyzed for relative mtDNA/nuclear DNA levels using 

quantitative PCR.  

 

In cells with high TFAM expression, further increased expression causes a decrease in 

mtDNA levels, presumably from overcompaction (Pohjoismaki et al. 2006). HEK293 

have been suggested to have high levels of TFAM and mtDNA (Maniura Weber et al. 

2004), making it likely that mtDNA levels will decrease with overexpression. In 

agreement with these findings, our collaborators in the Kaufman lab found that 

compared to the untransfected control, wild-type TFAM overexpression (OE) caused 

approximately a 60% decrease in mtDNA copy number, which provided a benchmark for 

wild-type function. The majority of mutants reduced mtDNA levels less than wild type 

TFAM. To normalize these data for relative overexpression, quantitative western blot 

analysis was performed and TFAM:mtDNA ratio was determined. Assuming TFAM 

unbound to DNA is indeed readily degraded, as claimed by Matsushima et al. 2010, this 

metric estimates the number of TFAM molecules binding to each genome and can 

estimate compaction.  Consistent with the negative effects of overabundance of TFAM, 

TFAM OE resulted in a 1.6-fold increase in the TFAM:mtDNA ratio. Those mutants that 

failed to increase TFAM:mtDNA accumulate protein at rates lower than wild type. Only a 

single mutant (Q100E) accumulated more TFAM protein than wild type. 

 

The abilities of TFAM alleles to regulate mtDNA and TFAM:mtDNA were generally found 

to be intermediate to the positive and negative controls. To better determine the 

combination of effects of alleles on both mtDNA and TFAM:mtDNA, the variables were 

plotted together.  Wild type TFAM OE resulted in high TFAM:mtDNA and low mtDNA, 
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while the negative control had low TFAM:mtDNA and high mtDNA. Therefore, following 

the experimental assumptions, when more TFAM is bound to mtDNA, the genomic copy 

number is decreased. Several of the TFAM alleles showed intermediate ability to 

regulate mtDNA and TFAM:mtDNA compared to positive and negative controls. Based 

on this data, mutants A105T and Q108E were classified as wild-type-like in their 

functioning. R233C and ∆5 have reduced functioning, and V109G, T144K, E219K 

appeared not to have accumulated, so no definitive conclusions could be made about 

their function and they were not selected for further testing. Mutant Q100E accumulated 

more TFAM compared to the wild-type protein, while being less effective in decreasing 

mtDNA copy number.  

 

TFAM mutant proteins bind and bend LSP DNA with differing abilities 

To test if the point mutations used in this study affect TFAM interactions with DNA, the 

DNA binding affinity of TFAM mutant proteins with LSP DNA was measured. To 

measure the dissociation constants, our collaborators employed FRET binding assays 

using fluorophore labeled LSP DNA, and plotted the change in FRET effect versus 

protein concentration.  The LSP dissociation constant for TFAM was measured to be 

5.05 nM +/- 0.68, which is in agreement with previous studies from the Churchill lab 

(Table 3.1). The TFAM Q100E and R233C mutant Kd values were 6.97 nM +/- 1.4 and 

3.24 nM +/- 0.68, respectively, and did not differ greatly from native TFAM. The TFAM Δ 

exon 5 protein, however, had a Kd of 32.3 nM +/- 8.0 approximately six-fold weaker 

affinity than native TFAM. This was not surprising since a significant portion of TFAM 

box B is deleted in this construct. These results are summarized in Table 3.1. 
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To further probe how the TFAM mutations used in this study could alter interactions with 

DNA, Malarkey and colleagues used the information from the FRET experiments to 

calculate the change in DNA end-to-end distance, which is a measure of DNA bending 

and can be used to make structural predictions about the TFAM/LSP DNA interactions 

(Malarkey et al., 2012). Our collaborators plotted the change in LSP DNA end-to-end 

distance against protein concentration (Figure 3.2) and found that the maximal change in 

LSP end-to-end distance for TFAM was ~21 Å, which again was in agreement with 

previous studies from the Churchill lab (Malarkey et al., 2012). The TFAM Q100E protein 

also bent DNA to a similar extent to TFAM (~21 Å), while the R233C mutation bent LSP 

DNA to a slightly lower extent (~17 Å). The ability of the TFAM Δ exon 5 protein to bend 

DNA was severely diminished, and only changed the DNA end to end distance by 

approximately 9 Å. Previous work has shown that the ability of TFAM to bend LSP DNA 

is correlated with its in vitro transcription ability (Malarkey et al., 2012). It was therefore 

hypothesized that the TFAM R233C and TFAM Δ exon 5 proteins would have 

diminished in vitro transcriptional activity. 
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Allele	   %	  Allele	  
Frequency	  

Protein	  
Stability	  
in	  Cells	  

mtDNA	  
Control	  

ΔEnd-‐to-‐
End	  
Distance	  
(Å ) 	  

Binding	  
(KD)	  
(mM)	  

Polyphen2	  

WT	   	   stable	   WT	   21.07	  ±	  
0.20	  

5.05	  ±	  
0.68	  

	  

Q100E	   0.0385	   stable	   moderate	  
deficiency	  

20.50	  ±	  
0.42	  

6.97	  ±	  
1.4	  

benign	  

A105T	   novel	   stable	   WT-‐like	   20.32	  ±	  
0.28*	  

17.7	  ±	  
2.5***	  

Probably	  
damaging	  
0.966	  

Q108E	   0.0077	   stable	   WT-‐like	   ND	   ND	   benign	  
V109G	   unknown	   unstable	   NA	   ND	   ND	   Possibly	  

damaging	  
0.914	  

T144K	   unknown	   unstable	   NA	   ND	   ND	   Possibly	  
damaging	  
0.699	  

E219K	   unknown	   unstable	   NA	   ND	   ND	   probably	  
damaging:	  
1.0	  

R233C	   0.0154	   stable	   slight	  
deficiency	  

17.53	  ±	  
0.58**	  

3.24	  ±	  
0.68ns	  

probably	  
damaging:	  
0.998	  

Δ5	   0.46	   stable	   deficient	   8.22	  ±	  
1.4**	  

323	  ±	  
8.0***	  

	  

Table 3.1 Summary of in vitro results.   
Resuls from in vitro studies are given. PolyPhen-2 is bioinformatics tool that attempts to predict 

the possible impact of an amino acid substitution on the structure and function of a human protein 

based on physical properties and sequence conservation considerations.  These methods often 

have a high false discovery rate (see discussion in Chapter 4), they fail to take into account 

biological assemblies, and they cannot be relied upon exclusively. Polymorphisms designated 

“unstable” failed to accumulate in vitro. MtDNA control effects the allele’s ability to control mtDNA 

copy number relative to WT.   ΔEnd-to-End Distance is derived from FRET experiments and is a 

measure of the mutant’s ability to bend DNA.  Binding measurements are derived from FRET 

experiments. 
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3.3 Computational methodology 
Blind to the results of in vitro experiments, we independently sought to unveil the 

functional effects of these TFAM polymorphisms through molecular modeling and 

molecular dynamics simulations. 

3.3.1 Molecular modeling of TFAM variant complexes  
The starting point for modeling TFAM sequence variants was the 3TMM TFAM crystal 

structure. MODELLER9v8 was used to mutate all selinomethionines to methionines and 

to restore the missing C-terminal tail sequence (238QRKYGAEEC246). To prevent DNA 

end-effects and enable detection of additional protein-DNA interactions, the missing 15 

basepairs of the light strand promoter region were modeled onto the existing 28 

crystallographic basepairs using 3dDART online. This generated the basic wild-type 

(WT) human TFAM construct. We then generated additional human polymorphisms 

constructs (Q100E, Q108E, V109G, T144K, E219K, R233C, and A105T) using the 

Mutator Plugin v1.3 implemented in Visual Molecular Dynamics (VMD) v1.8.7.  Each 

construct was solvated in a water box with 12 angstroms of TIP3P H2O padding 

surrounding each protein-DNA complex using the VMD Solvate Plugin v1.5. Each of 

those systems were neutralized using VMD Autoionize Plugin, v1.3 to randomly place 

Na+ and Cl- ions at 0.15M concentration allowing a minimum distance of 5 angstroms 

between any two ions or between ions and macromolecules. We then performed all-

atom molecular dynamics (MD) simulations using NAMD v2.8 with CHARMM27 force 

field parameters and periodic boundary conditions.  
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3.3.2 Molecular Dynamics simulations of TFAM constructs  
In the MD simulations, long-range electrostatic interaction energies were computed with 

the particle mesh Ewald algorithm. Bond rigidity of waters was maintained with the 

SETTLE algorithm. Position and velocity constraints were maintained with the RATTLE 

algorithm. Covalent bonds between heavy atoms and hydrogens were constrained to 

their equilibrium lengths. Long-range van der Waals interactions were treated with a 

smooth switching function at 10 angstroms with a cutoff distance of 12 angstroms. An 

integration timestep of 2 fs was used. To relieve unfavorable contacts, a conjugated 

gradient energy minimization was applied to the solvated, ionized systems. The systems 

were gradually heated to 300 K. The volume of the solvation box was equilibrated with 

constant temperature and pressure (NPT) simulations at 300 K and 1 atm using a Nosé-

Hoover Langevin piston. NVT simulations were performed for an additional 92 ns.  

 

3.3.3 TFAM-mtDNA Contact Analysis 
In order to globally determine if any of the mutations altered TFAM-mtDNA binding 

interactions, we developed a “TFAM-mtDNA contact analysis.” The analysis is designed 

to monitor the percentage of trajectory that a given protein residue makes any sort of 

contact (e.g. via hydrogen bonds, salt bridges, hydrophobic interactions, long-range 

electrostatic interactions, etc) with DNA.  A contact is defined solely by the nearest 

distance between any atom in protein residue and any DNA atom being less than a 

cutoff value.  Our contact analysis consisted of first using the residueDistanceMatrix 

function implemented in the TCL-VMD distance matrix utilities, v1.3 

(www.multiscalelab.org/utilities/VMDextensions). This function was used to measure the 

distance between atomic centers in of the nearest atoms between a given protein 
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residue and any DNA base (or backbone). Distances are measured for every frame in 

each trajectory. If the atomic center of any atom in a particular protein residue is less 

than 4 angstroms away from the atomic center of any atom in any DNA base (or 

backbone), it is considered a “contact”.  Occupancies represent percentage of frames in 

a trajectory that a residue contacts DNA.  Residues that contact DNA significantly less in 

a mutant trajectory compared to the WT trajectory are given in Table 3.2. 

 

3.3.4 Hydrogen Bonding 
The VMD HBonds Plugin v1.2 was used to perform hydrogen bond occupancy analysis. 

The hydrogen bond occupancy corresponds the percentage of frames in a simulation 

that a particular hydrogen bond exists. A bond cutoff length of 3.2 Å between heavy 

atoms and cutoff angle of 150 degrees was chosen to include hydrogen bonds of both 

moderate and strong strengths. Occupancies represent percentage of trajectory a 

hydrogen bond exists with the cutoff criteria.  Selected hydrogen bond occupancies are 

given in Table 3.3. 

 

3.3.5 Salt Bridges 
A salt bridge is a special noncovalent interaction between electrically charged basic and 

acidic groups.  Salt bridges are essentially a combination of two other forces: a hydrogen 

bond and electrostatic interactions.  The VMD Salt Bridges Plugin, v1.1 was utilized in 

analyzing all salt bridges using a nitrogen-oxygen cutoff distance of 3.2 Å between 

charged residues to define a salt bridge. 
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3.3.6 Helix Bending 
As a measure of a mutant’s ability to alter TFAM’s protein geometry, we monitored local 

bending angles in the protein’s α-helices.  HELANAL, an algorithm that characterizes the 

geometries of helices present in proteins, was used quantify the geometry of helices in 

TFAM on the basis of their Cα atoms (Bansal et al., 2000).  Local per-residue mean helix 

bending angles were calculated for helix residues in each trajectory. The analysis uses a 

sliding window of 9 contiguous Cα atoms, and measures the angle at position “5”, of 

axes projected down the local helices of the preceding and following 4 residues.  Angles 

are measured for each frame in the trajectory and averaged to give mean local helix 

curvature. Standard deviation of local bending angle is reported as a measure of local 

helix flexibility for each mutant  

 

3.3.7 DNA bending 
As a measure of TFAM mutants’ ability to bend DNA, we measured end-to-end 

distances of mtDNA (Figure 3.2). The distance between the atomic centers of the closest 

atoms in two sets of DNA base pairs, 40 bases apart (DNA residue 7 or 76 to DNA 

residue 47 or 32). Averages and standard deviations were computed. 
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Figure 3.2. DNA end-to-end distances as a measure of bending.   

End to end distances of DNA are can be measured as a proxy for DNA bending. The truncated 

LSP segment bound to TFAM (bottom) in the 3TMM crystal structure has a minimum end-to-end 

distance of ~25 Å (inside to inside) and a maximum end-to-end distance of ~53 Å (outside to 

outside). Linear truncated LSP mtDNA (top) as modeled with the 3DDART webserver has and 

end-to-end distance of ~90 Å. 
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3.4 Results 
In order to elucidate the effects of TFAM variants on the structure and dynamics of the 

TFAM-mtDNA complex, we constructed crystal structure-based molecular models of 

wildtype (WT) TFAM and seven TFAM variants (A105T, E219K, Q100E, Q108E, R233C, 

T144K, and V109G) and subjected these models to extensive molecular dynamics (MD) 

simulations (92ns trajectories).  We analyzed these MD trajectories to determine if and 

how these TFAM point mutations might affect TFAM-mtDNA binding, TFAM structural 

stability, and mtDNA bending. 

 

3.4.1 HMG Box A mutations 
DNA is highly negatively charged due to its phosphate backbone. WT-TFAM is arranged 

such that the only charged residues that face DNA are lysines or arginines (i.e. no 

negatively charged residues face DNA). This naturally is the basis of TFAM’s strong 

DNA-binding abilities. Additionally, TFAM possesses many uncharged polar amino 

acids, such as Q100, that make hydrogen bonds to the DNA. The Q100E mutation 

abolishes the native Q100-DNA hydrogen bond and introduces a negatively-charged 

residue facing the negatively-charged DNA backbone, leading to intermolecular 

electrostatic repulsion between the two molecules that manifests itself in decreased 

TFAM-mtDNA contacts at residue 100.  Contact analysis shows q100-dna contacts in 

90.6% of wt simulation, however 100e-dna contacts are only in only 29.6% of q100e 

simulation (Table 3.2). Specifically, in the WT simulation, there is a hydrogen bond with 

37.49% occupancy exists between the Q100 side chain and the DNA backbone of 

Adenine 27. This hydrogen bond is completely abolished in the Q100E mutant (Table 

3.3).  It was observed in the simulation that the Q100E mutant is capable of making ion-
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mediated interactions to DNA, as sodium cations often positioned themselves between 

the negatively charged 100E residue and negatively charged DNA to alleviate 

electrostatic repulsion. These ion-mediated interaction, however, were only transient. 

Interestingly, the Q100E mutant displayed drastically increased helix flexibility in the B-III 

helix at positions 214-217 (Figure 3.3).  It is unclear whether such long-range effects are 

indeed a physical consequence of the Q100E mutation or whether they are an artifact of 

the simulation. Regardless, neither the Q100E mutant’s inability to closely bind DNA at 

residue 100 nor the increased B-III helix flexibility appeared to drastically compromise 

the mutant’s ability to effectively bend mtDNA in silico (Table 3.4).  While Q100E did 

have the largest bend angle (i.e. largest end-to-end distance) of all the mutants studied, 

it was within the standard deviation of WT. 
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Table 3.2. TFAM-mtDNA contact occupancies for selected residues.   
Columns represent mutant and WT trajectories. Rows represent residue sites.  Occupancies 

represent the percentage of trajectory frames that any protein residue atom (atomic center) is less 

than 4Å away from any DNA atom (atomic center). Sites that make significantly fewer contacts in 

a mutant trajectory compared to WT trajectory are colored red.  Image at right depicts WT vs 

Q100E mutant contacts with DNA at residue 100. 

	  residue	  

w
t	  

v109g	  

t144k	  

r233c	  

q108e	  

q100e	  

e219k	  

a105t	  
K51	   98%	   93%	   95%	   96%	   96%	   70%	   64%	   98%	  
P53	   65%	   87%	   95%	   62%	   77%	   25%	   22%	   67%	  
K76	   67%	   43%	   28%	   31%	   54%	   35%	   27%	   29%	  

Q(E)100	   91%	   89%	   90%	   69%	   50%	   30%	   77%	   73%	  
R104	   60%	   98%	   85%	   72%	   76%	   75%	   27%	   56%	  
K141	   62%	   24%	   16%	   43%	   51%	   19%	   74%	   18%	  

T(K)144	   95%	   29%	   91%	   60%	   48%	   48%	   75%	   37%	  
W189	   79%	   62%	   88%	   18%	   68%	   73%	   64%	   36%	  
I235	   96%	   100%	   100%	   99%	   32%	   71%	   100%	   100%	  
Q238	   60%	   33%	   34%	   20%	   1%	   23%	   19%	   55%	  
K240	   55%	   5%	   1%	   0%	   0%	   0%	   0%	   33%	  
Y241	   79%	   38%	   12%	   45%	   1%	   34%	   59%	   69%	  
G242	   69%	   26%	   0%	   8%	   0%	   13%	   47%	   28%	  

WT	  

Q100E	  
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Table 3.3: Selected Hydrogen bond occupancies.  
Hydrogen bond occupancies represent the percentage of a simulation in which a defined criteria 

is met for the existence of a hydrogen bond between a protein residue donor and a protein or 

DNA acceptor.  Mutant vs WT occupancies are compared for selected hydrogen bonds.  

Sidechain hydrogen bonds are denoted “-s”, and backbone hydrogen bonds are denoted “-b”.  

Top-right image depicts wild-type R233 hydrogen bonds to mtDNA.  Bottom-right image depicts 

R233C mutant 233C hydrogen bonds to mtDNA. 

 

 

 

 

 

 

 

WT	  

R233
C	  

MUT.	  	  
NAME	  

DONOR	   ACCEPTOR	   WT	  	  
OCC.	  

MUT.	  	  
OCC.	  

Q100E	   Q(E)100-‐s	   ADE27	   37.49%	   0.00%	  

T144K	   T(K)144-‐s	  
K141-‐s	  
T(K)144-‐s	  
T(K)144-‐b	  
E148-‐b	  

ADE21	  
THY52	  
R140-‐b	  
R140-‐b	  
T(K)144-‐b	  

0.00%	  
35.58%	  
38.73%	  
31.92%	  
12.79%	  

49.51%	  
0.00%	  
0.00%	  
0.95%	  
0.24%	  

V109G	  
	  

E113-‐b	  
I114-‐b	  
Y110-‐b	  
K111-‐b	  
R116-‐b	  

V(G)109-‐b	  
Y110-‐b	  
E106-‐b	  
W107-‐b	  
E112-‐b	  

25.65%	  
60.99%	  
21.38%	  
37.55%	  
31.46%	  

7.52%	  
42.12%	  
13.17%	  
19.96%	  
23.95%	  

R233C	   R(C)233-‐b	  
R(C)233-‐s	  

CYT73	  
ADE74	  

57.05%	  
75.54%	  

62.11%	  
0.00%	  
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Figure 3.3. TFAM local helix mean bending and flexibility.  

Structural properties are reported for each of the seven TFAM protein helices. Red boundary lines 

separate helices. (top) TFAM local helix mean bending angles.  Local bending angles are 

measured per-helix-residue (as described in Section 3.3.6) for each frame across a trajectory and 

averaged. Mean values are plotted. Error bars represent SD of WT. Tall peaks represent helical 

A-‐II	  A-‐I	   A-‐III	   Linker B-‐I	   B-‐II	   B-‐III	  
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kinking. (bottom) Local TFAM helix flexibility.  SD of per-residue mean local helix bending 

calculations (see top) are plotted. Peaks represent sites of high helix flexibility. 

Table 3.4. DNA end-to-end distances.   
Results from measuring the DNA end-to-end distances over the 92 ns trajectory. Results are 

reported in angstroms. See section 3.3.7 for details. 

 

 

Interestingly, Q108E is an analogous mutation located just two turns away from the 

disruptive Q100E mutation. Yet because Q108 faces away from the DNA, the Q108E 

mutation does not exhibit the drastic changes seen in Q100E.  Although there are 

diminished contacts at position Q100, they are not as pronounced as those seen in the 

Q100E simulation (Table 3.2).  The Q108E mutation did not appear to compromise the 

protein’s structural integrity (Table 3.4).  Overall, the simulation behaved very similarly to 

the WT simulation.  

 

The A105T mutation is located between Q100 and Q108 on the A-III helix, and like the 

Q100E mutation, it faces away from and makes no direct engagements with mtDNA.  

The 105T mutant residue is capable of forming a side chain hydrogen bond to the 

backbone carbonyl oxygen of D101.  Although side chain-to-backbone hydrogen bonds 

have been shown to induce helix bending in other systems (Ballesteros et al; Biophys J; 

2000), the A105T mutant did not alter A-III helix bending at all (Figure 3.3).  The mutant 

	   WT	   A105T	   E219K	   Q100E	   Q108E	   R233C	   T144K	   V109G	  
Mean	   33.6	   35.5	   27.6	   37.6	   25.2	   25.8	   26.4	   29.3	  
Std.	  Dev.	   6.23	   8.49	   2.73	   5.98	   3.56	   3.14	   5.16	   3.74	  
Min.	   18.2	   17.4	   17.6	   19.9	   13.8	   15.2	   13.7	   15.5	  
Max.	   48.8	   52.3	   37.0	   51.6	   35.0	   33.4	   40.6	   38.6	  
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did, however, display decreased mtDNA contacts (Table 3.2) and increased helix 

bending/flexibility (Figure 3.3) in the residue 141-146 region of the linker-region helix 

(Figure 3.1). It is unclear, however, whether these distal effects are a true physical 

consequence of the A105T mutation or simply an artifact of the simulation. Regardless, 

such perturbations observed in the linker-region helix could compromise the mutant’s 

ability to effectively bind mtDNA (Table 3.4).  It should be noted, that within the context of 

the B-III helix, the A105T mutant largely behaved like WT. This is in contrast to the 

Q100E mutant, which perturbed the system both locally and distally.  

 

Like the adjacent Q108 site, V109 faces away from the protein-DNA interface, and it 

makes no direct engagements with mtDNA in the WT or mutant simulations.  The V109G 

mutant simulation displays decreased intra-helical backbone hydrogen bond 

occupancies (Table 3.3), which is consistent with helix destabilization.  This is not 

surprising, as many groups have previously reported that valine-to-glycine substitutions 

are highly unfavorable in middle positions of solvent-exposed alpha helices (Pace and 

Scholtz; BioPhys J; 1999);(Myers et al., Biochemistry, 1997b); (Horovitz et al., J. Mol. 

Biol. 1992); (Blaber et al., J. Mol. Biol., 1994); (O’Neil and DeGrado, Science, 1990); 

(Rohl et al., Protein Sci., 1996); (Park et al., Biochemistry, 1993), (Chakrabartty and 

Baldwin, Protein Chem., 1995); (Yang et al., Protein Sci., 1997); (Munoz and Serrano, J. 

Mol. Biol., 1995). This is attributed to glycine’s ability to explore greater phi-psi space 

(i.e. greater backbone entropy), causing it to prefer a random coil state, which has 

favorable conformational entropy (Scholtz et al., 1991; Yang and Honig, 1995)(Nemethy 

et al., 1966; Hermans et al., 1992; Luque et al., 1996).  While this mutation does not 
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directly interfere with DNA binding per se, we expect that compromised secondary 

structure of the A-III helix in unbound TFAM would alter binding. 

 

3.4.2 Linker-region mutations 
Intuitively, one might assume that neutral- or negative-to-postive mutations would 

strengthen TFAM interactions with the negatively charged DNA. However, our 

simulations of the T144K and E219K (see section 3.4.2) mutations reveal that this is not 

universally true. Although the T144K mutation introduces a new positive charge that is 

electrostatically attracted to the negatively charged DNA phosphate backbone, the 

mutation also introduces disruptive forces. Residue T144 resides on the C-end of the 

linker-region helix and faces toward DNA (Figure 3.1). While T144 does not hydrogen 

bond to DNA in the WT trajectory, residue 144K hydrogen bonds to the phosphate 

backbone oxygens of ADE21 in 49.51% of the mutant trajectory (Table 3.3).   However, 

this new interaction comes at the price of losing a hydrogen bond between the spatially 

adjacent K141 and THY52 phosphate backbone oxygens (Table 3.3).  Indeed, the DNA 

contact occupancies for residues 144 and 141 are respectively 95% and 62% for WT 

and 91% and 16% for the T144K mutant (Table 3.2).  Moreover, several backbone 

hydrogen bonds that preserve the secondary structure linker-region helix are 

destabilized in the mutant trajectory (Table 3.3), likely due to intermolecular charge 

repulsion. Residue 144 is flanked by positively-charged residues at the i-3 and i+3 

positions (K141 and K147, respectively). The mutated sequence, 139KRKAMKKKK147, 

contains 7 positively charged residues in a two-turn span. This positive charge saturation 

is likely to destabilize the secondary structure of the linker-region helix in TFAM.  We 
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would expect this destabilization to be much more pronounced in the unbound state, in 

the absence of DNA’s strong negative charge.  This could be investigated further in 

simulations of unbound TFAM.    

 

3.4.3 HMG Box B and C-terminal tail mutations 
Residue E219 resides on the C-end of B-III helix of HMG box B and faces toward the 

DNA and the C-terminal tail (Figure 3.1).  Unlike T144K, the E219K mutation does not 

appear to compromise the protein secondary structure. It does, however, affect the 

tertiary structure. WT residue E219 forms a salt bridge with R232, which is located on 

the C-terminal tail (Figure 3.4 top). This salt bridge constrains the C-terminal tail to point 

back toward DNA, while still affording the remaining residues 233-247 of the C-terminal 

tail freedom to explore conformational space. The 219-232 salt bridge is abolished by 

the E219K mutation. Residues 219K and R232 experience repulsive forces in the mutant 

simulation until a compensatory salt bridge is formed between 219K and E245, located 

at the C-end of the C-terminal tail (Figure 3.4 bottom). This salt bridge, which positions 

E245 between 219K and R232, alleviates electrostatic repulsions between the two 

positively charged residues, but it also sequesters the C-terminal tail.  Notably, this 

interaction was only possible because of our modeling efforts to replace missing 

residues on the C-terminal tail. Thus, based on our simulations, the E219K mutation is 

expected compromise the tertiary structure of TFAM. 
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Figure 3.4: Salt Bridge distances for residue 219.   

Nitrogen to Oxygen distances for residue 219 salt bridges. Inset pictures are snapshots at 80ns. 

(Top) WT-E219 forms a salt bridge with R232.  This salt bridge, which is present both in the 
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crystal structure and in our simulations, is lost upon mutation.  (Bottom) A compensatory salt 

bridge between E245 and K219 is formed approximately 50ns into E219K trajectory.  This new 

interaction constrains the C-terminal tail of TFAM. 

 

The R233C mutation also affects the C-terminal tail. This mutation abolishes a strong 

bridge between TFAM and DNA. Although the mutant maintains a backbone hydrogen 

bond to DNA, the loss of the stronger charge-complementary bond is likely affect binding 

of the C-terminal tail to DNA. 

 

Residue R233 is located in the C-terminal tail region (Figure 3.1). In the WT simulation, 

R233 forms a backbone amino hydrogen h-bond of 57.05% occupancy to the DNA 

phosphate backbone, and the positively-charged R233 side chain makes forms a strong 

salt bridge with hydrogen bond occupancy of 75.54% to the negatively-charged 

phosphate backbone of DNA (Table 3.3). The salt bridge enforces an additional 

constraint on the C-terminal tail, directing it toward the DNA. In the mutant simulation, 

although 233C backbone amino hydrogen makes hydrogen bonds of 62.11% occupancy 

to the DNA phosphate backbone), the strong electrostatic salt bridge interactions are 

completely lost (Table 3.3). 
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3.5 Discussion  
Disregulation of mtDNA has been associated with a host of human diseases, including 

primary mitochondrial disease, diabetes, heart disease, and neurodegeneration. The 

primarily regulator of mtDNA levels is believed to be mitochondrial transcription factor A 

(TFAM), a protein encoded by nuclear DNA.  Recently, single-nucleotide polymorphisms 

(SNPs) in TFAM have been associated with Alzheimer’s disease, Parkinson’s disease, 

and dementia.  In this work, we along with our collaborators have performed 

biochemical, biophysical, and computational experiments to elucidate the functional 

effects of mutations identified in the mitochondrial transcription factor A (TFAM). The 

goal of this study is to determine how these polymorphisms affect protein stability, 

mtDNA binding, and ability to regulate mtDNA levels.  

 

Our collective results indicate that three variants—V109G, T144k, and E219K—

compromise protein stability.  None of these three variants accumulated in vitro, and 

they displayed no effect on mtDNA levels.  In line with these results, our simulations 

revealed that the V109G and T144K mutations compromised protein secondary 

structure, while the E219K mutation compromised tertiary structure.  Both the V109G 

and T144K simulations revealed weakened backbone hydrogen bonds along the α-helix 

containing the mutation.  For the V109G mutant, we suggest that destabilization is a 

consequence of glycine’s increased backbone entropy.  For the T144K mutant, we 

suggest that destabilization is a consequence electrostatic repulsions associated with 

highly saturated positive charges. The E219K simulation revealed that the E219K 

mutation abolishes an important E219-R232 salt bridge that positions the C-terminal tail 
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in the proper orientation for DNA engagement.  Compromising this tertiary structure is 

detrimental to the protein, as the C-terminal tail is critical for TFAM function (Malarkey et 

al., 2012).  

 

While both the Q100E and the R233C variants were stable in cellular cultures, they 

displayed decreased function in mtDNA compaction and copy number control. Our 

molecular dynamics simulations independently predicted and provided molecular 

mechanisms for the decreased functionality of these mutations.  The Q100E mutation 

introduces a repulsive force at the protein-mtDNA interface on the A-III helix.  Notably, 

predictive algorithms such as PolyPhen-2 fail to account for intermolecular repulsions, 

and consequently predict the mutation to be benign.  Based on our simulations, we 

expect this mutation to compromise proper mtDNA associations with TFAM.  Although 

this hypothesis agrees with results from the cellular assays, it initially appears to conflict 

with results from DNA binding assays, in which the KD of the Q100E variant was only 

slightly higher than that of WT.  The closeness in FRET determined binding affinities of 

Q100E and WT could be due to ion-mediated interactions between the negatively 

charged glutamic acid and DNA phosphate backbone. Such interactions were observed 

in our simulations.  Nonetheless, these repulsive forces appear to be the cause of the 

variant’s moderate deficiency in mtDNA control. 

 

The R233C mutation altered protein-mtDNA interactions between mtDNA and the C-

terminal tail of TFAM in silico.  A salt bridge between residue 233 and the DNA 

phosphate backbone was abolished upon mutation, however DNA binding was not 

completely lost, as the mutant residue was still able to maintain its weaker backbone 
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amino-hydrogen bond to the DNA backbone. While this again agrees well with cellular 

assays that indicate a slight deficiency in mtDNA control, binding assay data showing 

that the R233C mutant binds with comparable affinity of WT to mtDNA suggests that 

these C-terminal interactions may be more important in non-sequence-specific binding 

than in LSP-sequence specific binding. 

 

 

In cellular assays, the Q108E and A105T variants were stable and displayed wild-type-

like function in mtDNA compaction and copy number control (Table 3.1).  Our modeling 

and simulations revealed that neither of these mutations compromised the structural 

integrity of the A-III helix and that neither mutation directly interfered with local mtDNA 

binding interactions.  This is unsurprising, as both of these residues are on the outside of 

the helix, facing away from the mtDNA interface (Figure 3.1).  Our simulations further 

revealed that helix dynamics (Figure 3.3) of the Q108E mutant match well with WT 

simulation results.  FRET studies performed on A105T revealed that this variant has a 

slightly diminished mtDNA binding affinity (KD
WT=5.05nM, KD

A105T=17.7nM) compared to 

WT.  While our A105T simulations did not reveal any significant local (A-III helix) 

perturbations to mtDNA binding, we did we did observe significant significantly increased 

linker-region helix flexibility in this mutant.  It is unclear whether these observed long-

range effects are an artifact of the simulation or whether they are indeed physical 

manifestations of the A105T mutation that contribute to decreased binding affinity. 
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Interestingly, in vitro experimental results suggest that A105T has slightly weaker 

binding affinity to LSP than WT (Table 3.1), showed decreased LSP transcriptional 

activation compared to WT (data not shown), but showed WT-like copy number control 

(Table 3.1). Conversely, the R233C variant demonstrated comparable LSP binding 

affinity to WT (Table 3.1), comparable LSP transcriptional activation to WT (data not 

shown), but slightly decreased copy number control compared to WT (Table 3.1). This 

raises the possibility that the A105T mutation may have a greater effect on sequence-

specific binding compared to non-sequence-specific binding, while the R233C mutant 

may have a greater affect non-sequence-specific binding more than sequence-specific 

binding.  Additional experiments will need to be performed to flesh out this hypothesis. 

 

In FRET experiments, the only mutant to significantly alter DNA bending was ∆exon5.  

This deletion mutation was not included in our computational studies.  In line with 

experimental results, none of the modeled mutations displayed significantly worse 

(greater than S.D.) mtDNA bending than WT.  Our simulations revealed that both WT 

and mutant TFAM constructs are very dynamic in nature, with natural undulations in the 

mtDNA bending angle.  It is worth noting that our computational efforts brought clarity to 

some inconsistencies in the FRET results. While crystallographic and modeling results 

indicate that ∆end-to-endWT should be on the scale of 37 Å to 65 Å (Figure 3.2), FRET 

results yielded a ∆end-to-endWT value of ~21 Å. On the experimental end, this 

discrepancy could be partly due to the change of distance between the fluorophore-

bearing ends of short DNA duplexes being too small to be detected accurately by FRET 

(Dragan et al. 2008).  Also, small changes in KCl concentrations correspond to large 
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changes in the asymptotic value of the FRET effect (AFE) (Dragan et al., 2008).  

Alternatively, our simulations demonstrate that the bending imposed by TFAM on mtDNA 

is very dynamic in nature, and crystal vs FRET differences easily fall within the range of 

natural mtDNA bending undulation amplitudes. 

 

Over all, our MD simulations suggest that the Q100E, V109G, T144K, E219K, and 

R233C mutations are likely to disrupt TFAM activity by a variety of mechanisms, while 

the Q108E and A105T mutations are likely to behave to similarly to WT. The T144K and 

V109G mutations compromise TFAM secondary structure, and the E219K mutation 

compromises TFAM tertiary structure.  Each of these three mutations are expected to 

destabilize TFAM and prevent proper folding.  While Q100E and R233C mutations do 

not compromise protein structure, but rather they directly alter specific TFAM-mtDNA 

interactions. While these simulations provide insight into the structural and dynamical 

consequences of these human polymorphisms, it should be noted that the effects that 

these mutations may have on interactions with other proteins (e.g. self dimerization, p53 

tumor suppressor association, etc.) are not captured here.  Overall, our results agree 

well with in vitro data on the variants ability to control mtDNA copy number.  Collectively, 

these results underscore the importance of characterizing TFAM polymorphisms for their 

potential effects in the context of human disease. 
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Chapter 4: Anaplastic Lymphoma Kinase (ALK) 
mutations in neuroblastoma patients 

 

4.1 Introduction 

4.1.1 Role of Anaplastic Lymphoma Kinase in Neuroblastoma 
Neuroblastomas are embryonal tumors that arise from neural crest tissue along the 

sympathetic chain ganglion in the developing autonomic nervous system (Verneris and 

Wagner, 2007). The most common extracranial solid tumor in children (Bresler et al., 

2011; Matthay et al., 1999), neuroblastomas are the most frequently diagnosed 

malignancy in the first year of life (Maris, 2010). Approximately half of the patients 

diagnosed with the disease are classified as “high-risk” and exhibit a very aggressive 

phenotype (Maris et al., 2008). Despite improvements in treatment approaches over 

recent decades, cure rates for patients with high-risk neuroblastoma (Maris, 2010) lag 

significantly behind those of other common childhood cancers (Smith et al., 2010).  

Current treatments rely on dose-intensive chemotherapy, radiation therapy, and 

immunotherapeutic targeting of the disialoganglioside GD2 (Maris, 2010; Yu et al., 

2010).  Even with these intensive therapies and bone marrow transplant, the 5 year 

survival rate among high risk patients high risk patients remains a mere 40% (Matthay et 

al., 2009).  Some recent neuroblastoma clinical studies have provided evidence that 

escalating dose intensity during both induction and consolidation therapy may improve 

the outcome of treatments (Pearson et al., 2008).  Neuroblastoma survivors tend to 

suffer chronically from treatment-related sequelae, and increasing treatment intensity 

could potentially exasperate long-term adverse effects (Hobbie et al., 2008; Oeffinger et 
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al., 2006; Smith et al., 2010).  Consequently, there is an urgent need for new and more 

sophisticated treatment strategies to be developed. 

 

One promising new avenue for targeted therapy of neuroblastoma focuses on anaplastic 

lymphoma kinase (ALK), a cell-surface neural receptor tyrosine kinase (RTK) expressed 

at significant levels only in the developing embryonic and neonatal brain (Carpenter et 

al., 2012; Iwahara et al., 1997; Morris et al., 1997). ALK was first discovered in 1994 as 

part of an oncogenic product found in patients with anaplastic large-cell lymphoma 

(ALCL), a non-Hodgkin’s lymphoma (Morris et al., 1994; Shiota et al., 1994). In ALCL, an 

oligomerizing protein called nucleophosmin (NPM) is fused to ALK, and the fusion 

results in constitutive activation of the kinase domain of ALK (Chiarle et al., 2003; Jäger 

et al., 2005).   In 2007, ALK was also implicated in a subset of non-small cell lung cancer 

(NSCLC) as part of another oncogenic fusion protein with constitutive kinase activity 

(Perner et al., 2008; Rikova et al., 2007; Soda et al., 2007). In both ALCL and NSCLC, 

the cancerous cells were dependent on ALK for proliferation (Koivunen et al., 2008; Piva 

et al., 2006). ALK has since been linked to many cancers, including esophageal 

squamous cell carcinoma, adult and pediatric renal cell carcinomas, colonic 

adenocarcenomas, anaplastic thyroid cancer, and others.  Consequently, ALK has been 

thrust into the limelight of cancer research.  

  

Germline mutations in the intact ALK gene were recently shown to be the major cause of 

hereditary neuroblastoma (Mossé et al., 2008).  These mutations result in single amino 

acid missense substitutions in the ALK tyrosine kinase domain (TKD) that promote 

constitutive, ligand-independent, activation of this RTK.  Somatically acquired ALK-
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activating mutations have also been identified as oncogenic drivers in neuroblastoma 

(Chen et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mossé et al., 

2008; Palmer et al., 2009).  In addition to activating mutations, ALK gene amplification 

may also play a role in driving some cases of the disease (Janoueix-Lerosey et al., 2008; 

Mossé et al., 2008).  Through these findings, ALK has emerged as the first tractable 

oncogene for targeted therapy in neuroblastoma.    This has motivated intense interest in 

understanding the detailed functionality of ALK and developing small molecule inhibitors 

of ALK kinase activity.  The first FDA-approved ALK inhibitor is crizotinib (marketed by 

Pfizer under the trade name Xalkori), a competitive ATP inhibitor that targets 

ALK/Met/Ros1. Pretreated patients with advanced relapsed/refractory NSCLC harboring 

ALK rearrangements demonstrated dramatic response rates to crizotinib, with tumors 

stabilizing or shrinking in 90% of the patients (Kwak et al., 2010; Shaw and Engelman, 

2013).  These findings have validated ALK as a valuable therapeutic target for ALK-

dependent malignancies. 

 

Rapid clinical translation of findings with ALK in neuroblastoma prompted a phase 1 trial 

of crizotinib (NCT00939770) in patients with recurrent or refractory cancer.  Results from 

this study highlighted the differential sensitivity to ALK kinase inhibition of ALK-

translocated versus ALK-mutated disease (Mossé et al., 2013).  The results also 

underlined the need for further detailed investigation of ALK mutations in order to 

optimize clinical application of ALK inhibitors in neuroblastoma.  Additionally, in vivo and 

in vitro studies have previously demonstrated differential inhibitor sensitivity to crizotinib 

between the two most common mutants identified in neuroblastoma patients, namely 

F1174L and R1275Q (Bresler et al., 2011).  Further complicating the issue, when a novel 
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ALK mutation is identified in a neuroblastoma patient, it is initially unclear whether that 

substitution is a harmless passenger mutation or whether it is responsible for driving 

progression of the disease.  Expensive, laborious experiments must be conducted to 

determine whether a patient with a novel mutation is a good candidate for ALK-inhibition 

therapy. 

 

With this goal, we analyzed the spectrum of ALK mutations, and their clinical 

significance, in a large representative series of neuroblastoma cases.  Complementing 

experimental and clinical studies, we constructed molecular models and performed 

dynamics simulations on 22 ALK mutants, in addition to wild-type.  Based on 

hypothetical structure/function relationships for these mutations, we developed a 

strategy for scoring the analyses of these and free energy perturbation simulations to 

predict which mutants will constitutively activate the kinase.  Our computational 

approaches allow for robust distinction between oncogenic and passenger mutations. 

Our results will underpin future approaches for identifying patients likely to benefit from 

ALK-targeted therapies in neuroblastoma, and for predicting in the clinic which newly 

emerging mutations indicate utilization of ALK-targeted therapy. 

 

4.1.2 ALK Structure and Function 
ALK is a member of a class of cell surface receptors known as receptor tyrosine kinases 

(RTKs).  Over the past quarter century, 58 RTKs have been discovered in humans 

(Lemmon and Schlessinger, 2010).  Many have been shown to regulate cellular 

processes such as proliferation, differentiation, survival, metabolism, and migration by 
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selectively phosphorylating molecules in the cell (Blume-Jensen and Hunter, 2001; 

Lemmon and Schlessinger, 2010; Ullrich and Schlessinger, 1990).  All RTKs exhibit a 

similar architecture, comprising a ligand-binding extracellular domain, a single 

transmembrane helix, and a cytoplasmic region that contains the protein tyrosine kinase 

domain (TKD) plus additional carboxy terminal and juxtamembrane regions (Lemmon 

and Schlessinger, 2010). In ALK, the TKD roughly consists of an amino-terminal lobe (N-

lobe), a large carboxyterminal lobe (C-lobe), an active site between the two, an 

activation loop (A-loop), and key subdomains within the N-lobe and C-lobe.  The N-lobe 

is largely composed of a five-stranded antiparallel ß-sheet, a nucleotide-binding loop, 

and an αC-helix.  The nucleotide-binding loop, or P-loop, is a flexible glycine-rich loop 

that helps to position ATP.  The αC-helix is considered to be a regulatory domain, and a 

C-lobe directed shift of the αC-helix is associated with activation.  The C-lobe, which 

largely α-helical, contains a catalytic loop (C-loop). The C-loop, which assists in 

phosphoryl transfer, is responsible for substrate specificity. 

 

TKDs have been shown to exist in both active and inactive conformations.  Although 

crystal structures of inactive TKDs differ significantly among different RTKs, the active 

structures are strikingly similar (Huse and Kuriyan, 2002).  In all activated TKDs, key 

regulatory elements, such as the “activation loop” and the αC helix in the kinase N-lobe, 

adopt a specific configuration that is required for catalysis of phosphotransfer (Lemmon 

and Schlessinger, 2010; Nolen et al., 2004).  Recently, crystal structures of inactive ALK-

TKD were solved and reported (Bossi et al., 2010; Lee et al., 2010).  Because RTKs 

have dissimilar inactive TKD states, they have different mechanisms of activation.  

However, some commonalities do exist.  Typically, the molecular mechanism in RTK-
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TKDs for ‘switching’ from the unique inactive state to the activated state involves 

autophosphorylation of the activation loop (A-loop) (Lemmon and Schlessinger, 2010).  

This autophosphorylation generally disrupts ‘cis-autoinhibitory’ interactions and also 

stabilizes the active conformation (Huse and Kuriyan, 2002; Lemmon and Schlessinger, 

2010).  Even prior to autophosphorylation, the RTK-TKD is thought to be able to explore 

the active conformation as the protein “breathes” (Lemmon and Schlessinger, 2010).  In 

some non-receptor tyrosine kinases, such as Src, metastable intermediates are thought 

to exist along the reaction coordinate as the kinase transitions from the inactive to the 

active conformation (Yang et al., 2009). It is unknown whether any such key 

intermediates exist in RTKs such as ALK. 

 

In ALK, the A-loop contains a YxxxYY motif, with tyrosines at positions 1278, 1282, and 

1283.  Some or all of these tyrosines are thought to be the targets for 

autophosphorylation during normal TKD activation. In the NPM-ALK fusion protein seen 

in ALCL patients, tyrosine-to-phenylalanine A-loop mutants demonstrate that the first 

tyrosine residue (Y1278) is essential for auto-activation of the ALK-TKD (Tartari et al., 

2008).  Additionally, purified ALK kinase domain preferentially phosphorylates the first 

tyrosine residue of the YxxxYY motif in synthetic peptides reproducing the ALK A-loop 

(Donella-Deana et al., 2005).  Thus, the first tyrosine residue in the A-loop of ALK-TKD is 

expected to play an important role in activation of wild-type (WT) ALK.   Additionally, the 

A-loop of the quiescent form of ALK contains a short α-helix located just below the αC-

helix.  This A-loop α-helix is expected to unfurl upon activation (Figure 4.2).  The inactive 

ALK structures do display some deviations in negative regulatory features from its 

cousin, the insulin receptor kinase (IRK).  Firstly, the DFG motif of inactive ALK is D-in 
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conformation, which canonically corresponds to the active-like state of RTKs.  Secondly, 

the A-loop of inactive ALK does not occlude the ATP binding site to the same degree 

that is seen in IRK.  And thirdly, the αC-helix of inactive ALK is rotated to allow a salt 

bridge between E1167 and K1150—a salt bridge that is conserved in active RTK 

structures.  In ALK, autoinhibition is thought to be at least partly regulated by (1) 

Restricted mobility of the αC-helix.  The αC-helix is sequestered through hydrogen 

bonds and hydrophobic interactions by the A-loop α-helix, the last two strands of the N-

lobe ß-sheet, and a ß-turn portion of the juxtamembrane segment (Roskoski, 2013a). (2) 

Obstruction of the peptide-binding site by residues 1288-1290 of the A-loop (Roskoski, 

2013b) . 
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Figure 4.2.  Overlay of inactive (red) and active (green) ALK-TKD structures.   

The largest conformational changes associated with activation are an unfurling of the A-loop and 

a repositioning of the C-Helix.  Inactive structure is taken from 3L9P crystal.  Active structure is a 

homology model based on 1IRK.  Details on modeling can be found in the methods section. 

 

Almost all of the activating ALK mutations identified in neuroblastoma patients have 

been localized to the TKD of ALK. Thus, a detailed understanding of the normal and 

mutation driven activation pathways is useful for rational design of inhibitors to block 
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ALK activation in neuroblastoma patients.  Additionally, fast and cost effective methods 

of determining whether a newly discovered mutation induces constitutive activation of 

the kinase are needed for determining best treatments for individual patients.  With this 

in mind, we embarked with our collaborators to determine the functional significance of 

novel ALK mutations found in neuroblastoma patients. 
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4.2 Experimental and Clinical Collaboration 
This work is a product of a fruitful collaboration with the laboratory of Dr. Mark Lemmon 

at the Perelman School of Medicine at the University of Pennsylvania and the laboratory 

of Yael Mosse at the Children’s Hospital of Philadelphia (CHOP), along with the 

Children’s Oncology Group (COG). Our collaborators analyzed germline and somatic 

ALK DNA alterations – at diagnosis – in samples from a cohort of 1596 neuroblastoma 

patients and assessed patient survival rates.  These mutations were assayed for kinase 

activity in vitro and tested for transforming ability.  All clinical studies and wet lab 

experiments were performed by our collaborators.  Below is a summary of these results, 

which proved invaluable to us as we designed and tested our computational studies.  A 

full version of this work can be found in: 

ALK mutations confer differential oncogenic activation and sensitivity to 
ALK inhibition therapy in neuroblastoma. Scott C. Bresler*, Daniel A. 
Weiser*, Peter J. Huwe*, Jin H. Park, Kateryna Krytska, Hannah Ryles, 
Marci Laudenslager, Eric F. Rappaport, Andrew C. Wood, Patrick W. 
McGrady, Michael D. Hogarty, Wendy B. London, Ravi Radhakrishnan, Mark 
A. Lemmon, and Yaël P. Mossé. In Review (Cancer Cell) 

 

ALK mutations 

Sequencing of ALK exons 21-28, which encompass the region encoding the ALK TKD, 

identified 126 diagnostic samples that harbored at least one mutation, corresponding to 

8% of subjects (Table 4.1).  Putative disease-associated mutations were distributed 

throughout the ALK TKD, with an additional mutation at R1060, which lies between the 

TKD and transmembrane domain.  In addition, three ALK TKD sequence variations 

(R1231Q, I1250T, and D1349H) were observed that had previously been listed in the 
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NCBI database of single nucleotide polymorphisms (dbSNP) (Sherry et al., 2001), but 

with no known clinical significance or annotation in COSMIC (Forbes et al., 2011). 

 

Three ‘hotspot’ residues accounted for 85% of the mutations (Figure 4.3, Table 2.1): 

R1275 (43%), F1174 (30%), and F1245 (12%), consistent with previous studies (Chen et 

al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mossé et al., 2008; Palmer 

et al., 2009).  R1275 was substituted with glutamine or leucine in 3.4% of all patients 

within the cohort (95% CI: 2.5, 4.3%), F1174 was altered (to L, I, V, C, or S) in 2.4% of 

patients (95% CI: 1.6, 3.0%), and F1245 (to L, I, V, or C) in 0.9% (95% CI: 0.5, 1.4%).  

Two patients harbored mutations at I1170 (to N or S), and another two at I1171 (to N).  

Single incidences of substitutions were seen at a further 15 positions, of which 7 

represent novel mutations not found in current databases.  Matched constitutional DNA 

was available for 88 of the 126 tumor samples that harbored ALK mutations, and was 

found to contain the observed ALK substitution in just 7 cases, indicating its presence in 

the germline.  Although no information about family history is available, this is an 

expected rate based on previous analyses (Knudson and Strong, 1972; Maris and 

Tonini, 2000; Mossé et al., 2008).   

 

ALK mutations were found in 10.9% of MYCN-amplified tumors and 7.2% of tumors 

without MYCN amplification (7.2%), and those mutations found alongside MYCN 

amplification were biased towards F1174 substitutions (41% of mutations in MYCN-

amplified cases compared with 30% overall).  Further, MYCN amplification occurred in 

39% of F1174-mutated tumors, compared with an expected overall frequency of 21% 

(p<0.01).  These data support previous suggestions that F1174 mutations are over-
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represented in MYCN-amplified tumors, but indicate a significantly less skewed 

distribution than earlier reported (De Brouwer et al., 2010).  Consistent with previous 

results (De Brouwer et al., 2010), however, patients with both amplified MYCN and 

F1174-mutated ALK had a significantly worse event-free survival (EFS, p<0.0001) than 

patients with neither. 

 

Figure 4.3.  Distribution of ALK mutations in neuroblastoma patients. 

The 126 potentially disease-related mutations observed were distributed over the 16 amino acids 

marked in the ALK TKD plus R1060 (which lies between the TKD and the transmembrane 

domain and is marked with an asterisk in the upper part of the figure).  In addition to those 

marked in the figure, three mutations previously reported in dbSNP (R1231Q, I1250T, and 

D1349H) were observed.  Amino acids R1275, F1174 and F1245 account for 85% of all 

mutations; except for those at I1170 and I1171, all other ALK TKD variants were singletons.  

Variants noted with a red asterisk (in red text) are those that were also found in germline DNA.  

Mutations that have not previously been reported in neuroblastoma include R1060H, I1170N, 

I1183T, L1204F, D1270G, G1286R, and T1343I. 
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Table 4.1. Clinical, genomic, and survival characteristics of overall patient cohort.   
All tumor samples were derived from the initial diagnostic procedure. 

 
Patient cohort n (%) 5-year EFSa 

± std error (%) 
EFSa 

p-value 
5-year OSb 

± std error (%) 
OSb 

p-value 
Overall 1596 67 ± 1.6 N/A 75 ± 1.4 N/A 
Age 
 < 18 mo 
 ≥ 18 mo 

 
756 (47%) 
840 (53%) 

 
81 ± 1.9 
55 ± 2.3 

 
< 0.0001 

 
91 ± 1.4 
62 ± 2.2 

 
< 0.0001 

Risk groupc 
 Low 
 Intermediate 
 High 
 Unknown 

 
626 (40%) 
292 (18%) 
664 (42%) 

14 

 
87 ± 1.8 
85 ± 2.8 
40 ± 2.5 

 
< 0.0001f 

 
97 ± 0.9 
94 ± 1.9 
46 ± 2.6 

 
< 

0.0001f 

ALK mutation 
 Present 
 Absent 
 Unknown 

 
126 (8%) 

1458 (92%) 
12 

 
53 ± 6.0 
68 ± 1.6 

 
0.001 

 
67 ± 5.9 
76 ± 1.5 

 
0.02 

Site of ALK mutation 
 F1174 
 F1245 
 R1275 
 Other mutation 

 
38 (30%) 
15 (12%) 
54 (43%) 
19 (15%) 

 
51 ± 11.9 
46 ± 15.0 
54 ± 9.1 

63 ± 14.5 

 
0.76 

 
60 ± 12.7 
53 ± 14.8 
72 ± 8.5 

73 ± 13.4 

 
0.32 

ALK Copy Number 
 Amplified 
 Gain 
 No gain/ not amp 
 Loss 
 Unknown status 

 
24 (2%) 

195 (15%) 
1109 (83%) 

6 (<1%) 
262 

 
24 ± 12.2 
47 ± 4.6 
68 ± 1.9 

40 ± 31.0 

 
< 0.0001 

 
23 ± 11.7 
57 ± 4.6 
77 ± 1.7 

60 ± 26.8 

 
< 0.0001 

ALK aberration 
 Mut./amplification/gain/loss 
 None of the above 
 Unknown status 

 
335 (25%) 

1015 (75%) 
246 

 
47 ± 3.6 
70 ± 2.0 

 

 
< 0.0001 

 
59 ± 3.6 
78 ± 1.8 

 

 
< 0.0001 

a event-free survival; b overall survival; c as defined in Maris, 2010;  
d International Neuroblastoma Staging System; e International Neuroblastoma Pathology Classification  
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ALK aberration and ALK mutation are prognostic biomarkers of inferior survival 

ALK mutations were observed in all clinical risk groups, and were more commonly 

observed in older patients (data not shown).  Across the whole cohort, the presence of 

an ALK aberration (mutation or amplification) was significantly predictive of reduced EFS 

and OS– as was occurrence of an ALK mutation alone.  Presence of any ALK aberration 

also predicted reduced EFS and OS within the high-risk group.  In univariable analysis, 

the presence of an ALK mutation predicted reduced EFS (p=0.02) in intermediate-risk 

patients, a heterogeneous group consisting mainly of very young patients with metastatic 

disease, or patients of any age with large, unresectable primary tumors.  Patient 

outcome did not differ significantly according to location of the mutation in any analysis.  

Whereas robust biomarkers to assign outcome probability have been characterized for 

patients with low- and high-risk disease, the most appropriate therapy for patients with 

intermediate-risk disease is less well-defined, and these findings suggest that ALK 

genetic status can now be used to identify cases within this group with the highest risk of 

treatment failure. 

 

 

Biochemical effects of clinically-observed ALK TKD mutations 

For initial assessment of how ALK mutations affect kinase activity, native gel 

electrophoresis was used to monitor autophosphorylation of purified recombinant ALK 

TKDs (Bresler et al., 2011) harboring the mutations of potential clinical significance.  The 

well-studied F1174L and R1275Q mutations greatly accelerated TKD 

autophosphorylation as expected.  Additionally, the M1166, I1170, I1171, F1245, Y1278, 
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G1128A, and R1192P mutations also displayed accelerated autophosphorylation.  

Mutations at T1151, L1196, and G1286 promoted more modest constitutive activation.  

By contrast, substitutions at five other sites (I1183, A1200, R1231, T1343, and D1349), 

including two of the mutations found in dbSNP (R1231Q and D1349H) failed to activate 

the isolated TKD, signifying that these variants are unlikely to be clinically significant.  

D1270G-mutated ALK TKD failed to become autophosphorylated at all, suggesting that 

this is an inactivating mutation – as expected since D1270 lies in the conserved DFG 

motif that plays an essential role in Mg2+-ATP binding to kinases.  ALK TKDs harboring 

L1204F, L1240V, or I1250T mutations could not be assessed in this assay, since they 

were all poorly expressed as recombinant proteins. 

 

For a more quantitative view, our collaborators next assayed the ability of the mutated 

TKDs to phosphorylate a peptide corresponding to ALK’s activation loop and determined 

values for kcat, Km, ATP, and kcat/Km in vitro.  We analyzed both fully auto-phosphorylated 

ALK TKDs and non-phosphorylated proteins.  The non-phosphorylated ALK TKD 

represents the ‘basal’ kinase state for each receptor variant, whereas 

autophosphorylated ALK TKDs represent the corresponding activated state – with kcat 

increased by ~45-fold in the case of wild-type ALK (Bresler et al., 2011). 

 

Effects of mutations on basal activity of non-phosphorylated ALK TKD 

The effects of mutations on non-phosphorylated ALK TKD activity vary according to their 

location in the kinase.  F1174 and F1245 mutations have the strongest effect, increasing 

kcat by 36-39 fold – close to the 45-fold increase caused by autophosphorylation of wild-

type ALK TKD (Bresler et al., 2011).  F1174 and F1245 contribute to a cluster of 
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phenylalanine side-chains that normally stabilizes the autoinhibited conformation of the 

non-phosphorylated ALK TKD (Bossi et al., 2010; Lee et al., 2010).  Mutating these 

residues will destabilize ALK’s autoinhibitory interactions and promote its activation.  

Almost all of the other mutations that activate non-phosphorylated ALK TKD more than 

10-fold (in kcat) are found either at residues in the αC-helix (M1166, I1170, I1171) or in 

the short α-helix present in the activation loop of inactive ALK TKD (R1275, Y1278).  

These residues all participate directly in autoinhibitory interactions between helix αC and 

the activation loop α-helix that normally help keep non-phosphorylated ALK TKD in its 

inactive conformation(Bossi et al., 2010; Lee et al., 2010), but are disrupted by the 

mutations analyzed here.  Mutations in the N-lobe (green) or phosphate-binding P-loop 

(cyan) have much smaller effects on ALK TKD, increasing kcat by just 3.4-5.7 fold.  The 

only exception is the germline R1192P mutation (which increases kcat of non-

phosphorylated ALK-TKD by 15 fold).  Mutations in the ALK TKD active site (magenta) 

or C-lobe (grey) have little or no influence on kcat (<3-fold increase), except for the 

L1196M ‘gatekeeper’ (Liu et al., 1998) mutation, which increases kcat by nearly 5 fold.  

Peptide phosphorylation studies further confirmed that the D1270G mutation is 

inactivating, and also revealed a reduced activity for the I1250T (SNP) variant, 

consistent with previous work (Schönherr et al., 2011a). 

 

Km, ATP values for non-phosphorylated ALK TKD variants all fell within a narrow range 

from 0.13mM (wild-type) to 0.39mM (L1196M) – suggesting saturation with ATP under 

physiological conditions for all variants. Accordingly, catalytic efficiencies for ATP and 
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peptide (kcat/Km, ATP and kcat/Km, peptide ) for the non-phosphorylated ALK TKD variants 

follow very similar trends to those seen for kcat.  The same is true for kcat/Km, peptide values. 

 

Effects of mutations on activity of fully autophosphorylated ALK TKD 

The effects of patient-derived ALK mutations on activity of the fully autophosphorylated 

ALK TKD (prepared as described in Experimental Procedures) were much more modest.  

With the exception of the I1170N variant (for which kcat was just 35% of wild-type), no 

variant was altered by more than 2-fold in kcat.  Overall, therefore, neuroblastoma-derived 

mutations likely have their greatest effects on activity of the non-phosphorylated ALK 

TKD, promoting its constitutive autophosphorylation and thus ligand-independent 

signaling by the intact receptor. 

 

 

Transforming ability of mutated ALK variants 

To assess how the biochemical characteristics of mutated ALK variants relate to their 

transforming abilities, our collaborators tested the ability of intact ALK variants harboring 

the same set of mutations to induce focus formation in NIH 3T3 cells.  Quantitation of 

focus formation assays reveals a remarkably close correspondence between 

transforming potential and the kcat values measured in vitro for the corresponding non-

phosphorylated TKD variants. A plot of transforming ability against kcat for the non-

phosphorylated TKD yields a straight line with a correlation coefficient (r) of 0.95 

(p<0.0001).  Relative outliers were G1128A (in the P-loop) and L1196M (in the active 

site), which both appeared relatively more transforming than suggested by our in vitro 

biochemical data, and M1166R, which appeared less transforming than expected by this 
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simple correlation.  The correlation with kcat for the non-phosphorylated ALK TKD is 

slightly better than that seen with either measure of its catalytic efficiency: kcat/Km, ATP 

(r=0.88) or kcat/Km, peptide (r=0.89).  By contrast, when transforming ability was plotted 

against kcat for the phosphorylated TKD variants, the slope did not deviate significantly 

from zero (p=0.68), indicating no correlation. 

 

Taken together, the data presented in Figures 4.5 and 4.6 argue that biochemical 

analysis of the non-phosphorylated ALK TKD is an excellent predictor of ALK’s 

transforming ability in NIH 3T3 cells.  An increase of just 4.6 – 4.8-fold in the kcat of non-

phosphorylated ALK TKD appears to be sufficient for NIH 3T3 cell transformation, 

judging from results with the G1128A (cyan) and L1196M (magenta) variants in .  The 

one exception to this correlation is the T1151M variant in the N-lobe, for which a 

relatively reduced kcat/Km, peptide value may explain failure to transform NIH 3T3 cells 

(presumably because of elevated Km, peptide).  It is particularly important to note that none 

of the three ALK mutations previously reported as dbSNP entries (R1231Q, I1250T, and 

D1349H, all in the C-lobe) were associated with ALK activation in our transformation or 

biochemical studies; these are silent or passenger mutations according to these assays.  

Moreover, analysis of transformation activity in (as a measure of oncogenicity) paints a 

very different functional picture from that predicted by PolyPhen-2 or SIFT for the 

spectrum of ALK mutations.  PolyPhen-2 and SIFT predict that all mutations (except 

R1060H and R1231Q) are damaging or affect function – whereas our experimental 

analysis shows that 9 of the 24 mutations analyzed (namely T1151M, I1183T, A1200V, 

L1204F, I1250T, D1270G, G1286R, T1343I, and D1349H) have no detectable effect.  
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ALK is unlikely to be an important driver in neuroblastoma cases with these mutations, 

and ALK-inhibitor treatment is very unlikely to be therapeutically useful in these contexts.   

 

 

Crizotinib and 2nd/3rd generation ALK-targeted inhibitors appear promising for treatment 

ALK-driven neuroblastoma.  For such drugs to be responsibly prescribed, one must 

determine if a given mutation is indeed driving the disease.  Because of the high costs, 

long time course, and specialized skills associated with in vitro and cellular assays, it is 

impractical for wet-lab scientists to experimentally determine whether every new 

clinically-identified ALK mutation is activating.  Computational methods offer an attractive 

alternative.  Given the poor predicting ability of existing algorithms, such as SIFT and 

PolyPhen-2, we set out to develop a computational protocol for predicting the ability of 

ALK TKD mutations to constitutively activate the enzyme.  We did so blinded to results of 

biochemical and cellular assays for all of the mutants discussed above—except for 

R1275Q and F1174L, which were previously published (Bresler et al., 2011).  
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4.3 Computational Methods and Data 
Armed with the knowledge the F1174L and R1275Q are activating mutations, we set out 

to develop a computational protocol for predicting whether or not a mutation in the ALK 

TKD is activating. We formed a working hypothesis that F1174L and R1275Q activate by 

disrupting hydrophobic and hydrophilic (respectively) interactions that stabilize the 

autoinhibited inactive conformation.  We developed analyses to test for these disruptions 

and classify the mutations. Below are the methodology and results form our protocol. 

 

4.3.1 Molecular modeling 
The inactive wild-type ALK TKD structure (residues 1096-1399) was taken from PDB 

entry 3LCS (Lee et al., 2010).  Missing loops and coils (residues 1084-1095 and 1400-

1405) were grafted onto the model from 4FNW PDB structure (Epstein et al., 2012) 

using MODELLER v9.8 (Eswar et al., 2007).  Structures of each mutant were generated 

using MODELLER v9.8 by making point mutations to the modified inactive wild-type 

model.  Due to the strong structural conservation among active conformations of RTK-

TK structures (Lemmon and Schlessinger, 2010), we proposed the active ALK TKD to be 

an excellent candidate for homology modeling. A homology model of active ALK TKD 

was generated with MODELLER v9.8, using as the primary template the active insulin 

receptor TKD structure (PDB entry 1IR3), with which ALK TKD shares 46% sequence 

identity and 63% sequence conservation (sequence identity + conserved substitutions) 

over >280 residues (Hubbard, 1997).  This places it well within the “safe zone” of 

homology modeling (Sander and Schneider, 1991).  Over 1000 models were generated, 
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and a top candidate based on DOPE score (Figure 4.4) was chosen.  Residues 1097-

1399 were grafted on from 3LCS, whereas residues 1084-1096 and 1400-1405 were 

again grafted from 4FNW.  All structures were modeled without bound substrate. 

 

 

 
 

 

 

4.3.1 Molecular dynamics (MD) 
All structures were subjected to the same molecular dynamics (MD) protocol.  Hydrogen 

atoms were added to the structures with Automatic PSF Generation Plugin v1.3 

implemented in VMD 1.8.6 (Humphrey et al., 1996).  To reflect a physiological pH of 7.0, 

all histidines express a +1 protonation state on the δ-nitrogen.  The Solvate Plugin v1.5 

and Autoionize Plugin v1.3 implemented in VMD were used to construct an 

electroneutral water box with 15Å of explicit TIP3P water padding and 0.15 M Na+/Cl- 

Figure 4.4.  DOPE score vs alignment position for ALK model and 

IRK template. 
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concentration.  All Na+ and Cl- ions were placed at least 5Å away from protein atoms 

and each other (Figure 4.5).  Systems contained approximately 60500 atoms.  

 

Figure 4.5.  Solvated, ionized WT ALK 

 

 

All MD simulations were carried out with NAMD v2.8 (Phillips et al., 2005) using 

CHARMM27 force field parameters (MacKerell et al., 1998).  Periodic boundary 

conditions were used throughout.  The particle mesh Ewald algorithm was used to treat 

long-range electrostatic interactions.  An integration timestep of 2fs was used.  Bonds 

between hydrogens and heavy atoms were constrained to their equilibrium values, with 

the velocity correction being performed by the RATTLE algorithm (Andersen, 1983).  

Rigid waters were treated using the SETTLE algorithm (Miyamoto and Kollman, 1992).  
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Long-range non-bonded van der Waals (VDW) interactions were treated by applying a 

smooth switching function at 10Å with a cutoff distance of 12Å. 

 

To eliminate unfavorable contacts, the solvated systems underwent an energy 

minimization using a conjugate gradient algorithm; they were then gradually heated to 

300K.  Constant temperature and pressure (NPT) simulations using a Nosé-Hoover 

Langevin piston (Feller et al., 1995; Martyna et al., 1994) were performed at 300K and 

1atm to equilibrate the volume of the solvation box.  Subsequently, constant temperature 

and volume (NVT) simulations were run on the system.  After an equilibration period, 

40ns of NVT simulation were completed on each structure. 

 

4.2.2 Hydrogen-bond analysis  
The largest structural change between active and inactive ALK occurs in the activation 

loop and the αC helix.  The hydrogen bond networks in these two segments are 

distinctly different in the active vs. inactive conformations (Figure 4.6).  For each mutant 

trajectory, hydrogen bonding networks were analyzed to determine if the mutation was 

favoring an active-like hydrogen bondingnetwork 

 

Hydrogen bond (H-bond) analysis was performed on the trajectory of each system using 

the HBonds Plugin v1.2 in VMD.  Hydrogen-bond cutoff lengths of 3.2Å (heavy atom to 

heavy atom) and angle cutoffs of 150˚ were chosen to include H-bonds of moderate and 

strong strength.  The occupancies for each residue-to-residue H-bond range from 0% to 

100% across the trajectory in each system (Table 4.2).  A scoring function was created 
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to analyze how ‘active-like’ the hydrogen bond networks were for each system, as 

follows: 

1. For each hydrogen bond, the difference in occupancies between the active 

(A) and inactive (I) wild-type (wt) systems (∆wt = YI
wt – YA

wt ) was calculated. 

2. For each bond, if |∆wt| > 40.0%, the difference in occupancies between the 

inactive wt and inactive mutant (mut) for each mutation (∆mut = YI
wt – YI

mut) 

was calculated. 

3. If ∆mut/∆wt > 0.5, then the bond received a binary activation score of 1; 

otherwise, it received a score of 0. 

The scores were tallied for 28 hydrogen bonds in the activation loop and the αC helix.  A 

score of 5 or greater for a given variant was considered activating in Table 4.6. 

 

  
Figure 4.6. Hydrogen bonding networks for inactive and active ALK TKD.  

Images are representative snapshots from the inactive and active WT trajectories.  
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Table 4.2. Hydrogen bond occupancies.  
Values represent % occupancy.  Values greater than 100% implies more than one hydrogen bond 

per residue pair.  Hydrogen bonding occupancies were calculated for all activation loop and αC- 

helix residues during the last 20ns of each trajectory using cutoffs of 3.2Å and 150˚. The column 

headers list the donor—acceptor pairs (using single-letter amino-acid code and residue number) 

and whether each occurs at a backbone (b) or sidechain (s).  For example, a hydrogen bond with 

a Tyr1283 sidechain donor and a  Gly1287 backbone acceptor would be listed as “sY1283, 

bG1287” in the column header.  Only hydrogen bonds for which |∆wt| > 40.0% are shown. 

 

4.2.3 Hydrophobic destabilization analysis 
A number of mutations were hydrophobic residues located in the ‘Phe-core’ area of the 

TKD (Figure 4.7).  Analyses were performed to determine whether mutations we 

disrupting this hydrophobic architecture.  Solvent accessible surface area (SASA) values 

(Connolly, 1983) were calculated in VMD using the measure SASA module, with a probe 

radius 1.4Å.  The SASA was calculated on a per-residue basis for the residues forming 

the hydrophobic core involving the activation loop, αC helix, and extended ‘Phe core’ 

(Y1096, F1098, I1170, I1171, F1174, I1179, Y1239, L1240, F1245, and F1271).  The 

SASA values (in units of Å2) were averaged over all steps of the MD trajectory, from 

which mean SASA values were computed for each relevant amino acid.  These SASA 

scores were summed and compared to the summed score for the wild-type protein. 
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Figure 4.7. Mutation site hydrophobicity.  

Residues that become mutated are shown in van-der Waals spheres.  Mostly hydrophobic 

sidechains are colored silver, while hydrophilic sidechains are colored blue. 
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	   Y1096	   F1098	   I1170	   I1171	   F1174	   I1179	   Y1239	   F1245	   F1271	  
t1151m	   3 59 0 11 2 2 68 11 10 
v1229m	   9 32 1 4 15 3 42 29 7 
y1278s	   21 33 2 3 8 2 37 22 10 
f1245v	   14 41 2 2 7 1 48 21 5 
newact	   21 37 3 3 7 5 74 21 2 
g1128a	   3 48 0 2 1 0 67 22 5 
f1174l	   10 33 2 6 1 2 50 19 8 
wt	   4 19 1 7 9 2 36 26 5 
a1200v	   9 26 2 3 15 1 77 17 5 
d1349h	   15 17 1 5 9 2 62 26 7 
i1170n	   13 13 5 8 8 3 42 22 7 
g1286r	   3 24 1 2 15 2 37 21 0 
i1170s	   6 15 5 9 1 2 51 23 8 
d1270g	   18 13 0 17 1 0 41 17 12 
m1166r	   18 19 0 7 6 1 56 20 6 
r1192p	   13 13 1 2 9 1 64 27 4 
i1171n	   2 7 0 8 11 3 35 20 5 
l1204f	   8 13 1 3 12 2 36 21 2 
f1245c	   6 12 2 8 5 0 37 22 4 
i1250t	   3 17 3 2 3 1 49 24 0 
r1231q	   11 9 3 8 5 0 40 17 5 
t1343i	   16 8 0 8 11 2 47 12 0 
l1196m	   2 7 0 2 11 1 43 20 1 
i1183t	   8 11 1 6 3 0 46 11 1 
r1275q	   4 13 0 1 11 1 45 8 0 

Table 4.3. SASA values.   
Average solvent accessible surface area values are for the sidechains of (mostly) hydrophobic 

residues listed in the column headers are given. Units are in Å2. 
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Additionally, free energy perturbation (FEP) simulations (Beveridge and DiCapua, 1989) 

were performed for each mutant on the inactive and active ALK TKD structures to 

determine computationally how each mutation affects the relative stability of the two TKD 

conformations.  We used the dual-topology approach of FEP as implemented in NAMD 

(Axelsen and Li, 1998; Gao et al., 1989; Phillips et al., 2005).  The potential energy 

function characteristic of the native residue is scaled into that representing the new 

residue over the course of an MD simulation.  As the old residue fades out and the new 

residue fades in, the old and new do not interact with each other.  Simulations were 

carried out in both the forward and reverse directions, with soft-core potentials employed 

to avoid “end-point catastrophes” (Beutler et al., 1994).  Forward direction ∆∆G are 

calculated using the following equation: ∆∆Gwt!mut = ∆Gactive
wt!mut – ∆Ginactive

wt!mut (Figure 

4.8).  Forward ∆∆G values are only considered significant if the ∆∆G value is greater 

than the standard deviation between the forward and reverse results (Table 4.4).  

Mutated systems were scored as activating in the SASA/FEP column of Table 4.6 if the 

following are true:  

1. The summed SASA values for the residues that contribute to the hydrophobic 

core mentioned above are at least 25Å2 greater for the mutant than for wild-

type ALK TKD. 

2. The FEP results yielded a statistically significant negative value for ∆∆G. 
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 dG(F_I) dG(F_A) ddG(F) dG(R_I) dG(R_A) ddG( R ) SD 

F1174L 6.2 3.7 -2.6 -2.0 -2.8 0.8 2.4 
F1245V 9.9 10.3 0.4 -9.2 -8.7 -0.5 0.6 
F1245C 2.8 2.7 -0.1 -2.5 -3.6 1.1 0.8 
I1170N -9.0 -12.1 -3.1 11.0 16.0 -4.9 1.3 
I1170S -2.3 -8.9 -6.5 6.0 9.6 -3.7 2.0 
I1171N -11.5 -11.8 -0.3 11.4 12.8 -1.4 0.8 

Y1278S 2.8 - - 5.3 - - - 
R1192P - - - - - - - 
M1166R -40.7 -36.9 3.8 44.4 42.1 2.2 1.1 
R1275Q 54.8 42.2 -12.6 -29.0 -39.6 10.6 16.4 
T1151M 2.2 1.2 -1.0 0.1 -1.0 1.2 1.6 
L1196M -4.5 -1.6 2.9 3.5 0.7 2.8 0.1 
G1128A 3.5 3.0 -0.5 -3.1 -1.7 -1.3 0.6 

I1183T -2.5 -3.9 -1.4 1.9 4.8 -2.9 1.1 
L1204F 4.6 6.7 2.1 -2.7 -1.9 -0.8 2.0 

G1286R -31.9 -29.8 2.1 33.2 33.7 -0.5 1.8 
A1200V 0.1 3.8 3.7 0.0 -3.5 3.5 0.2 
D1349H 80.1 81.1 1.0 -77.8 -79.7 1.9 0.7 

T1343I 8.3 7.9 -0.4 -7.9 -5.9 -2.0 1.1 
R1231Q 44.0 44.0 0.0 -42.4 -39.8 -2.6 1.8 

I1250T -2.9 -5.0 -2.0 5.5 7.7 -2.1 0.1 
 

Table 4.4. FEP results.   
∆G (dG) calculations were carried out in the forward (F) and reverse (R ) directions for perturbing 

an equilibrated inactive (I) or active (A) wildtype structure to a mutant.  ∆∆G were computed for 

both the forward and reverse simulations. Standard deviations between ∆∆G calculations were 

computed. 

 

 

 

 

 

 

 



101	  
	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Thermodynamic cycle.   

To determine if a mutation is better tolerated in the active or inactive conformation, one can 

compute ∆∆GI!A=(∆GWT
I!A)–(∆Gmut

I!A).  The above thermodynamic cycle depicts that that 

(∆GWT
I!A )-(∆Gmut

I!A)=(∆Gactive
wt!mut )-(∆Ginactive

wt!mut ).  Therefore, we can simply solve for 

∆∆Gwt!mut . 
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4.2.4 Principal component analysis (PCA) 
In order to capture mutations that might not fall into our “hydrophobic destabilization” or 

“hydrophilic destabilization” hypotheses categories, we examined correlated motions in 

the activation loop, P-loop, catalytic loop, and αC helix.  Principal Component Analysis 

(PCA) as implemented in Carma (Glykos, 2006) was performed on the full trajectories of 

each system.  Principal components were obtained by diagonalizing the covariance 

matrix of atomic fluctuations in Cartesian space to produce eigenvalues and 

eigenvectors (Figure 4.8).  Only α carbons of protein components were analyzed.  

Translations and rotations were removed by aligning all residues that were not in the 

activation loop, P-loop, catalytic loop, or αC helix.  Eigenvalues were summed for each 

system and ranged from 287 to 595Å2 (Table 4.5).  Every mutant with a top eigenvalue 

above 200Å2 was given an ‘activating’ score in Table 4.6. 

 

 

 

 

 

  

Figure 4.8. 1st Principal Component. 

Overlaid snapshots of the top mode of the 1st 

principal component in the F1174L trajectory.  

It exibits large correlated motions in the 

activation loop, P-loop, and αC helix. 
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MUT #1 top 50 
F1174L 246 594 
ActWT 211 580 
Y1278S 201 447 
R1192P 200 479 
L1204F 165 499 
T1343I 160 460 
L1196M 153 477 
T1151M 139 422 
I1170S 135 428 
R1231Q 131 443 
F1245C 124 411 
D1349H 118 434 
I1170N 118 425 
G1128A 116 379 
I1183T 113 449 
G1286R 103 401 
A1200V 99 360 
D1270G 94 438 
M1166R 79 363 
R1275Q 76 380 
I1250T 70 353 
I1171N 67 346 
F1245V 66 353 
InactWT 49 287 

Table 4.5. Eigenvalues.  
The value of the top principal component 

(#1) and the sum of the top 50 principal 

components in units of Å2.  
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4.3 Results 
The poor performance of existing informatics-based approaches in distinguishing 

between activating and non-activating amino acid substitutions prompted us to 

investigate structure-based computational methods for assessing novel ALK mutations.  

As described in Methods, we simulated molecular dynamics (MD) trajectories for the 

inactive conformation of all mutated ALK TKD variants and for wild-type ALK TKD in 

both active and inactive conformations.  We developed this protocol without knowledge 

of the activation state of any of the mutations examined, save F1174L and R1275Q.  The 

resulting MD trajectories were then analyzed for three key structural properties: 

 
i).  Hydrogen bonding network:  Distinct sets of key intramolecular hydrogen bonds 

characterize the active and inactive ALK TKD configurations.  Those that maintain the 

(autoinhibited) positions of the activation loop and αC helix in the inactive TKD (Figure 

4.6) are absent in the active structure.  A simple scoring function (see Methods) was 

used to determine whether each mutation promotes a more ‘active-like’ or ‘inactive-like’ 

hydrogen-bonding network (Table 4.2, Table 4.6). 

 
ii).  Hydrophobic interaction network:  As mentioned above, key autoinhibitory 

interactions are stabilized in the inactive conformation by residues with hydrophobic 

side-chains – notably those in the Phe-core and contacts between the αC-helix and 

short activation-loop helix. Disruption of these autoinhibitory hydrophobic interactions 

can be assessed readily by monitoring the solvent-accessible surface area (SASA) of 

relevant residues throughout the MD trajectories (Table 4.3).  If SASA increases as a 

result of a neuroblastoma mutation, that mutation is classed as ‘activating’.  To further 

determine whether observed changes in SASA favor the active state, free energy 
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perturbation (FEP) simulations were used to determine whether each mutation 

significantly destabilizes the inactive state relative to the active state (in which case it is 

classed as ‘activating’) (Table 4.4, Table 4.6). 

 
iii).  Principal component analysis (PCA):  PCA reveals correlated global motions across 

the MD trajectory.  The top 10 dominant modes are considerably different (greater) in the 

active conformation than in inactive ALK TKD (indicating greater motion), as seen for 

other kinases (Shih et al., 2011).  As outlined in Methods, each mutant with a top 

eigenvalue above 200Å2 is scored as activating (indicating destabilization of key 

autoinhibitory interactions) (Table 4.5, Table 4.6). 

 
 

A mutation is predicted to be ‘activating’ overall if it scores as such in one or more of the 

three criteria outlined above.  As shown in Table 4.6, the predictions for each mutated 

ALK TKD variant studied here agree quite well with our experimental studies.  Moreover, 

the computational analysis suggests a possible mechanism or mode of activation for 

each mutation, i.e., by perturbing hydrophilic interactions, hydrophobic interactions, or 

global conformation.  All of the mutations that elevate kcat of non-phosphorylated ALK 

TKD by more than 5-fold were predicted correctly except two (I1171N, and F1245C), as 

listed in Table 4.6.  Perhaps more importantly, our computational analysis correctly 

predicts the majority of mutations that are not activating – thus showing its potential 

value in distinguishing driver from passenger mutations and its potential utility for patient 

stratification.  There are a few exceptions, however.  The T1151M mutation was 

designated as being activating in our computational analysis, but was not transforming in 

NIH 3T3 focus formation assays (Table 4.6).  Although biochemical analysis did indicate 
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an elevated kcat for this variant, it has a reduced kcat/Km, peptide, apparently arising 

from an elevated Km, peptide that would not be captured computationally.  The I1250T 

and D1270G mutations – both also predicted to be activating using our computational 

approach – are special cases.  D1270 is the conserved DFG aspartate, and loss of its 

side-chain removes an essential (Mg2+-chelating) functional group and thus inactivates 

the kinase.  The I1250T mutation affects protein stability and/or folding (as assessed by 

its poor expression) – in a manner that the model cannot predict – causing this mutation 

to inactivate (rather than activate) the ALK TKD (Schönherr et al., 2011b).  In addition, 

the computational analysis failed to predict three transforming mutations (Table 4.6): 

F1245C, I1171N, and L1196M (the gatekeeper mutation).  Nonetheless, this 

computational approach predicts the effects of mutations much more faithfully than 

PolyPhen-2 (Table 4.6, right-most column) or SIFT, and further training with additional 

mutational data should improve its precision.  It is important to note that all of these 

computational studies were undertaken with no prior knowledge of the results of the 

biochemical and cellular assays (with the exception of previously published results). 
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Table 4.6. Computational prediction of effects of ALK TKD mutations.  
Variant  

kcat  

(min-1)a 

 

 

Activated
in vitro?b 

Changes indicative of kinase 
activation in MD simulations of:  

Overall 
prediction 

of 
activation 
in silico? 

Transform 
NIH 3T3?c 

PolyPhen-2 
Prediction 
(probability)d 

H-bonds SASA/ 
FEP 

PCA 

F1174L 365 ! ! - ! ! ! ! (0.70) 

F1245V 341 ! ! - - ! ! ! (1.00) 

F1245C 329 ! - - - - ! ! (1.00) 

I1170N 200 ! ! ! - ! ! ! (1.00) 

I1170S 200 ! - ! - ! ! ! (1.00) 

I1171N 188 ! - - - - ! ! (1.00) 

Y1278S 172 ! - - ! ! ! ! (0.99) 

R1192P 139 ! ! - ! ! ! ! (0.99) 

M1166
R 

127 ! ! - - ! ! ! (0.99) 

R1275
Q 

119 ! ! - - ! ! ! (1.00) 

T1151
M 

53 ! ! - - ! - ! (0.98) 

L1196M 45 ! - - - - ! ! (1.00) 

G1128
A 

43 ! ! - - ! ! ! (1.00) 

I1183T 32 - - - - - - ! (0.96) 

L1204F 28 - - - - - - ! (0.99) 

G1286
R 

16 - - - - - - ! (0.98) 

A1200V 11 - - - - - - ! (0.67) 

D1349
H 

11 - - - - - - ! (0.94) 

Wild-
type 

9 - NA NA NA NA - NA 

T1343I 9 - - - - - - ! (0.84) 

R1231
Q 

5 - - - - - -  -  (0.01) 

I1250Te 3 - - ! - !
e - !

e(1.00) 

D1270
Ge 

1 - ! - - !
e - !

e(1.00)  
akcat for non-phosphorylated TKD is listed – from Table S3. 
bA variant is considered ‘activated’ in vitro if kcat for non-phosphorylated TKD 

exceeds 4.6 times that of wild-type (see text). 
cGrey circles represent weak transformation. 
dBlack circles in PolyPhen-2 column indicate that this algorithm predicts that the 

mutation is damaging.  Probabilities in parentheses taken from PolyPhen-2 
batch run at http://genetics.bwh.harvard.edu/pph2/ (Adzhubei et al., 2010). 

eD1270G and I1250T mutations are known to be inactivating (this work and 
(Schönherr et al., 2011b) ).  D1270G disrupts the DFG motif,  I1250T 
expresses poorly, suggesting compromised folding. 
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4.4 Discussion 
The discovery of activating mutations in the intact ALK gene as the major cause of 

hereditary neuroblastoma (Mossé et al., 2008) provided the first example of a pediatric 

cancer caused by germline mutations in an oncogene.  The additional occurrence of 

somatically acquired ALK-activating mutations (Chen et al., 2008; George et al., 2008; 

Janoueix-Lerosey et al., 2008; Mossé et al., 2008; Palmer et al., 2009) has provided 

additional and compelling rationale for targeting this oncogenic RTK therapeutically.  Our 

collaborators have characterized the spectrum and frequency of germline and somatic 

alterations in ALK across all neuroblastoma disease subsets in 1596 patients.  To our 

knowledge, this dataset is the only one powered to identify ALK mutations in 

neuroblastoma that, while rare, are still clinically relevant, and to have sufficient power to 

determine the prognostic capability of ALK alterations within each neuroblastoma risk 

group (high, intermediate, and low).  In addition, cataloguing ALK mutations in these 

patients allows us to correlate sequence variations with oncogenic potency, revealing 

that some of the mutations observed are unlikely to be oncogenic, and also that the 

activated variants differ in their sensitivity to crizotinib – with important therapeutic 

implications.  In multivariable models of the overall cohort, and within each risk group, 

both the presence of an ALK mutation (except within the low-risk group) and the 

presence of any type of ALK aberration were shown to be independently statistically 

predictive of worse EFS.  These findings illustrate the value of determining ALK status 

for prognostic patient stratification, and also support the potential importance of ALK as 

a therapeutic target. 
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ALK mutations were observed in 8% of neuroblastoma patients, consistent with previous 

data (Chen et al., 2008; De Brouwer et al., 2010; George et al., 2008; Mossé et al., 

2008; Schulte et al., 2011).  Of those with available constitutional DNA, 8% (7/88) also 

had the mutation in the germline, consistent with expectations for familial ALK-driven 

neuroblastoma (Friedman et al., 2005).  Mutations span the entire spectrum of disease, 

including INSS Stage 4 disease, congenital cases, and adolescents/young adults.  The 

fact that ALK mutations occur at the highest frequency (17%) in patients older than 10 

suggests differences in the occurrence of genetic mutations based on age, reminiscent 

of the recently reported age distribution of ATRX mutations in neuroblastoma (Cheung et 

al., 2012).  Within the high-risk subset of neuroblastoma patients the overall frequency of 

ALK aberration is 14% (10% mutation, 4% amplification).  High-risk patients have the 

poorest outcomes, with approximately 50% overall survival despite intensive multi-modal 

therapy including chemotherapy, surgery, myeloablative conditioning with bone marrow 

transplant, radiation therapy and immunotherapy plus retinoic acid (Maris, 2010) – 

making these patients excellent candidates for ALK-targeted therapy.  Within the low- 

and intermediate-risk groups, the frequency of ALK aberration is 6% and 8% 

respectively.  In low-risk cases, therapy usually involves observation, with or without 

surgical intervention, whereas patients with intermediate-risk disease are treated with 

conventional cytotoxic chemotherapy and are at risk for the associated late effects.  Our 

results suggest an opportunity within the intermediate-risk group to identify those with an 

ALK mutation for treatment with an ALK inhibitor and de-escalation of traditional 

cytotoxic therapy.  In order to prescribe ALK-targeted therapy, however, it is important to 

determine if a particular mutation in ALK is, indeed, driving the disease. 
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Of the 24 different patient-derived ALK mutations assessed, only 13 were found to be 

transforming in NIH 3T3 cells.  Where these studies overlap with previous analyses of 

transformation by ALK variants found in neuroblastoma, they are in complete agreement 

(Chand et al., 2013; George et al., 2008; Schönherr et al., 2011a; Schönherr et al., 

2011b).  Importantly, all of the mutations that promoted ALK’s transforming ability also 

caused constitutive activation of its TKD, as assessed by a significantly increased kcat for 

the non-phosphorylated TKD in vitro.  The remaining 11 mutations (corresponding to 9% 

of ALK-mutated cases in this study) appeared silent or even inactivating.  Of the 

activating mutations, in vitro biochemical analysis suggests that only 6 or 7 – including 

R1275Q – will be sensitive to inhibition by crizotinib in vivo, whereas the remaining 5 or 6 

will share the primary resistance characteristic previously reported for F1174L-mutated 

ALK (Bresler et al., 2011).  Within the patient cohort studied here, our data suggest that 

57% of ALK-mutated patients may respond to ALK inhibitors, and the remaining 43% 

either have inhibitor-resistant (34%) or silent (9%) mutations.  An important challenge is 

to distinguish between these classes of ALK mutation, so that therapy can be directed 

accordingly.  Given the strong correlation between significantly increased kcat for the non-

phosphorylated TKD and transforming ability, we propose that a computational protocol 

designed to assess mutations for ability to constitutively activate the ALK TKD could be 

a fast and cost effective method for discriminating ALK driver mutations from passenger 

mutations. 

 

Using a molecular dynamics (MD)-based computational approach, we have shown that 

we can predict with reasonable accuracy which mutations are activating (Table 4.6), with 

a success rate that greatly exceeds methods such as SIFT, PolyPhen-2, PredictSNP, 
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and others.  Our method is based on hypotheses that mutations may constitutively 

activate the tyrosine kinase domain by disrupting hydrophobic or hydrophilic 

autoinhibitory interactions or inducing global destabilization.  We designed classifiers 

and cutoff criteria based on the knowledge that the F1174L and R1275Q mutations were 

activating and the assumption that some of the test set were activating while others were 

not.  Notably, we were blinded to the results from the biochemical and cellular assays for 

all mutants (save F1174L and R1275Q). Nonetheless, our method predicted method 

predicted activation with 77% accuracy, while PolyPhen-2 predicted with 59% accuracy.  

It is reasonable to assume that the accuracy of our protocol with increase significantly 

with training on a larger set of mutations.  As such, current efforts are underway to 

retrain our existing classifiers on the full set of mutation data described here.  

Additionally, new classifiers which are not hypothesis-driven are being introduced to the 

protocol.  This modified protocol will be tested on an additional set of novel mutations.  

Additional testing must be performed to identify the minimum length that simulations 

should be run to render robust, accurate activation predictions.  Additionally, methods 

which are computationally cheaper, such as implicit solvation simulations or advanced 

sampling methods, should be evaluated in the future. 

 

It is important to note that our computational analysis was designed to assess kinase 

activation, and not transformation per se – but our biochemical data indicate that an 

elevation of the kcat of non-phosphorylated ALK TKD by 4.6-fold or more causes the 

receptor to be transforming.  Conversely, most phenotype prediction algorithms (e.g. 

SIFT) are designed to identify deleterious mutations, and are not trained to identify 

hyperactivating mutants.  Based on our modeling efforts, most activating mutations 
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studied disrupt autoinhibitory interactions involving residues in (or close to) the activation 

loop or αC helix of the ALK TKD.  We developed a set of criteria that can reasonably 

predict the effects of mutations on these autoinhibitory interactions, yielding an protocol 

that succeeds in identifying nearly all of the activating mutations – and (importantly) 

distinguishes them from mutations that are not activating.  This computational analysis of 

ALK mutations has significant promise as a clinical tool, although further training and 

testing with additional clinically-observed (and experimental) mutations is required, and 

is ongoing.  It will also be important to apply computational approaches similar to those 

that our laboratory has previously employed for EGFR (Park et al., 2012) in efforts to 

predict inhibitor sensitivity. 

 

The findings described here allow us to formulate molecular diagnostic screening 

recommendations for newly diagnosed neuroblastoma patients, which will be important 

as ALK inhibitors for childhood cancer are evaluated in clinical trials.  Our data 

demonstrate that ALK is a predictive therapeutic biomarker of disease status, and also 

provides a therapeutic target in a select group of patients.  With new molecularly 

targeted therapeutics and computational models that leverage biochemical 

understanding to predict the effect of novel ALK mutations, we should now be able to 

make upfront predictions about which patients are good candidates for ALK inhibitor 

therapy.  RTK-inhibotor treatments have shown past success with imatinib in chronic 

myeloid leukemia, gefitinib in NSCLC, and most recently crizotinib in ALK-translocated 

NSCLC – although functional stratification of individual mutations along the lines 

described here has not yet been achieved.  We are now poised to add to our protocol a 
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best-inhibitor predictor, which predicts which ALK inhibitor (FDA-approved or in clinical 

trials) is likely most effective for a given mutation. 

 

These findings will hold promise for advancing the management of individuals with 

neuroblastoma predisposition.  Individuals with a germline ALK variation of unknown 

significance may have siblings who also harbor these variants, emphasizing the 

importance of understanding which alleles are indeed risk-alleles so as to determine 

their risk of developing neuroblastoma, and to offer appropriate clinical screening.  No 

models have yet been established for effective early detection strategies or improving 

clinical outcomes when germline ALK variations are detected.  Implementing clinical 

surveillance strategies for unaffected children (possibly even adults) carrying a germline 

ALK variant can be guided by data such as those presented here, recognizing the 

implications of the use of predictive genetic screening and surveillance practices and the 

absence of evidence of benefit from early detection in these individuals. 
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Chapter 5: Perspectives  
Next-Generation DNA Sequencing has revolutionized the study of genomics and 

biomedical sciences as a whole.  These methods, which are much quicker and more 

cost effective than the previous Sanger method, have enabled clinicians and scientist to 

rapidly identify mutations in diseased patients.  However, the majority of mutations 

identified in any one person are likely to be neutral, or non-disease causing, mutations.   

Thus, it is important to discriminate among mutations and identify their molecular 

ramifications. To this end, we have employed molecular simulations and partnered with 

wet lab experimentalists to identify the functional effects of mutations on three disease-

associated protein systems, namely activation-induced cytidine deaminase (AID), 

mitochondrial transcription factor A (TFAM), and anaplastic lymphoma kinase (ALK). 

 

In our AID project (Chapter 2), we focused our studies on the hotspot recognition loop, 

and our selection of mutations was guided by the novel Sat-Sel-Seq method.  We 

examined the nature of substrate preference by comparing interactions of WT-AID to 

preferred (hotspot) and disfavored (coldspot) substrates.  In our simulations, residue 

R119 demonstrated the greatest discrimination between hotspot and coldspot binding.  

Interestingly, when this residue is mutated to glycine (R119G) in vivo, AID activity with 

both hotspot and coldspot substrates is increased, however the preference ratio between 

them is only slightly altered. This implies that unlike some other APOBEC-type proteins, 

multiple AID hotspot residues play a role in substrate specificity.  To examine the nature 

of hyperactivity in AID mutants, we simulated the R119G and cvBEST mutants, both of 
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which were selected for by the Sat-Sel-Seq method and displayed heightened activity in 

vivo compared to WT-AID.  Both of these mutants displayed increased ssDNA substrate 

binding to Leu113 backbone carbonyl oxygen.  This is attributed to increased flexibility of 

the hotspot recognition loop.  This binding site also provided an additional mechanism of 

substrate specificity, as this site is more accessible to purines than pyrimidines.  In a 

separate simulation, we investigated why Sat-Sel-Seq results on the AID system 

displayed marked preference of wild-type tyrosine over phenylalanine at position 114. 

Our simulations suggest that Tyr114 stacks with the -1 residue of the target sequence 

and that the preference for Tyr over Phe results from solvent interactions that prevent 

the side chain’s burial rather than hydroxyl hydrogen bonding interactions with DNA.  

Our conclusions could be bolstered by crystal structures of AID bound to substrate or by 

additional simulations of hyperactive mutants bound to non-preferred substrate.  

Collectively, our results provided a residue-specific mechanistic understanding of 

substrate specificity and activity-regulation in the AID system and helped validate the 

novel Sat-Sel-Seq method.  Our results provide powerful insights into mechanisms by 

which AID can become disregulated, ultimately leading to off-target mutations and 

tumorigenesis. 

 

Our TFAM studies (Chapter 3) focused on seven TFAM polymorphisms identified in the 

SNP database. We performed simulations and made predictions of the functional effects 

of the mutations blinded to all wet lab experiment results.  Our simulations revealed that 

the T144K and V109G mutations are likely to compromise TFAM secondary structure, 

and the E219K mutation compromises TFAM tertiary structure.  These findings are in 
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line with in vitro results suggesting that the T114K, V109G, and E219K mutants are 

unstable.  Additionally, our modeling and simulations revealed the two mutations—

Q100E and R233C—directly effect protein-mtDNA interactions.  The Q100E mutation 

introduces a negative charge at the protein-mtDNA interfact and is repelled away from 

the negatively-charged mtDNA phosphate backbone.  The R233C mutation abolishes a 

salt-bridge between Arg233 sidechain and the mtDNA phosphate backbone.  This 

effectis somewhat mitigated, however, by the R233C mutant’s ability to maintain a 

backbone amino-hydrogen bond to the mtDNA.  Two other mutations—Q108E and 

A105T—displayed do direct local effects on mtDNA binding or protein stability.  These 

findings are in line with in vitro data showing that the Q108E mutant has diminished 

mtDNA copy number control, the R233C mutant has slightly diminished mtDNA copy 

number control, and the Q108E and A105T mutants have wild-type-like mtDNA copy 

number control.  These findings underscore the importance of characterizing TFAM 

abberations for their potential effects in the context of mitochondria-related human 

diseases. 

 

Finally, in our ALK work (Chapter 5), we developed a novel hypothesis-driven protocol 

for predicting whether or not novel mutations identified in neuroblastoma patients would 

induce constitutive activation of the kinase.  We analyzed MD trajectories of all mutations 

and developed three classifiers for activation: by perturbing hydrophilic interactions, 

perturbing hydrophobic interactions, or perturbing the global conformation.  Our protocol 

far outperformed existing methods, such as PolyPhen-2 (our method predicted with 77% 

accuracy; while PolyPhen-2 predicted with 59% accuracy).  We developed our criteria 
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based on three simple hypotheses: (1) The F1174L mutation likely activates by 

perturbing hydrophobic interactions that stabilize the autoinhibited conformation. (2) The 

R1275Q mutation likely activates by disrupting hydrophilic interactions that stabilize the 

autoinhibited conformation. (3) Other mutations may activate in a similar manner or by 

perturbing other global stabilizing factors.  We were blinded to all experimental results 

except for R1275Q and F1174L, and thus the training set for our criteria was limited to a 

mere two mutants.  As such, our classifiers performed remarkably well.  Current efforts 

are underway to retrain our existing classifiers and incorporate new classifiers based on 

the full panel of ALK mutations studied here and to incorporate loss of function criteria 

(e.g. if a mutation compromises a vital catalytic site residue).  Our retrained classifiers 

will then be applied to new testing sets of ALK mutations, in hopes of improving 

accuracy to a clinically suitable level.  Second generation implementations of this 

protocol are also being ported over to other oncogenic RTKs, such as EGFR.  Our 

results demonstrate the potential of tailoring phenotype prediction algorithms to specific 

enzymes for increased accuracy and hold great promise for future implementation in 

clinical diagnostics. 

 

Collectively, the results described in this thesis demonstrate the power of molecular 

simulations, often in combination with in vitro experiments, to uncover the functional 

effects of biomolecular mutations.  
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