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ABSTRACT

A SYSTEMS APPROACH TO CELLULAR SIGNAL TRANSDUCTION

Jeremy E. Purvis

Scott Diamond

Ravi Radhakrishnan

Vital cellular processes such as growth, gene expression, and homeostasis depend on the correct

transmission of molecular signals within and between cells. The vast complexity of these molecular

signaling networks has necessitated the use of mathematical methods to model, characterize, and

predict cellular responses. The work presented in this dissertation shows how computational meth-

ods were used to elucidate two clinically-relevant cellular signaling responses: (i) phosphotyrosine

signaling through the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase that is

commonly overexpressed or structurally altered in human cancers; and (ii) phosphoinositide and

calcium signaling in human platelets—the key cellular mediators of hemostasis and pathological

thrombus formation. The kinetic model of EGFR-mediated signaling in wild-type and mutant cells

showed how mutant forms of the receptor use an irregular pattern of tyrosine phosphorylation that

preferentially activates the survival oncoprotein, Akt. By quantifying the amount of signal flow

through diverging pathways downstream of the receptor, our calculations provided a mechanistic

explanation for the clinical observation that therapeutic tyrosine kinase inhibitors can control tu-

mor growth in cells bearing certain EGFR mutations. In the second major study, a kinetic model of

ADP-stimulated calcium release in human platelets was used to make precise, quantitative predic-

tions about the molecular makeup and structural properties of the platelet. Specifically, we found

that the resting structure of platelets places strong restrictions on several biophysical quantities,

such as the resting concentration of free inositol 1,4,5-trisphosphate, the ratio of calcium ATPase

pumps to release channels, and the size of the calcium storage compartment. Notably, the model

also demonstrated that the irregular calcium spiking behavior observed in single ADP-stimulated

platelets is due to the extremely small cellular volume. A novel method for constructing kinetic

signaling networks, based on restricting the steady-state properties of the model, is also presented.

Future applications and extensions of the systems approach to signal transduction modeling are

discussed in the final chapter.
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Chapter 1

Introduction

The concept of signal transduction is inherently difficult because it comprises the interaction among

a group of objects and not the objects themselves. One cannot simply point to a single member

of this interacting group and say: there is the signal. Rather, the signal must be understood as

a higher-level phenomenon that emerges from the coordinated interactions among the group—a

phenomenon that is more easily observed from a distance than by close examination. Under this

pretext, then, the most concrete discussion we may have about a signal pertains to its medium:

those physical entities that are coordinated in space and time to propogate the signal. For an

ocean wave, this medium is water. For cells, the signaling medium comprises a vast assortment of

biomolecules that range from relatively simple species such as water, ions, small organic molecules,

lipids, proteins, and sugars—to large macromolecular assemblies of proteins, polysaccharides, lipids,

and nucleic acids. Individually, these molecules display a wide range of physical and chemical

properties that have been fairly well documented. When organized as cellular signaling systems,

however, they form a staggering array of temporal and spatial configurations with holistic properties

that are profoundly and qualitatively different than their molecular components. It is through these

networks of molecular interactions that cells are able to send and receive information within their

environment.

1.1 Cellular Signals

Cellular signals can be transmitted in a variety of ways. For example, the release of calcium

from intracellular stores involves the transport of calcium ions from one compartment of a cell

into another (e.g., from the endoplasmic reticulum to the cytoplasm). Once arriving in the new

compartment, the calcium ions can physically interact with a new set of biomolecules [130] and
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alter their functional properties. In this example, the signal is carried by calcium ions through the

intracellular space and depends on biochemical interactions between enzyme and ion. By contrast,

the activation of guanine nucleotide-binding proteins (G proteins) by an extracellular hormone is

signaled through a successive relay of physical interactions proceeding from the extracellular space,

across the plasma membrane, and into the cell’s interior. Each of these interactions involves subtle

conformational changes within the extracellular ligand, the G protein-coupled receptor, neighboring

lipids within the surrounding membrane, and a host of intracellular proteins and nucleotides [101].

Unlike the release of calcium ions, this relay of events occurs without any bulk transport of the

molecules involved—a type of signaling that more closely resembles what information theorist John

Pierce describes as a “discernible indication of what is not itself directly perceptible” [125]. Whether

signals are transmited directly or indirectly, cellular signal transduction is driven by a sequence of

precisely coordinated kinetic and biophysical interactions. Studying the nature of these interactions,

on a component-by-component basis, has formed the basis of cellular signal transduction research

for the past 30 years.

Because so many vital cellular processes depend on the correct transmission of molecular signals, it

is perhaps not surprising that errors in signaling can have devastating pathalogical consequences.

In some cases, dysregulated signals are caused by a single molecular defect. As we shall see in

Chapters 2 and 3, one amino acid change in the epidermal growth factor receptor can destabilize

the receptor’s native conformation and cause changes in its pattern of autophosphorylation. These

small perturbations at the receptor level can alter the concentrations of key downstream proteins,

thwarting the cell’s normal proliferatory and survival responses. In other cases, disease phenotypes

arise from the combined effect of multiple molecular alterations. For example, it is well established

that disruption of signaling pathways involved in DNA repair and DNA damage checkpoints can

lead to an increased mutational load on the cell and the accumulation of additional mutations that

cause cancer [100]. Consider the two oncogenes, c-myc and rasD. A mutation in either gene alone

does not pose an observable threat to mammalian cells; when these mutations are encountered

together, however, they can rapidly transform the cell into a malignant state [151]. Signaling

defects affecting a wide range of cellular processes that lead to disease have been reported [90],

from which two fundamental observations have become universally appreciated: first, that signaling

behaviors are driven by molecular events—which are themselves governed by the physico-chemical

properties of the molecules involved—and that alterations in the physico-chemical properties of

participating molecules can affect the signaling phenotype; second, that disease phenotypes often

arise from the distortion—rather than the complete abolition—of “normal” signal transduction.

Clearly, understanding the molecular mechanisms that underly signaling behaviors is of paramount
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importance if we are to direct signal transduction research toward the treatment and prevention

of disease. But, as we shall see, even a complete knowledge of these molecular properties is not

sufficient to obtain a full understanding the complexities of cellular signaling.

1.2 Emergent Properties with Molecular Causes

Thus far, we have reasoned that the logical starting point for understanding cellular signal trans-

duction is a mechanistic description of the individual molecular events that produce an observable

signaling phenotype1. Unfortunately, the relationship between individual molecular components

and the observable signaling phenotype they comprise is rarely straighforward. Part of this dif-

ficulty can be attributed to the sheer complexity of such large networks; they contain so many

“moving parts” that their behaviors cannot be predicted by intuition alone. The other difficulty,

which is much more subtle, is that the observable signaling behavior is often described, measured,

or conceptualized at a different time or length scale than the molecular events that drive it. The

term emergent properties has been used to refer to such high-level patterns that arise out of the

interactions among a set of basic elements2. In a seminal paper appearing in Science in 1999 [13],

Bhalla and Iyengar examined a variety of well-known signaling pathways to demonstrate that in-

teracting pathways have complex and nonintuitive emergent properties. Strikingly, their analysis

showed that—even with complete knowledge of the kinetic properties of each component in the

system—the emergent signaling behaviors were qualitatively unique and unpredictable. To help so-

lidify the concept of emergent properties, let us now consider three examples of emergent behavior

from cellular biology:

1. Lipid vesicle. Phospholipids, such as those that comprise cellular membranes, will naturally

form spherical vesicles because of the properties of lipid membranes. The physical interactions

between neighboring lipids in the micelle can alter the fluidity, spacing, and permeability of

the membrane. Thus, macroscopic properties such as the diameter of a vesicle—which may

be measured in, say, nanometers—are dependent on the chemical properties of its surfactant

molecules such as hydrophobicity, degree of saturation, and charge.

1As an alternative strategy, many studies seek to draw statistical associations between molecular properties and
phenotypic outcomes. For example, genome wide association studies relate the occurance of a particular polymor-
phism to the risk for disease. While these types of correlations are useful for prediction or prognosis of disease
outcomes, they do not explain the molecular basis for the observed outcome thus cannot offer any straightforward
opportunities to rationally intervene in patholical scenarios.

2The concept of emergence is quite old and predates its application to cellular biology by over a thousand years.
See [39] for an historical overview of emergence.
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2. Molecular oscillation. In systems of interacting proteins, oscillatory behavior can result

from a negative feedback loop between two proteins. A classic example of oscillation oc-

curs when the tumor suppressor protein p53 activates transcription of its negative regulator,

Mdm2. Mdm2, in turn, promotes degradation of p53 through ubiquitination [94]. Emer-

gent properties of the system, such as the period of oscillation of activated p53 (measured in

hours), are depedent on the various kinetic characteristics of the system such as the rate of

protein degradation or the affinity of p53 for the promoter region of Mdm2.

3. Clotting blood. The formation of a blood clot in reponse to endothelial injury is coordinated

by clotting factors in flowing blood, procoagulant proteins released from the subendothelium,

and platelets. In healthy individuals, a clot must grow large enough to stop bleeding but not so

large as to occlude the vessel and obstruct flowing blood. Slight alterations or defficiencies in

just one of these coagulation factors, such as the integrin αIIbβ3 on the surface of platelets,

can prevent normal bridging between platelets and retard formation of a stable clot [118].

Thus, macroscopic properties such as the diameter or density of a blood clot are indirectly

but intimately related to the dynamic contributions of thousands of kinetic interactions among

participating molecules.

In many cases, the emergent behavior of a system can be easily measured (e.g., the time between

p53 peak levels) whereas detailed knowledge about the basic elements in the system (kinetic rate

constants and cellular concentrations) is limited or unknown. Inferring these properties is highly

desirable but can be extremely difficult. Even if one is able to reproduce, or simulate, the behavior

of the system using some nominal set of basic elements, there are usually multiple sets of nominal

elements that fulfill this requirement. In mathematical terms, this is known as an inverse problem

because it seeks to find the unknown cause that produces a known consequence. In general, inverse

problems are difficult to solve because they involve several (often, infinite) alternative possibilities

that can each generate the same observed behavior. The standard method of solving inverse prob-

lems is quite dull: one must “try out” many different possibilities of basic elements, simulate their

interactions, and determine which set of elements best explains the emergent behavior. Obviously,

this step is greatly aided by computer simulations, which can rapidly alter and test potential so-

lutions. Even for relatively simple signaling networks, however, the number of possible molecular

configurations quickly becomes very large and is usually impossible to exhaustively analyze even

for the fastest computers.
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1.3 The “Systems Approach” to Cellular Signaling

Motivated by the increasing computational power available to end users and the growing wealth of

biochemical and genetic data, various computational strategies have been employed to understand

and predict the behavior of biological signaling systems. In general, these methods fall into one of

two categories based on the intended outcome of the analysis. The first type of analysis is intended

to make accurate predictions of a system’s behavior based on some set of initial conditions and

quantitative knowledge about the system. These type of studies are often content to establish

correlations between, say, a certain genetic mutation and an observable phenotype, or to define

disease risks associated with a given phenotype. The second type of systems approach aims to find

a mechanistic explanation for the observed behavior of a system. Here, the ability of a model to

make accurate predictions is used to retroactively to examine the unique features of that model

that are conferring the predictive power.

One very popular method for analyzing signaling networks is ordinary differential equation (ODE)

models, [38] which provide excellent mechanistic detail for modeling time-dependent behaviors and

are particularly well-suited for kinetic systems. ODEs have been used extensively to model GPCR

dynamics [101], the ErbB family of signaling networks [86,128], cell cycle regulation [38], and vari-

ous other cellular signaling systems. ODE modeling is used extensively in this work to model signal

transduction through the epidermal growth factor receptor (Chapters 2 and 3) as well as phospho-

inositide and calcium signaling in human platelets (Chapter 4). If mechanistic detail of a system

is lacking, purely “data-driven” approaches such as clustering, principal component analysis, and

partial least squares regression have been succesfully used to derive meaningful biological insights

from large data sets [73]. These methods utilize correlations between measurements within large

data sets to extract high-level processes that govern the behavior of the system. These approaches

have been used to identify groups of molecules that influence cell decisions, such as whether or

not to enter apoptosis [71]. Other statistical approaches to modeling signal transduction, such

as Bayesian network analysis [122], have been cleverly employed to discover previously unknown

interactions between signaling molecules. These methods work by methodically perturbing signals

in individual cells and looking for changes in the dependence between pairs of molecules. Finally,

graph theory and transcription factor activation assays have been combined to establish molecu-

lar regulators that connect transmembrane signaling and gene regulation [20]. In Chapter 6, we

show how artificial neural networks can be used to model cellular signal networks and contain both

topological and time-dependent features.
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1.4 Application of the Systems Approach

In the chapters that follow, we apply a computational systems approach to study two clinically-

relevant mammalian signal transduction systems: signaling through the epidermal growth factor

receptor (EGFR), a receptor tyrosine kinase that is commonly overexpressed or structurally altered

in human cancers; and phosphoinositide and calcium signaling in human platelets—small, anucleate

cells that undergo dramatic signaling in response to vascular injury in order to stop bleeding.

1.4.1 Signaling through the Epidermal Growth Factor Receptor

The first analysis presented in this dissertation is focused on signaling through the epidermal growth

factor receptor (EGFR/ErbB1/HER1), a receptor tyrosine kinase that activates a multilayered

signaling network mediating crucial pathways leading to cell survival, proliferation, differentiation,

and motility [180]. The ErbB signaling network is commonly dysregulated in a large fraction of

human cancers. Specifically, ErbB overexpression and/or mutation occurs in amost half of non

small-cell lung cancers (NSCLCs), which comprise the largest portion of cancer-related deaths and

will kill about a quarter of a million people in the United States this year [78]. On a molecular

level, amplification of EGFR can lead to delayed and prolonged receptor tyrosine phosphorylation,

constitutive Akt activation [3], and resistance to anti-tumor drugs [180]. The ErbB signaling

network is arguably the most well studied signaling system from a computational systems-biological

perspective3 and has spurred a great deal of computational and conceptual advances in the field

of systems biology that extend beyond it the scope of just the ErbB family of receptors [95]. An

enormous body of literature surrounds this receptor, its signaling, and its relationship to cancer

(reviewed by Citri and Yarden [33]).

Our effort to model EGFR signaling was motivated by recent clinical evidence showing that cancer

patients who harbor certain mutations in the EGFR kinase domain have a rapid and dramatic

response to anti-tumor therapy [106, 120]. Seeking a molecular explanation for this phenomenon,

we studied the effects of mutations in the EGFR tyrosine kinase domain on the receptors kinetic

behavior and downstream signaling responses [128]. Specifically, we monitored the activation of

downstream proteins Akt and ERK as indicators of preferential signaling through two phosphoty-

rosine residues on the EGFR C-terminal tail. By modeling signal flows through these branching

pathways, we showed that the EGFR mutants had increased binding to tyrosine kinase inhibitors

(TKIs), enhanced phosphorylation of substrate tyrosine residues, and preferential activation of the

Akt signaling pathway, a critical pathway for cell growth, survival, and motility. These findings are

3See the “exhaustive” EGFR model constructed by Oda et al. [119]
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dicussed in detail in two subsequent chapters focusing on the multiscale aspects of the modeling

approach (Chapter 2) and the implications of preferential Akt activation on cell survival (Chap-

ter 3). Recent thinking has likened the ErbB signaling network to a bow-tie-configured network of

dynamic interactions that display modularity, redundancy, and control circuitry [33]. Under this

framework, identifying the role and significance of drug sensitizing mutations of ErbB receptors

would require a systems-level understanding of the signaling network [71–73] This would prove to

be of enormous value in effectively designing multikinase inhibitors for the development of cancer

therapies that target several points along the signaling pathway simultaneously [48, 77].

1.4.2 Intracellular Signaling in Human Platelets

The second signaling system examined in this dissertation is the ADP-induced calcium response of

human platelets. Platelets are small, disc-shaped cell fragments that circulate innocuously in the

blood until encountering exposed endothelial tissue or activating agonists. When soluble agonists in

the blood bind to their cognate receptors on the platelet surface, this engages a host of intracellular

signaling events, including receptor activation, G protein signaling, second messenger generation,

calcium release, granule secretion, and cytoskeletal rearrangement [17]. Platelet activation plays

a centrol role in cardiovascular diesease, which is the leading cause of mortality worldwide and

accounts for 1.74 million heart attacks and strokes, 1.115 million angiograms, and 0.652 million

stent placements in the United States each year [103].

Like the epidermal growth factor receptor signaling network, platelets are also prone to aberrant

signaling. Defects in platelet signaling can lead to hemophilia or pathological thrombus formation

[57]. Pathologies of platelet receptors can impair the platelet response to a single agonist [117,118,

131]. Defects in G-protein activation result in mild bleeding disorders, abnormal aggregation and

secretion responses to a number of agonists, or diminished GTPase activity on activation. Impaired

calcium signaling has been observed in several patients with impaired aggregation and secretion,

and has been correlated with thrombus formation [18], diabetes [166] and hypertension [47].

In Chapter 4, we address the platelet signaling response to ADP, an important agonist that triggers

platelet shape change and aggregation. Through our analysis, we quantify how various molecular

mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to ADP. This

work presents the first earnest attempt to model intracellular signaling in the platelet featured the

ADP receptor, PI metabolism, calcium release, and PKC activity. Existing kinetic information

for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemi-

cal calculations, measurements of platelet ultrastructure, novel experimental results, and published

7



single-cell data. The model accurately predicted (i) steady-state resting concentrations for intracel-

lular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol,

phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate, (ii) transient increases

in intracellular calcium, inositol 1,4,5-trisphosphate, and GqGTP in response to ADP, and (iii) the

volume of the platelet dense tubular system. A more stringent test of the model involved stochas-

tic simulation of individual platelets, which display an asynchronous calcium spiking behavior in

response to ADP. Simulations accurately reproduced the broad frequency distribution of measured

spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluc-

tuations due to the small volume of the platelet. The model also provided insights into possible

mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell

variation across platelet populations.

1.4.3 Novel Methods for Construction and Analysis of Signal Transduc-

tion Models

The formidable size and complexity of these two kinetic models prompted us to devise a new strat-

egy for constructing large-scale kinetic networks. This method, described in Chapter 5, involves

building the model in stepwise fashion, beginning with small “resting” subnetworks that are com-

bined to form larger networks with complex time-dependent behaviors. A key step in the method

is the enforcement of a “homeostasis requirement” on all subnetworks, which ensures that the con-

centration for each species does not change with time even though species may undergo a gradual

turnover through coupled reactions. Interestingly, we found that only a minor fraction of potential

model configurations were compatible with resting behavior in an example signaling system. These

reduced sets of configurations were used to limit the search for more complicated solutions that

also captured the dynamic behavior of the system. Using an example model constructed by this

approach, we show how a cell’s resting behavior adjusts to changes in the kinetic rate processes

of the system. This strategy offers a general and biologically intuitive framework for building

large-scale kinetic models of steady-state cellular systems and their dynamics. The final chapter

summarizes the main findings and implications of our systems analysis and proposes a new method

for constructing and analyzing models of cellular signaling using artificial neural networks.
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Chapter 2

Phosphotyrosine Signaling in the

Epidermal Growth Factor

Receptor

The Erb family of receptors—the epidermal growth factor receptor (EGFR or ErbB1 or HER1),

ErbB2 (or HER2), ErbB3, and ErbB4—activates a multi-layered network mediating crucial path-

ways leading to cell proliferation, differentiation, migration and altered metabolism [33,67,141,180]

in response to activation of the receptor by the epidermal growth factor (EGF), transforming growth

factor-a (TGF-a), and several other related peptide growth factors [33]. Erb family of receptors

are receptor tyrosine kinases (RTKs); RTKs are transmembrane glycoproteins with a cysteine rich

ligand-binding extracellular domain, a transmembrane domain important in dimerization, and an

intracellular tyrosine kinase domain with a tyrosine rich C-terminal tail [67, 141]. Activation of

the ligand-binding domain by an extracellular ligand leads to homodimerization or heterodimer-

ization among the members of the Erb family. The process of ligand-induced dimerization is now

quite well understood, based on crystallographic studies [22,54]. Precisely how this ligand-induced

dimerization event is coupled to, and leads to, activation of the intracellular tyrosine kinase domain

has also emerged from recent crystallographic studies [184]. The crystal structure of the EGFRTK

domain was first published in 2002, both alone and in complex with an inhibitor erlotinib [159], and

displayed several unique features. While structural studies of the kinase domains from other RTKs

(and protein kinases in general) have shown them to be catalytically inactive until an activation

event such as ligand-induced dimerization causes them to become autophosphorylated within the
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activation loop [67] and subsequently become locked into a characteristic active conformation [115],

members of the EGFR family appear to be unique in not requiring activation loop phosphorylation

for their activity [60]. The crystal structure of an unphosphorylated form of the EGFR kinase

domain was found to be constitutively locked in the active configuration [159]. In a recent pio-

neering crystallographic study, it is suggested that the kinase domain of the EGFR is regulated

by a direct allosteric stabilization of the active conformation [184]: specifically, the kinase–kinase

contact through an asymmetric dimer interface allosterically promotes the active conformation.

Indeed, such an interface is inferred from (and experimentally realized by) the presence of a high

concentration of the kinase domain in the crystals. The study also reported a crystal structure

of the V924R mutant of EGFRTK in an inactive form which aligned closely with a previously

solved structure of wildtype EGFRTK bound to the inhibitor lapatinib [179]. The mutation re-

places a hydrophobic residue at the dimer interface with a charged group thereby destabilizing

the dimer interface. As a consequence, the EGFRTK domain retains its inactive state and relaxes

into an alternative crystallographic lattice which does not support the activating asymmetric dimer

interface.

It is well established that alteration or overexpression of EGFR and ErbB2—two (of four) members

of the ErbB family of RTKs—is correlated with a variety of clinical cancers [109,149]. Hence, small

molecule RTK inhibitors for EGFRTK and ErbB2 RTK are also of significant interest as cancer

therapeutic drugs. Small molecule tyrosine kinase inhibitors (e.g., anilinoquinazoline compounds

such as gefitinib and erlotinib), which are ATP analogues [5, 6, 75, 113, 133], have been shown

to exhibit growth inhibitory effects against a wide variety of human tumors [28–32]. The RTK

inhibition approach has shown promise in some clinical trials, but results have been quite mixed

[40]. In particular, despite the promise in a small demographic sub-population with significantly

advanced disease, clinical responses to gefitinib and erlotinib varied among population samples.

Recently, somatic mutations L834R, L837Q, G685S, del L723-P729 ins S 1 in the EGFRTK domain

were reported to correlate with the clinical response of gefitinib and erlotinib [23, 89, 106, 120].

In vitro, these EGFR mutants demonstrated enhanced tyrosine kinase activity in comparison to

wildtype EGFR and increased sensitivity to inhibition [6, 27, 41, 42, 106,120,121,157]

Although the underlying biochemical basis for the observed drug sensitivity of the mutations is still

not clear, the remarkable sensitivity of cell lines carrying gefitinib-sensitizing mutants appears not to

be centered around inhibitor or ATP binding affinities, but rather on other biochemical mechanisms

regulating the EGFRTK activity and EGF-mediated signaling [48]. In a recent review, the ErbB

signaling network is likened to a bow-tie-configured, evolvable network, displaying modularity,

1there is an alternate clinical numbering scheme used in the literature with an offset of 24 residues according to
which these mutations are denoted by L858R, L861Q, G719S, del L747-P753 ins S
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Figure 2.1: Scheme for hierarchical multiscale simulations.

redundancy, and control circuitry [33]. Under this framework, identifying the role and significance

of drug sensitizing mutations of ErbB receptors would require a systems-level understanding of

the signaling network [71–73] This would prove to be of enormous value in effectively designing

multikinase inhibitors for the development of cancer therapies that target several points along the

signaling pathway simultaneously [48, 77]. Evidence emerging from biochemical studies points to

differential phosphorylation rates associated with different tyrosine phosphorylation sites in the

receptor [1, 80, 157, 178]. Moreover, recent structural studies have indicated that the clinically

identified mutations are able to alter regulatory elements within the receptor so as to bypass the

dimer-mediated activation step and lead to constitutive activity. Therefore, understanding the

effect of such mutations on preferential signaling can be crucial in shaping the signaling response

in cell lines derived from cancer patients.

In this chapter, we adopt a multiscale modeling approach (see Figure 2.1 and Table 2.1) to study

the dimer-mediated receptor activation characteristics of EGFRTK. Through these modeling ap-

proaches, we are able to extend the prior modeling of EGF-mediated signal transduction by consid-

ering specific EGFRTK docking interactions mediated by differential binding and phosphorylation

of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branch-

ing pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects

of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic

behavior and downstream signaling response.
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2.1 Summary of Methods

2.1.1 Molecular Dynamics (MD)

Dynamics trajectories of fully atomistic, explicitly solvated systems of wildtype and L834R mutant

EGFRTK are obtained and analyzed for specific stabilizing interactions such as hydrogen bonds

and salt-bridges.

2.1.2 Molecular Docking

Molecular docking is used to predict ligand binding in the absence of a ligand-bound crystal struc-

ture and functional affinity data. We employ AutoDock, an automated docking tool designed to

predict how small molecules, such as substrates or drug candidates, bind to a receptor of known

3-dimensional structure [112]. The binding free energy is calculated based on the intermolecular

energy between protein and ligands and torsional and solvation free energy of the ligands [112]. We

perform a global conformational search using a multiple conformation docking strategy, in which

the protein flexibility is taken into account implicitly.

2.1.3 Signal Transduction

EGF stimulation in a cell results in the simultaneous activation of multiple pathways that are

functionally interlinked [80,141,142]. In the kinetic model we have employed, signaling through the

EGFR is modeled by combining three published models and augmented by our own set of reactions

and calculations. Phosphorylation and docking reactions are modeled according to Kholodenko

et al. [86]; the MAP kinase pathway reactions are modeled after Schoeberl et al. [147]; Akt and

PI3K activation are incorporated into the model as described in Brown et al. [21]. The similar

parameterization and topology in these models allowed us to construct a consistent, stable, and

comprehensive system with results in good agreement with published experimental data [140].

Seventeen of these reactions are novel to this work and represent enhanced molecular resolution

and detail in EGFR activation, phosphorylation, and docking reactions (2.2 and 2.2). Using the

system model, we calculate the state levels of well-known downstream indicators of cell growth and

proliferation, such as phosphorylated ERK and Akt. Each output state is quantified according to

peak response, total (integrated) state level, and the time elapsed until peak response.
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Figure 2.2: Phosphorylation model for EGFR. (v1) EGF binds reversibly to EGFR, which in-
creases the receptors affinity for other ligand-bound receptors (v2). Basal levels of spontaneous
dimerization also occur (v3, v4; not shown). ATP binds reversibly to the catalytic site of the
receptor (v5). The transient ATP-bound EGFR must then encounter a free unphosphorylated
peptide on either cytoplasmic tail in a diffusion-limited step (v8v11). (v12) The receptor catalyzes
autophosphorylation at either Y1068 or Y1173 (for clarity, only the Y1068 site is shown). Reactions
with an asterisk denote more than one reaction involving similar kinetics but differing substrates
(see 2.2).
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2.1.4 Intramolecular Diffusional Timescales of C-terminal Tail Tyrosines

in Auto- and Trans-phosphorylation

Auto- as well as trans-phosphorylation of specific tyrosine sites in the C-terminal tail of the receptor

involves diffusion of the particular tyrosine residue in the C-terminal tail to the active site of

the EGFRTK. We model the tail diffusion as a freely joined chain (FJC) consisting of Kuhn

segments [44]. The diffusion coefficient of the tyrosine residue is then calculated using a reptation

model [44]. The reciprocal of the diffusional time of a specified tyrosine residue to reach the active

site is taken as the kon for substrate binding.

2.1.5 Spatial Stochastic Model for Endocytotic Vesicle Nucleation

Clathrin mediated endocytosis is a major mechanism for the down regulation of activated receptor

proteins. The assembly of a clathrin coat proceeds via a polymerization of clathrin trimers [143],

which is observed to coat the endocytotic vesicle. However, it is believed that the clathrin coat

alone may not be capable of inducing the required curvature in the membrane. Another protein,

epsin, in fact plays a crucial role in inducing the curvature of the membrane [52, 56]. The pro-

tein epsin has binding sites in the clathrin lattice and also directly interacts with the membrane.

This dual interaction together with the dual interaction of an adaptor protein Ap180 with clathrin

and the membrane (Ap180 tethers the clathrin coat to the membrane) is believed to induce the

vesicle nucleation and anchor the clathrin lattice to the budding vesicle. Recently, we developed

the KMC-TDGL (kinetic Monte Carlo- time-dependent Ginzburg Landau) heterogeneous multiscale

approach for studying membrane dynamical processes by combining two different phenomenological

theories [172]. Simulations performed using this approach yields the time evolution of the mem-

brane undulations and deformation in response to the diffusion of membrane bound epsins and a

timescale for the nucleation of an endocytotic vesicle. We calculate the timescale for epsin-induced

endocytotic vesicle nucleation from our membrane simulations performed using the KMC-TDGL

approach [172]. We combine this timescale for nucleation with the timescales for signal transduc-

tion calculated using the network simulations to estimate an overall timescale for phosphorylated

receptor internalization.
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2.2 Results

2.2.1 Dimer Mediated Activation of EGFRTK

We performed two 10 ns molecular dynamics (MD) simulations of the EGFRTK system in the ac-

tive and the inactive conformations, respectively. Based on a comparison of the crystal structures–

active: erlotinib-bound, wildtype [159], AMP-bound wildtype [184]; inactive: lapatinib-bound wild-

type [179], V924R mutant [184]–we conclude that the conformational switching from an inactive

to an active conformation involves a rotation of the α C-helix of EGFRTK and the shifting of the

activation loop (A-loop) residues to make way for peptide and ATP binding. The recent study of

Zhang et al. [184] has implicated a dimer-mediated activation mechanism for the EGFRTK. That is,

loss of interactions upon RTK dimerization leads to switching of the conformational state of the en-

zyme from inactive to active conformations. On this basis, we hypothesize that specific interactions

(namely, H-bonds and salt-bridges) between the residues of the α C-helix and those of the A-loop

need to reorganize in the course of the conformational switching from inactive to active states. To

elucidate the nature of these interactions, a hydrogen bond analysis focusing on the residues sur-

rounding the A-loop, α C-helix, catalytic loop, and nucleotide-binding loop was carried out using

CHARMM6 and VMD30 programs. The MD trajectories were first analyzed in CHARMM with a

hydrogen bond cutoff of 2.4 Åand a cutoff angle of 150◦. We generated a list of hydrogen bonds

that were present in at least 60% of the trajectory. These hydrogen bonds were then visualized in

VMD and any non-significant bonds were removed to reveal the stabilizing H-bonds. During the

H-bond analysis, acidic and basic residues formed strong hydrogen bonds, similar to salt-bridges.

The A-loop and α C-helix conformations were stabilized by internal hydrogen bonds (i.e., both the

residues participating in the hydrogen bond are within the loop/helix), as well as external hydrogen

bonds (i.e., one residue is in the loop/helix, the other is not). The residues participating in these

stabilizing interactions are predominantly acidic and basic residues. A comparison of the specific

interactions showed that the number of external interactions stabilizing the A-loop and α C-helix

in the active conformations far out-numbered those in the inactive conformations (Figure 2.3 and

Table 3 of ref. [102]). Intriguingly, the small number of stabilizing interactions holding the kinase

in the inactive are predominantly located proximal to the dimer-interface residues (Table 3), which

lends further credibility to the allosteric activation mechanism [184] of the wildtype. Namely, that

loss of dimer-interface residues will alter the surrounding stabilizing bond network, leading to the

destabilization of the inactive conformation and triggering the conformational shift to the active

conformation.
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Figure 2.3: Visualization of the stabilizing residues external to A-loop and α C-helix (shown in
blue), dimer interface residues (shown in red), and clinical mutations (shown in green) of both the
active (panel a) and inactive (panel b) EGFR tyrosine kinases. The A-loop is highlighted in sky blue
while the α C-helix is shown in purple, the remainder of the protein is colored orange. The external
stabilizing residues for the EGFR tyrosine kinases are numbered from 140, with 127 corresponding
to residues in the active state while 2840 correspond to the stabilizing residues in the inactive state.
The stabilizing residues that are potentially affected by dimerization are highlighted in red boxes,
and the residues that are potentially affected by the clinical mutations are highlighted in green boxes
(See also Table 3 of ref. [102]). The inactive conformation has fewer stabilizing bonds holding the
conformation stable: 13 stabilizing residues as opposed to 27 stabilizing residues. Therefore, the
loss of interactions triggered by either mutation or dimerization will have a greater effect upon the
stability of the inactive kinase and allow a conformation change. The numbered labels correspond
to the residue numbers as follows: 1:672 2:679 3:721 4:728 5:732 6:734 7:737 8:738 9:740 10:741
11:743 12:744 13:745 14:808 15:810 16:812 17:832 18:834 19:836 20:838 21:840 22:843 23:845 24:848
25:851 26:867 27:932 28:738 29:740 30:742 31:744 32:753 33:812 34:813 35:834 36:836 37:846 38:848
39:851 40:865.

2.2.2 Constitutive Activation of the L834R Mutant

The clinically relevant mutations del724-729 and L834R are located in distinct parts of the enzyme

but both mutations lead to enhanced receptor activity [25, 106, 120, 157]. Our delineated pattern

of stabilizing interactions in Table 3 in ref. [102] serves as a platform for unifying the effects

of these mutations at a structural level. The small number of stabilizing interactions holding

the kinase in the inactive conformation also overlaps with the residues associated with several

clinically relevant mutations. The deletion mutant interferes directly with the dimer interface, and

both the R substitution of L at 834 as well as R substitution of Q in 837 destabilize the specific

(external H bonds) interactions associated with A-loop and α C-helix in the inactive but not the

active conformation. Thus, these mutations have a deleterious effect (see Table 3 of ref. [102])

in stabilizing A-loop and α C-helix conformations in the inactive state—hence, they stabilize the
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active conformation. Indeed, in one of our MD trajectories initiated from the active conformation

of the wildtype monomer RTK, we observed the motion of the enzyme towards the inactive state

in 10 ns. In this case, a key interaction between two residues in the α C-helix and the A-loop (salt-

bridge between GLU851 and LYS734, see also Table 3 of ref. [102]) was broken. In stark contrast,

a 12 ns MD trajectory of the L834R mutant system (under similar conditions) remained stable in

the active conformation. The collective evidence from these observations points to a constitutively

active L834R mutant RTK system (i.e., activated in monomer and dimer states in the presence or

in the absence of an EGF ligand) and a dimer-mediated activation of wildtype RTK (i.e., activated

only in the dimer state in the presence of the EGF ligand).

Experimental observation of constitutive activation in the gefitinib-sensitive EGFR mutants has

been recorded independently in several studies, which report significantly elevated basal phospho-

rylation (in the absence of the stimulating ligand) of the mutant systems in comparison to the

wildtype [25, 26, 120,157]

2.2.3 Ligand and Substrate Binding Affinities for EGFRTK

We determine the ATP and erlotinib binding modes and binding affinities based on our multiple

conformations docking strategy and analyze several low-energy clusters of ligand conformations.

For both wildtype and L834R mutant EGFRTK systems, one lead erlotinib binding conformation

is found to be closely aligned with that in the crystal structure: the hydrogen bonds between the

N1 of the quinazoline and Met769 are present and so is the interaction between Thr766 and the

quinazoline nitrogen atom (N3). The binding modes for ATP and erlotinib are also consistent

with the existing pharmacophore model for ATP binding to kinases [164,165,183]. Significantly, a

second binding mode, which has a higher affinity to the mutant kinase L834R, is revealed in our

calculations. This mode still blocks the ATP binding pocket and in addition shows an additional

interaction between erloitnib and the R834 residue. The effect is a higher calculated binding affinity

for erlotinib binding to L834R (-9.4 0.4 kcal/mol) in comparison to wildtype (-7.3 0.5 kcal/mol).

In order to explore the C-terminal peptide-substrate-bound pre-catalytic conformation, we also

dock EGFRTK substrate peptides to the catalytic site. First, we focus on an optimal peptide

sequence EEEYFEL as a control. This optimal sequence is selected for a maximal value in kcat/KM

among EGFRTK substrate peptides [156]. Based on 5001000 different genetic algorithm runs

for docking of this peptide to EGFRTK, we select the best binding conformation for binding as

one that yields the lowest binding free energy simultaneously with the correct orientation for the

tyrosine binding into the active site. The latter criterion is essential in ensuring that kcat is not

significantly compromised in obtaining a stronger binding. We depict in Figure 2.4 the peptide
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conformation bound to the active site, which is seen to be ideally poised for a two-metal-ion

catalyzed phosphoryl transfer from ATP to the bound tyrosine [110,160]: i.e., the relative positions

of the ATP, Mg2+ ions, and the catalytic aspartates are in good alignment. Encouraged by this

result, we performed peptide docking simulations for two substrate peptides (each being seven

amino acids long) corresponding to the Y1068 (VPEYINQ) and Y1173 (NAEYLRV) sites of the C-

terminal tail for both wildtype and L834R mutant structures. Based on a similar criteria of lower

binding free energy and optimal catalytic geometry, we calculated the peptide binding affinity

corresponding to sites Y1068 and Y1173 for wildtype and L834R mutant systems. Upon mutation,

the calculated KM for the Y1068 peptide decreased 20-fold (calculated ΔΔG [wildtype → L834R]

= −2.2 kcal/mol), while the calculated KM for the Y1173 peptide increased 4-fold (calculated ΔΔG

[wildtype → L834R] = +0.9 kcal/mol). Analysis of the binding modes reveals that the relative

alignment of the tyrosine with respect to the catalytic site is ideal (2.2 Åin the observed distance ξ

between Tyr OH oxygen and Asp 813 Oδ2) for the two peptide tyrosines binding to wildtype, with

the two mutant systems showing a 01.5 Ådeviation. The differences can translate into differences

in kcat values associated with the tyrosine phosphorylation. Assuming a harmonic energy profile

along the reaction coordinate ξ with a force constant Kξ, the work done in reducing this distance

is given by 1/2Kξξ
2. The value of Kξ is obtained by recording the fluctuations of ξ in the MD

simulations (Kξ = kBT/σξ2 = 0.77kcal/mol/Å
2

for the wildtype and 1.01kcal/mol/Å
2

for L834R),

where σξ is the standard deviation associated with the fluctuations in ξ in the trajectories). The

normalized values of kcat/KM can then be compared for the four systems at the same value of

ξ = 2.2Å); the relative increase in kcat/KY 1068
M for the L834R in comparison to the wildtype is 20-

fold (increase by 1-order of magnitude), while the relative decrease for Y1073 is 200-fold (decrease

by 2-orders of magnitude). This differential sensitivity translates into differences in phosphorylation

of the associated tyrosine sites, which ultimately leads to differential signaling and down stream

activation in the EGFR network: the Y1173-phosphorylation is associated Shc mediated ERK

activation and Y1068 phosphorylation is associated with Akt activation [80, 157].

2.2.4 Timescales Associated with Diffusion of Substrate Tyrosines Bind-

ing Prior to Auto- and Trans-phosphorylation and with Endocy-

totic Vesicle Nucleation

C-terminal Tail Diffusion

We calculate the diffusional time scale for each of the seven tyrosine residues present on the C-

terminal tail of EGFRTK to reach the active site Table 2.3. The timescales for diffusion are in μ s
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Figure 2.4: Binding modes for ATP (cyan) and the optimal peptide sequence (yellow) in the
EGFRTK domain. The geometry of the active site is consistent with that prescribed for an ideal
two-metal-ion catalyzed mechanism and reveals a state that is poised for the phosphoryl transfer
reaction. The alignment of the two divalent Mg2+ ions as well as the catalytic aspartates D813 and
D831 are also shown.

and are fairly similar for the different tyrosine sites to bind to the active site prior to auto- (head)

or trans- (tail) phosphorylation. For each case, the reciprocal of the corresponding timescale is

taken as the on-rate (kon) of the tyrosine binding to the active site. The off-rate is calculated as

koff = kon × exp(+ΔG/kBT ), where ΔG is the binding free energy of the substrate to the active

site; here it is assumed that the binding process is diffusion-limited with no significant additional

barriers. The values for ΔG for each C-terminal tyrosine is obtained from the analogous data

on peptide substrate affinities KM published in the literature [19, 51]: kΔG/kBT = −ln(KM).

These calculated values are used in the model for signal transduction described in Section 2.1.3 and

provided in Table 2.2.

Endocytotic Vesicle Nucleation

In our earlier work, we identified different regimes conducive to nucleation of an endocytotic vesicle

by exploring a range of parameters associated with the membrane adsorbed proteins, such as surface

density of the protein on the membrane, and the intrinsic curvature of the membrane induced by the

proteinmembrane interaction [172]. Here, we report our results specifically for epsins interacting

with the membrane. Consistent with the experimental values of Ford et al., we assume that the

intrinsic membrane curvature induced by the epsin molecules falls in the range of 10μm−1. We

further assume that the distance from a given epsin molecule that this curvature effect decays
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Tyrosine residue
Diffusional time to the active site (μs)

Head
EGFRTK
(auto-
phosphorylation)

Tail EGFRTK (trans-phosphorylation)

Y992 0.34 0.65
Y1045 1.72 2.54
Y1068 2.64 3.68
Y1086 3.49 4.7
Y1101 4.26 5.61
Y1148 7.26 9.08
Y1173 9.16 11.22

Table 2.3: Diffusional time for C-terminal tyrosines to reach the active site of EGFRTK.

is four times the epsin diameter. A depiction of our findings for an epsin surface density (on

the membrane) of 60 per μm2 is given in Figure 2.5, in which in the time course of 250400 s,

the nucleation of a vesicle is observed (see snapshots in panels BD). Panels E and F provide the

corresponding spatial and orientational correlations [172]. The necessary condition for nucleation

is the persistence of orientational (hexagonal) ordering of the membrane-adsorbed epsin molecules

(see caption) [172]. Our results have suggested an interesting mechanism for the epsin-mediated

membrane invagination. Namely, the invagination occurs through a nucleation event, which involves

the colocalization and hexagonal ordering of several epsin molecules on the membrane. Based on

our results (Figure 2.5), the timescale for nucleation of such an event is 250400 s.

As described in Section 2.1.3, receptor activation, which is eventually followed by receptor internal-

ization (via endocytosis), results in triggering many signal transduction cascades—one of which is

the PLC-β pathway [13,180]. The PLC-β pathway is accompanied by a transient release of calcium

ions from intracellular stores. Models for the transient release of calcium have been developed on

the basis of several published experimental studies [90, 154]. We work under the hypothesis that

the signal transduction in the endocytosis pathway is coupled to membrane deformation via two

functional interactions: (1) the direct induction of curvature via the interaction of the membrane

lipids with epsin [52, 123, 144, 158]; and (2) through the assembly of the clathrin coat [144, 181],

which is triggered by an increase in the local concentration of Ca2+ ions released in the PLC-β path-

way [13]. In the latter case, above a threshold value of Ca2+ concentration the clathrin monomers

spontaneously self-assemble to form a lattice [144,181]. This leads to the following mechanism for

endocytosis. The transient increase in calcium concentration at the site of the activated recep-

tor helps promote clathrin polymerization and coat assembly. The adapter protein Ap180 tethers

the clathrin lattice on the membrane. The vertices of the hexagonal lattice of the clathrin coat

provide binding sites for epsins. Thus, in the vicinity of the activated receptor, the membrane
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Figure 2.5: (a) Depiction of the system of epsin molecules interacting with the membrane.
(bd) Snapshots of the system at different time points (the epsin positions are not shown for clar-
ity). The blue regions are recessed and red regions are elevated in the membrane. The nucleation
of a budding vesicle in the membrane is evident in panel d. (c) Spatial correlation function for
the membrane adsorbed epsins. (f) Orientational correlation function for the membrane adsorbed
epsins. The correlation functions are provided for 3 simulation runs at different epsin densities
(ρ∗, dimensionless) and values of the induced curvature (c0 expressed in μm−1). The value of a
dimensionless density (ρ∗ = 0.024 corresponds to 60 epsins per μm2. The snapshots correspond to
the red symbols in panels e and f (ρ∗ = 0.024 and c0 = 10μm−1). For this case, there is persistence
of orientational correlations (hexagonal ordering), see panel f. For the other two cases in panels e
and f (for which snapshots are not shown), no nucleation and no significant orientational ordering
is observed.

adsorbed epsins assume a spatial conformation with persistent orientational correlations induced

by the clathrin lattice. This provides the condition for a nucleation event leading to formation of

the endocytotic vesicle. (We note that according to this mechanism, unactivated receptors can also

internalize; however, in the absence of the transient calcium surge, which only occurs upon receptor

activation, the clathrin coat assembly may represent a slower step).

An estimate for the timescale of receptor internalization τ(internalization) is therefore obtained by

the sum of timescales for receptor phosphorylation at Y1045, PLC-β activation, calcium release,

clathrin coat assembly, and nucleation of epsin-mediated vesicle formation.

2.2.5 Differential Signaling through EGFRTK

By employing the deterministic model described in Section 2.1.3 (see Figure 2.2 and Table 2)

we have calculated transient evolution of the EGF-mediated signaling network under a variety of

initial conditions and parameter values. In particular, we have focused on two pools of normal
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Figure 2.6: Calculated ERK and Akt phosphorylation levels in units of nM (peak levels over the
time course of 1000 s) under serum starved (EGF-) and serum cultured (EGF+) conditions for cell
types with normal EGFR expression and EGFR overexpression. In each panel the Y1173 rate of
phosphorylation (kcat/KM ) is varied along the x-axis (value relative to wildtype EGFRTK) and
the Y1068 rate of phosphorylation (kcat/KM) is varied along the y-axis. In each panel, the blue
circle denotes the wildtype levels and the green square denotes those relevant to the L834R mutant
cell lines.

([EGFR] = 100 nM or 33,000 receptors per cell) and overexpressed ([EGFR] = 2000 nM or 660,000

receptors per cell) EGFR concentrations, each in the absence (serum starved, [EGF] = 0 nM) and

presence (serum cultured, [EGF] = 8 nM) of the EGF ligand. Since our molecularly resolved model

(Figure 2.2) is currently focused on differential signaling through Y1068 and Y1173 phosphorylation

sites of EGFRTK, we track the integrated response of ERK and Akt phosphorylation levels in our

simulations. Each output state was quantified according to the peak level of phosphorylation over

the simulated time of 1000 s. Specifically, we perform a two-dimensional scan over kcat/KM values

associated with Y1068 and Y1173 phosphorylation in which the respective kcat/KM values are

allowed to deviate from their default (wild-type) value over a logarithmic range of five log units.

The result is a two-dimensional matrix in which each element represents output from a single

simulation involving a unique pair of parameters (Figure 2.6).

The simulated response of the EGFR network also enables us to estimate a timescale for receptor

internalization τ(internalization). The typical timescale for EGFRTK phosphorylation is in the

range of 10 s, while that for PLC-β activation is 50 s. The calcium release from intracellular stores

through the activation of IP3R (IP3 receptors) is reported to occur within a short timescale of

10 s [154]. While the timescale for clathrin coat self-assembly under high calcium concentration

is not known, it is assumed here that this is a rapid process. According to our results from the

spatial stochastic simulations (Section 2.2.4), the epsin mediated endocytotic vesicle nucleation in
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the presence of the clathrin coat is calculated to occur in a timescale 250400 s. Further, assuming

that the stabilization of the budding endocytotic vesicle and the vesicle pinch-off process catalyzed

by dynamin are not rate-limiting, the estimated time for vesicle internalization upon EGF ligand

binding is ≈450 s (≈8 min). We note that these timescales from our simulations are ball park

estimates and we have not yet attempted a careful comparison with timescales from experimental

measurements.

2.3 Discussion and Conclusions

Based on an integration of a large body of knowledge accumulated over the years, the modular na-

ture of EGFR-mediated signaling has become apparent [33, 71]. Through a hierarchical multiscale

modeling scheme, we have realized a molecular resolution to this system-level view that can poten-

tially augment our predictive as well as comprehensive capabilities and rationalize the changes in

early signaling characteristics of altered and mutant cell lines. Our overall findings are summarized

below.

Analysis of stabilizing interactions in our molecular dynamics simulations have corroborated a

dimer-mediated activation mechanism for the EGFRTK. That is, loss of key stabilizing interactions

in the inactive conformation of the kinase upon dimerization results in destabilizing the inactive

state and triggering a conformational change to the active state. Moreover, our results point

to a constitutively active L834R mutant. That is, even in a monomer state, the RTK of the

L834R mutant system is stabilized in an active conformation and can trigger signaling through

the EGFR network by auto-phosphorylation of its C-terminal tail tyrosine residues in an EGF

(ligand) independent manner. These results are consistent with the existing biochemical data

[25, 106, 120, 157, 184] that have qualitatively shown that the phosphorylation of C-terminal tail

tyrosines of the L834R mutant in the absence of EGF stimulation is comparable to wildtype values

in the presence of EGF stimulation at EGF concentrations of 30100 ng/ml.

Our results from the free energy docking simulations suggest enhanced binding of the inhibitor

erlotinib to the L834R mutant system in comparison to wildtype binding. Our results also reveal

preferential binding and phosphorylation of certain C-terminal tyrosine substrates (but not others)

to the L834R mutant in comparison to the wildtype: that is, the calculated change in the turn over

rate (kcat/KM ) upon the L834R mutation is markedly different for the Y1173 peptide in comparison

to the Y1068 peptide. This results in a differential sensitivity at the receptor level. Specifically, the

estimated increase in kcat//KM for the Y1068 peptide is ≈10-fold in comparison to a decrease of

1̃00-fold for the Y1173 peptide. Thus, we expect to see a net increase in phosphorylation of Y1068
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and a net decrease in phosphorylation of Y1173 for the L834R mutant, in comparison to wild-type

levels. The biochemical results of Sordella et al. [157] and Chen et al. [25] corroborate this view

qualitatively; in these studies, the immunoblots measuring the degree of phosphorylated receptor

at the Y1173 site show a modest decrease for the L834R mutant in contrast to a strong increase

for the Y1068 site, both in comparison to their respective wild-type measurements.

Our systems level simulation illustrates how the altered affinities at the receptor level for the

wildtype and L834R translates into changes in the downstream response. In Figure 2.6, we explored

how the variation in Y1173 and Y1068 phosphorylation affects the peak responses of ERK and

Akt for two different EGFR concentrations, each in the absence or presence of EGF stimulation.

The calculated responses for the wildtype values are highlighted by the blue circles at the origin

of each of the panels. The responses for L834R are identified by the green square centered at

a (kcat/KM )/(kcat/KM)wildtype value of 1/100 (−2 in log10 units) for Y1073 and 10 (+1 in log10

units) for Y1068. Owing to the constitutively active characteristic of the L834R mutant, the signals

relevant for the L834R system (even in the absence of EGF) are analogous to those in the panels

with EGF stimulation. As indicated by the color maps in these two scans, increasing the degree

of phosphorylation of the Y1173 site (positive x-direction) leads to an overall increase in ERK

response. This finding is consistent with our model which is based on Y1173 being an important

docking site for the Shc and Grb-2 adaptors that lead to Ras activation and subsequent ERK

phosphorylation. For normal EGFR expression, the calculated ERK response in the absence of

EGF is low for the L834R mutant (0.01 nM) but negligible (approximately zero) for the wildtype.

In the presence of EGF the ERK response for L834R is 7-fold lower than that for the wildtype. For

over expressed EGFR, the ERK activation is 7-fold higher in L834R compared to wildtype both

in the presence as well as in the absence of EGF stimulation. Thus, ERK stimulation is higher

in EGFR overexpressed cells. The Akt response relative to the wildtype is 2-fold higher for the

mutant cells under no EGF stimulation and about the same under EGF stimulation for normal

EGFR expression. The Akt response does not seem to be affected by mutation for high EGFR

expression either in the presence or absence of EGF.

Our calculated responses for ERK and Akt signaling for normal EGFR expression agree with the

qualitative experimental observations of Sordella et al. [157] and Tracy et al. [163]: namely, that

the ERK stimulation levels decrease and the Akt levels are maintained for the mutant cells with

normal EGFR expression levels. This preferential activation of Akt in L834R mutant cell lines

observed in these experiments is consistent with the systems level predictions from our simulations.

Moreover, our calculations predict that the preferential Akt activation is not featured in EGFR

overexpressed cells.
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In light of the overall agreement between simulations and experiment, we can begin to explore

the origins of inhibitor sensitivity in L834R mutant cell lines. The enhanced sensitivity of the

L834R mutant to erlotinib arises from a combination of several effects: (1) the mutant system

has a higher binding affinity to the inhibitor; (2) the constitutive activity of L834R renders the

mutant to be a more potent target for therapeutic inhibition; (3) the differences in the predicted

downstream response (between the wildtype and the mutant) accounted for by early signaling events

can potentially lead to a divergent long-term behavior in the two systems causing a differential

sensitivity to inhibition. More conclusive inferences from our modeling results can only be obtained

after we consider the effect of other receptor states (namely, one in which Y845 is phosphorylated)

and interactions with other Erb partners (see below) on down-stream signal response.

In conclusion, we have described the role of a hierarchical multiscale computational approach in

resolving at a molecular level the systems-level model of EGFR-mediated signal transduction, to

help rationalize the collective information emerging from biochemical, cell biology, and clinical

studies. Our approach enables us to transcribe differences in molecular mechanisms as well as

functional activity originating at the single molecule level into tangible differences in early signaling

events. Therefore, subject to the well appreciated limitations of computational modeling, this

predictive capability is useful in differentiating signaling characteristics of mutant cell lines from

the native wild-type case. This molecular-based refinement of the overall EGFR signal transduction

model is a first attempt at untangling the differential nature of early signaling events triggered by

receptor activation and their consequences in shaping the signal transduction in altered cell lines

derived from different pathologies. A complete model, which is currently being pursued, will not

only require resolving the differential characteristics of all of the tyrosine phosphorylation sites in

EGFRTK and their associated substrate recognition properties in EGFR, but also the extension to

other Erb family members in the context of homo- and hetero-dimers. Transactivation of EGFR

occurring through ligand-induced receptor heterodimerization [171] combined with a potential for

differential signaling adds a palette of finer control elements in the ErbB family signaling network.

Indeed, recent studies have identified possible mutations in ErbB2 that may correlate with drug

sensitivity in different cancers [97,98]. The computational tools described here are ideal for assessing

the likely effect of novel EGFR and ErbB2 mutations and determining whether the drug-sensitizing

mutations implicated in non-small-cell lung cancer also occur in other cancers. We believe that our

model driven approach will in the long-term significantly impact the optimization of future small

molecule therapeutic inhibition strategies.
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Chapter 3

Efficacy of Tyrosine Kinase

Inhibitors in Mutants of the

Epidermal Growth Factor

Receptor

In Chapter 2, we employed a hierarchical multiscale computational strategy to study the dimer-

mediated receptor activation characteristics of the Erb family receptors, through which we were

able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the

receptor) to differing kinetic behaviors and downstream signaling responses [102]. Here, we extend

this approach to study the effects of EGFR inhibition through TKIs. By employing molecular

docking in combination with network modeling, we are able to quantify changes in the EC50 of

receptor phosphorylation (i.e. 50% inhibition in the cellular context) and EC50 for the inhibition of

downstream markers (ERK and Akt) upon treatment with the TKI erlotinib, in cell-lines carrying

both wildtype (WT) and mutant forms of the receptor. Based upon our results, we conclude that

the remarkable efficacy of the inhibitor erlotinib in the L834R mutant cell line can be attributed

to a relative gain in efficiency over the WT in inhibiting the Akt response.

How such constitutive activation is precisely linked to increased sensitivity to inhibition and the

efficacy of some TKIs remains an interesting question. Recently, Noro et al. [116] reported that the

majority of inhibitor hypersensitive cell lines showed Akt phosphorylation without ligand stimu-

lation while a small fraction of the resistant cell lines displayed this characteristic. On this basis,
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they concluded that Akt phosphorylation without ligand stimulation may play a key signaling role

in TKI hypersensitivity. Sharma et al. [148] proposed the concept of an oncogenic shock, which at-

tributes the hypersensitivity to inhibition in such cancer cell lines to differential attenuation rates of

pro-survival (triggered by Akt phosphorylation) and pro-apoptotic signals emanating from EGFR

following its inactivation upon inhibitor treatment. Their surmise, like the Noro et al. finding, is

based on preferential Akt activation, and relies on the assumption that pro-survival signals such

as Akt-(p) dissipate quickly upon oncoprotein inactivation, whereas pro-apoptotic signals linger

sufficiently long to commit the cell to an apoptotic death. This differential effect may contribute to

the rapid and dramatic clinical responses observed in some cancer patients treated with selective

TKIs. Hendriks et al. [65] sought to provide a mechanistic basis for enhanced Akt signaling in

gefitinib hypersensitive cell lines and suggested on the basis of experimental and computational

results that the gefitinib sensitivity is a marker of a reliance on Akt signaling for cell survival that

may be brought about by impaired EGFR internalization in the inhibitor-sensitive cell lines.

Here we describe another possible mechanism that leads to preferential Akt sinaling. Specifically,

by introducing a molecularly resolved branched network systems model (the molecular resolution

is introduced through a hierarchical multiscale computational strategy to transcribe the effects of

molecular alterations in the receptor, e.g., mutant forms of the receptor, to differing downstream

short-term signaling responses (see Chapter 2)), to study the effects of EGFR signaling and inhi-

bition in WT and mutant cell lines, we are able to quantify: (1) differences in short-term signaling

in downstream ERK and Akt activation, (2) the changes in the cellular inhibition EC50 associ-

ated with receptor phosphorylation (i.e., 50% inhibition of receptor phosphorylation in the cellular

context), and (3) EC50 for the inhibition of activated downstream markers ERK-(p) and Akt-(p),

where (p) denotes phosphorylated, upon treatment with the TKI erlotinib in cell lines carrying

both WT and mutant forms of the receptor. This model also suggests a possible mechanism for

preferential Akt activation in the oncogenic mutants of EGFR implicated in non-small-cell lung

cancer as well as an enhanced efficacy of the inhibitor erlotinib in ablating the Akt response. Using

a simple phenomenological model to describe the effect of Akt activation on cellular decisions, we

discuss how this preferential Akt activation is conducive to cellular oncogene addiction and how

its disruption can lead to the observed hypersensitivity of the inhibitors. We also illustrate that

key network nodes of our model, which were identified through our sensitivity analysis as those

rendering the network hypersensitive to enhanced ERK-(p) and Akt-(p) levels, have a striking cor-

relation with species implicated in oncogenic transformations in human cancers as well as identified

in drug resistance mechanisms for the inhibitors gefitinib and erlotinib in non-small-cell lung cancer

therapy.
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Parameter WT L834R Reference
1 1 1 1
KATP

M 5.0 μM 10.9 μM [23]
Kerlotinib

I 17.5 nM 6.25 nM [23]
KY 1068

M 265 μM 13.3 μM∗ [51, 102]
KY 1173

M 236 μM 944 μM∗ [51, 102]
kY 1068

cat 0.29 s-1 0.14 s-1∗ [23]
kY 1173

cat 0.25 s-1 0.010 ∗ [23]

Table 3.1: Parametric differences between WT and mutant EGFR systems. ∗Calculated from
molecular simulations.

3.1 Methods

Models for the WT and L834R systems each comprised 74 species, 140 parameters, and 77 reac-

tions and are described in detail in Chapter 2. The model parameters are derived from previously

published models [85] and de novo molecular level calculations in our lab [102]. One important dif-

ference between the WT and L834R mutant network is that the WT RTK initiates phosphorylation

of C-terminal tail substrate tyrosines only as a dimer, whereas the mutant—owing to constitutive

activation—can initiate phosphorylation as a monomer as well as a dimer [184]. Our molecularly

resolved signal transduction network incorporates differential signaling through Y1068 and Y1173

phosphorylation sites of the EGFRTK (see Section 3.1.3). To model competitive inhibition by an

ATP analog, we employed the following reactions in our model.

Consistent with our computational studies (our molecular docking studies described in Chapter 2

revealed that the ATP binding affinity of the RTK in the inactive state is 100-fold lower than

that in the active state), the above reactions are implemented as several analogous reactions, such

that an inhibitor molecule may bind to the activated receptor kinase when the substrate tyrosines

are unphosphorylated, or already phosphorylated at either Y1068 or Y1173. To model the kinetic

behavior in the presence of the TKI erlotinib, we used appropriate values for the inhibition constant

(KI) of erlotinib, binding constant for ATP, and constants for describing the phosphorylation

kinetics of Y1068 and Y1173 peptides for WT and mutant (L834R) receptors. These parameters

are obtained from our molecular-level simulations and from experiments. The parameters are

summarized in Table 3.1.

3.1.1 Systems-level Model Calibration using Genetic Algorithm

Model parameters were refined by calibrating simulation output with data from published cell-base

assays and time-resolved mass spectrometry [185]. A genetic algorithm (GA) was used to identify

parameter sets that produced the closest fits to experimental measurements, using a linear least
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squares distance measure between computed and measured time course data points as the objective

function. Initial estimates of parameters (default values) were taken from published studies, or

computed by molecular docking and stochastic simulations as described previously [102]. In the

GA, each parameter value was sampled from a log-normal distribution (μ = default value, σ = 1

log unit) to allow the parameters (rate constants or initial conditions, except those for [EGFR],

[EGF], and [TKI]) to range continuously over several orders of magnitude but with strong central

tendency for the default value. The GA was implemented with a constant-sized population of 100

parameter sets, mutation rate μ = 0.15, and crossover rate μ = 0.15, for 1000 generations. Fitness

scores for all individuals were evaluated at each generation by computing the objective function.

3.1.2 Model Sensitivity using Principal Component Analysis

In order to obtain a quantitative measure of the sensitivity and robustness of the signaling network

to rate constants and initial concentrations, we employed a Monte Carlo protocol to perturb the

default parameter sets. This was done by generating a random vector of elements ζi from a normal

distribution with mean zero and variance (σ) 0.3, 1.0, and 3.0, then perturbing the default pa-

rameters Pi as Pi × exp (ζi). Network simulations were repeated 2000 times with new (perturbed)

parameter sets and the sets yielding top 500 values for ERK and Akt activation were stored. A

principal component analysis in parameter space (over the 500 stored sets) was carried out in order

to determine the combinations of parameters (i.e., the constitution of the principal eigenvectors),

whose perturbation are likely to render the signaling hyperactive to ERK and Akt phosphorylation,

that is, phosphorylation of ERK/Akt in the perturbed system is greater that in the unperturbed

system. These calculations were performed in two contexts: (1) by choosing the set of rate con-

stants as the parameters Pi, and (2) by choosing the set of initial concentrations as the parameters

Pi.

3.1.3 Differential Signaling through Y1068 and Y1173

Our molecular resolution to the systems model is enabled by two features in our research de-

sign: (1) the de novo estimation of key binding and rate constants associated with the receptor

through molecular simulations, we are able to quantify the molecular contributions to signaling

and hence differentiate signaling in WT and mutant cells; (2) our systems model introduces the

concept of differential signaling, where phosphorylation at the Y1068 and Y1173 sites transduces

signals through different pathways. This differential effect was initially incorporated based on ex-

perimental evidence [157] by assuming perfect (or 100/0) specificities for the interactions of the

Y-phosphorylated docking sites: i.e., the phosphorylated Y1068 binds only to PI3K and Grb2 and
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Figure 3.1: Differential signaling for WT and L834R. Total phosphotyrosine (pY1068 or pY1173)
was calculated after 60 s, with (8 nM) and without ligand (EGF).

not PLC-β and Shc, and phosphorylated Y1173 binds only to PLC-β and Shc and not to PI3K

and Grb2. The alternative approach is to assume no (50/50) specificity, i.e., the two sites 1068

and 1173, when phosphorylated, serve as docking sites to all four substrates in our model, namely

PI3K, Grb2, PLC-β and Shc. This would reduce to a single-site model, where the docking sites are

not distinguished. A realistic model for incorporating this differential effect lies between these two

extremes. The degree to which the docking interactions of the phosphotyrosines are specific can

be determined by molecular docking calculations similar to those described in the section below

(these calculations are ongoing in our laboratory). However, in order to gauge the sensitivity of

the downstream response (ERK vs. Akt activation) on the degree of specificities, we performed

network simulations with varying degrees of specificities ranging from 100/0 to 50/50.

3.2 Results and Discussion

3.2.1 Differential phosphorylation

We first assessed the differential phosphorylation patterns of WT EGFR and L834R mutant sys-

tems, with normal receptor copy number (initial [EGFR] = 100 nM or 30,000 receptors per cell),

with 8 nM (50 ng/ml) EGF or without EGF stimulation (Figure 3.1). As expected from the altered

KM and kcat values, L834R has a stronger preference for Y1068 phosphorylation compared to the

WT receptor, while our results predict the opposite trend for Y1173 phosphorylation.

3.2.2 Differential Signaling

To examine the effects of our branched signaling through pY1068 and pY1173 on the downstream

response, we explored a series of cases in which differential signaling was fully implemented, i.e.

100/0 (see methods section), partially active (75/25), or completely absent (50/50). In the latter
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case, docking peptides (e.g., PLC-β, PI3K, Gab1) could bind indiscriminately to either phosphory-

lated tyrosine sites. Simulations were performed for 15 min (900 s) with 8 nM EGF present. The

resulting total pERK and pAkt response are reported in Figure 3.2.

For both systems, implementing either a partially or completely specific branching quantitatively

yields the same downstream response, regardless of the degree of differential signaling. This obser-

vation validates our hypothesis that the differences in the downstream signaling between the WT

and mutant receptors stem from changes in the efficiency of C-terminal tail phosphorylation (i.e.,

kcat/KM values for the substrate tyrosines) rather than the specificities of the docking proteins to

phosphotyrosines. One notable feature is the 10-fold lower pERK levels in the mutant in the pres-

ence of a differential branched signaling, suggesting that specificity of the Y1173 peptide induces a

sensitivity in the ERK activation, but the degree of specificity (when present) is unimportant.

3.2.3 Robustness of Signaling

In a recent review, the ErbB signaling network is described as a bow-tie-configured (or hour-glass

shaped), evolvable network, displaying modularity, redundancy, and control circuitry [33]. This

framework suggests that identifying the targets proteins for effective inhibition and the effects

of the mutation landscape would require a systems level understanding of the signaling network.

Based on the protocol outlined in the methods section, we perturbed the network using our Monte

Carlo strategy and performed principal component analysis in the space of rate-constants as well as

on initial concentrations. In both cases, the top three modes constituted 99% of the scatter in the

parameter space. We then identified the components of the three principal eigenvectors (i.e., which

particular combination parameters render the network hyper-sensitive according to our measure.

There were several surprising features in our findings: (1) The components of the eigenvectors were

non-zero only as singlets or pairs, suggesting that the perturbation of only one or at most a combi-

nation to two parameters were driving the network hyper-sensitive; (2) The identified components

(Table 3.2), were insensitive to the degree of perturbation (i.e., the same components resulted ir-

respective of the extent of perturbation, σ of 0.3, 1.0, and 3.0; (3) The resulting components in

Table 3.2 clearly reflect the bow-tie-configuration of the network; namely, the system is susceptible

to perturbation only at the top (and bottom, these are our measures for hyper-sensitivity), with

the middle (or core) layers robust to perturbations; (4) The top principal components identified

almost exclusively comprised of ATP binding and C-terminal tyrosine phosphorylation, thereby

justifying why the inhibition of receptor phosphorylation is likely to be an optimal target, and sug-

gesting why mutations changing the (differential) phosphorylation kinetics can profoundly impact

the downstream response.

33



Figure 3.2: Effect of peptide specificity on activated ERK and Akt levels. The WT (A and B) and
mutant (C and D) systems were simulated for 15 min under the conditions indicated. Accumulated
(time-integrated) ERK-(p) (A and C) and Akt-(p) (B and D) levels were calculated as a function
of peptide specificity; 0.5 denotes 50/50 or no specificity (peptide binds equally to either tyrosine);
1.0 denotes 100/0 or perfect specificity (peptide binds only to its cognate tyrosine as described in
the text).
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Rate Constants Initial Concentrations
kf : Y1068 [Raf·Ras·GTP]
kf : Y1173 phosphatase for pERK
KM : ATP·RTK [pMEK]
KM : GAB·pEGFR [PI3K inactive]
. [MEK·Raf active]
. [EGFR·Shc·Grb2·SOS·RasGTP]

Table 3.2: Parameter variations constituting the top three principal components for network
hyper-sensitivity.

3.2.4 EC50 for Inhibition of EGFR in the cell

Next, we examined the sensitivity of WT and mutant systems to inhibition in the cellular con-

text by calculating receptor phosphorylation over a range of erlotinib concentrations. Simulations

were performed for both “normal” ([EGFR] = 100 nM) and “over-expressed” ([EGFR] = 1000

nM) systems. All simulations were performed with (50 ng/ml or 8 nM) or without ligand (EGF)

stimulation. The EC50 (inhibitor concentration at which 50% of the activity is suppressed in the

cellular context; this is different from IC50 because the nonlinear and temporal effects due to signal-

transduction is accounted for) for L834R was 50-fold lower (Figure 3.3a,b) than that of the WT

(100 nM vs. 5000 nM) in the presence as well as absence of ligand. There were also no prominent

differences between the inhibition at 1068 and 1173 sites. In over-expressed systems, there was no

significant difference in EC50 among the four groups (Figure 3.3c,d). All had an EC50 near 1000

nM.

3.2.5 Inhibition of Downstream Activation (EC50)

We then examined the sensitivity of downstream signaling molecules ERK and Akt to inhibition for

a range of erlotinib concentrations (see Figure 4: a-d). In normal expression systems (Figure 3.4a,b),

there was a nearly 7-fold increase in the efficiency of pERK inhibition for L834R (EC50 = 100

nM) compared to WT (EC50 = 700 nM) with and without ligand present. With respect to Akt

activation, there was a 4-fold decrease in EC50 for L834R compared to WT (300 nM vs. 1200

nM) with and without ligand present. For the case of over-expressed receptors (Figure 3.4c,d),

inhibition of pERK is 4-fold more efficient for L834R compared to WT, while pAkt inhibition is

almost 10-fold more efficient for the L834R mutant, although significantly more erlotinib is required

to achieve inhibition (EC50=40 M). This result is consistent with the dramatically elevated Akt

levels expected in systems that bear both the L834R mutation and a higher receptor count.
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Figure 3.3: Relative inhibition of receptor phosphorylation: Tyr phosphorylation levels relative
to that without inhibitor are plotted.
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3.3 Conclusion

We have presented a framework to interpret the effect of tyrosine kinase inhibitors on the system-

wide cellular response. Through multiscale modeling, we have also shown how this framework can

be utilized to predict the efficacy of inhibition in cell-lines, especially those harboring mutations in

the receptor. We find that the mutant cell line is more susceptible to inhibition by TKIs through

the curbing of receptor phosphorylation and downstream (ERK and Akt) activation. Considering

that the absolute pAkt levels are 5-fold higher than those for pERK in the WT and 100-fold higher

in the mutant (Figure 3.1), the remarkable effect of the drug in non-small-cell lung cancer cell lines

carrying the mutation can be attributed to the gain in efficacy with respect to Akt inhibition. The

multiscale computational framework described here is ideal for assessing mutation landscape on

signal transduction. We believe that our model driven approach will in the long-term significantly

impact the optimization of future small molecule therapeutic inhibition strategies.
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Figure 3.4: Inhibition of ERK and Akt activation in systems with normal receptor expression.
Responses plotted relative to that without inhibition under the same conditions.
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Chapter 4

Calcium and Phosphoinositide

Signaling in Human Platelets

4.1 Introduction

Platelets respond to endothelial injury or activating agonists by engaging a host of intracellular

signaling events, including receptor activation, G protein signaling, second messenger generation,

Ca2+ release, granule secretion, and cytoskeletal rearrangement [17, 150]. While the molecular

details underlying individual activation events are continually refined through focused studies, it

has been difficult to develop a unified and integrated view of platelet metabolism since it involves

a large number of simultaneously interacting molecular components. To this end, computational

models help provide an integrated view of the many interacting components involved in cellular

signaling [4]. Successful applications of the systems biology approach have led to an improved

understanding of cell surface receptors [15, 86], quantitative prediction of protease cascades in

blood coagulation [66,91,105], and the discovery of novel molecular interactions [136]. When based

on reliable data sets, accurate models have the potential to not only explain previously observed

behaviors, but to make experimentally verifiable predictions about how cells process biological

signals [74].

In many ways, the platelet provides an ideal test system for human systems biology. Platelets from

normal donors or patients are readily available for in vitro diagnostic research and clinical moni-

toring. Isolated platelets, platelet rich plasma, or whole blood are amenable to high throughput

experiments to study signal transduction and associated coagulation protease cascades. Addition-

ally, numerous genetic mutations in humans [118] as well as knockout and transgenic mice [79,137]
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are known that predispose to bleeding phenotypes. From a modeling perspective, the platelet is

particularly well-suited for study since it lacks a nucleus, allowing one to avoid the challenges of

describing whole-genome transcriptional regulation. Finally, the well-appreciated importance of

platelets in mediating thrombosis and hemostasis, as well as their contribution to systemic dis-

orders such as inflammation and cancer [36], place a high practical value on an accurate platelet

model. Such a model would be useful both as a basic research tool for predicting normal activation

behavior and as a strategy for the rational design of patient-specific pharmaceutical therapies [92].

In this study, we describe a computational model of the human platelet that accurately predicts

both resting and activated system behaviors. The model is based on 24 peer-reviewed studies span-

ning three decades of platelet research. Because of the inherent complexity in a model of this size,

we first constructed a set of four distinct signaling modules (see Chapter 5) to describe (i) Ca2+

release and uptake, (ii) phosphoinositide (PI) metabolism, (iii) P2Y1 G-protein signaling, and (iv)

protein kinase C (PKC) regulation of phospholipase C-β (PLC-β). Using fixed reaction equations

and fixed kinetic parameters, each module was tuned to match a relevant set of experimental data

by selecting allowable values for the resting concentrations of the module species. For the final

analysis, the four modules were merged into a single kinetic model and fit to Ca2+ release data

from ADP-stimulated platelets. Dynamic traces of intracellular Ca2+ represent multiple steps in

a complex signaling pathway from extracellular ligand to intracellular activation response, incor-

porating dynamic contributions from each module in the system. The fully integrated model was

capable of reproducing population and single-cell Ca2+ release data as well as measurements of PI

turnover and G protein activation.

4.2 Materials and Methods

4.2.1 ADP-stimulated Ca2+ release assay

Human blood was collected from healthy donors via venipuncture and anticoagulated with sodium

citrate (9 parts blood to 1 part sodium citrate). Platelet-rich plasma was incubated for 45 min

with Fluo-4 NW (Invitrogen) per the manufacturers instructions. PRP was diluted to a final

concentration of 12% on a 384-well plate. A separate plate containing varying concentrations of

ADP was prepared on a PerkinElmer Janus. Intracellular Ca2+ concentration was quantified by

measuring F(t)/F0 using a Molecular Devices FlexStation. Results are the average time-series

measurements of 6 replicates. Phlebotomy was conducted in accordance with the Declaration of

Helsinki and under University of Pennsylvania Institutional Review Board approval.
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4.2.2 Platelet Image Analysis

High-resolution electron micrographs of platelets stained with glucose-6-phosphatase obtained from

Ebbeling et al. [46] were used to quantify the relative area of the dense tubular system (DTS)

with respect to cytoplasmic area. Stained areas were delineated by using a threshold value for

pixel intensity. To determine the sensitivity of the technique to the chosen threshold value, we

calculated the DTS area using a maximally inclusive threshold (all stained regions and some of

periphery included in delineation) and a minimally inclusive threshold value (delineation entirely

within stained portion of image). The range of results obtained by both threshold values did not

differ by more than a factor of two.

4.2.3 Model Construction and Simulation

Ordinary differential equations (ODEs) were used to describe reaction rates corresponding to pub-

lished reaction mechanisms and kinetic parameters (see Table 1 in ref. [129]). To efficiently estimate

the dynamic range of initial conditions (ICs), the abundance of each estimated species or compart-

ment size was estimated over a base-10 logarithmic scale (as in Figure 4.3). For reactions occurring

at compartmental interfaces (e.g., cytosol and plasma membrane), reaction rates were adjusted by

scaling the concentrations of reactants to the bulk compartment as described by Kholodenko et

al. [86]. Within each of the five compartments, species were assumed to be well-mixed. While we

do not discount the importance of spatial gradients in Ca2+ signaling [177], previous studies have

shown that changes in [Ca2+]i within platelets are effectively instantaneous [64]. Simulations were

performed using the SBToolbox for MATLAB [146] Numerical integration was performed with an

absolute tolerance of 10−45 and a relative tolerance of 10−9.

4.2.4 Module Calibration and Analysis

The model topology was defined by a set of reaction equations, rate laws, and kinetic constants

(see ref. [129] for a complete list of model reactions and rate constants). The concentrations of

all enzymes and metabolites in the resting platelet at homeostasis comprise the initial condition

(IC) space of the model. The topology of the Ca2+ signaling network and almost all other kinetic

parameters are known from literature [129] except for those describing P2Y1 activation, which

were calibrated from measurements of P2Y1-reconstituted proteoliposomes (see 4.3). A subset of

IC space for each module was established by use of homeostasis constraints and experimental data

from platelets. The homeostasis constraint requires that a resting platelet remains resting such

that the initial condition is also a steady-state solution of a given set of ODEs (see Chapter 5). We

41



performed a dense sampling of unknown ICs over fixed reaction topologies to identify combinations

of IC values that were consistent with known steady-state concentrations.

Calculation of Ca2+ spiking frequency distribution. As described by Heemskerk et al. [64], strong

release events were identified by taking the derivative of the Ca2+ flux traces and setting a noise

threshold above which peaks were considered to be significant (Figure 4.8). Video-imaged platelets

were found to be quite variable both in peak interval times (4 to 40 s) and peak amplitudes (20

to 300 nM). We also observed significant variability in the platelet model, with peak amplitudes

ranging from 100 to 300 nM (Figure 4.7C). We were unable to estimate a single dominant frequency

using Fourier transform analysis of the simulated Ca2+ traces because of the substantial noise

and irregularity of spiking. Half-maximal agonist dose (1 μM) was used to generate a frequency

distribution for desensitized platelets treated with antagonists prostaglandin I2, apyrase, and aspirin

prior to 20 μM ADP.

4.3 Results

4.3.1 Model Overview

The full model (Figure 4.1, ref. [129]) comprises four interlinked kinetic modules (Figure 4.2A-

D). The Ca2+ module (Figure 4.2A) spans five compartments and functions to maintain a low

intracellular Ca2+ concentration ([Ca2+]i) by pumping ions across the PM into the extracellular

space, or across the membrane of the DTS into platelet stores using a sarcoplasmic/endoplasmic

reticulum Ca2+ ATPase (SERCA). Inositol trisphosphate receptor (IP3R) channels release Ca2+

from the DTS and are regulated by inositol 1,4,5-trisphosphate (IP3) and Ca2+
i . In the PI mod-

ule (Figure 4.2B), membrane-derived signaling intermediates such as IP3 are continually recycled

between the plasma membrane (PM) and cytosol by a series of phosphorylation, dephosphoryla-

tion, synthesis, and hydrolysis reactions [129]. Among its hydrolysis products, PLC-β generates

PM-bound diacylglycerol (DAG), which, along with Ca2+
i , modulates the activity of PKC. PKC

dampens GPCR-mediated signaling by phosphorylating PLC-β, reducing its hydrolytic activity. In

a module for receptor activation (Figure 4.2D), free ADP in the extracellular compartment binds

to the G protein-coupled receptor (GPCR) P2Y1, causing a subsequent rise in activated G protein

(Gq·GTP). Gq·GTP has a basal rate of hydrolysis that is accelerated when it is bound to PLC-β.

The transient complex PLC-βGq·GTP (PLC-β∗) is the hydrolytically active form of the enzyme

and regulates transmembrane signaling in the PI module.

Clearly, the model does not include all of the reactions that govern platelet homeostasis and acti-

vation. Such a list is both unavailable and intractable to deploy until a core set of modules can be
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Figure 4.1: Schematic of platelet model compartmentalization and reactions. The full model
comprises 5 compartments, 70 species, 77 reactions, and 132 kinetic parameters [129]. 3D com-
partments: extracellular (EX), cytosolic, and DTS. 2D compartments: PM and DTS inner mem-
brane (IM). Abbreviations: IPP, Inositol phosphate phosphatase; IP2P, Inositol bisphosphate phos-
phatase; IP3P, inositol trisphosphate phosphatase; DAG, diacylglycerol; PA, phosphatidic acid;
CDP, CDP-DAG.

validated, which is the focus of this study. We have focused on the subset of reactions that govern

ADP-mediated phosphoinositide signaling and mobilization of intracellular Ca2+ [129]. The P2Y1

receptor is coupled primarily to the Gq family of G proteins,20,21 which activate the beta-isoform

of phospholipase C [17, 82]. Previous work has shown that this pathway accounts for more than

90% of the ADP-mediated Ca2+ signaling in platelets [138]. To eliminate Ca2+ influx and the need

to model store-operated Ca2+ entry, we used experimental data from studies in which extracellular

Ca2+ was removed by EDTA or another chelating agent. EDTA was also used in our own exper-

iments. ADP releases Ca2+ only from the DTS [104] and thus modeling the acidic store is not

required at this point.

4.3.2 Platelet Ca2+ Balance

The Ca2+ module addresses a fundamental question of what resting level of IP3 is needed to

balance the open probability of IP3R channels with SERCA in a platelet of a given DTS volume

and [Ca2+]dts . Our strategy for modeling platelet Ca2+ signaling can be summarized in two steps:

First, we considered the kinetic properties of the IP3R and SERCA [45,154,186], the resting Ca2+
i

concentration [150], and the volume of the platelet [174] to be accurate as reported. These values

were held fixed in the module. Second, we generated more than 109 combinations of the unknown
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values in the module (number of IP3R/platelet, SERCA pumps/platelet, [Ca2+]dts , volume of

the DTS) to find a set of “configurations” that reached an equilibrium state with the known

resting [Ca2+]i (see 4.2). Each configuration may be thought of as a unique platelet model with a

characteristic compartmental structure and molecular makeup (i.e., different numbers of SERCAs,

IP3Rs, etc). Note that more than one module configuration can produce the same resting [Ca2+]i .

Existing kinetic, electrochemical, and physiological data was incorporated into the module as fol-

lows: Resting platelets maintain a [Ca2+]i between 40-100 nM [64,150], while storing concentrated

Ca2+ ([Ca2+]dts) in the DTS [150]. Pumping of Ca2+ by SERCA isoforms (Figure 4.2E) was mod-

eled according to a kinetic study of the type 3 SERCA isoform [45], which is abundant in human

platelets [93]. For the IP3R [154], each subunit of the type 2 receptor exists in one of six states: na-

tive, open, shut, active, or two inactive states (Figure 4.2F), where state transitions depend on [IP3]

and [Ca2+]i . The channel open probability (Po) is determined by the number of IP3R tetramers

with all subunits in either open or active conformations [129]. We used the Nernst equation [2] to

relate Po to the release of Ca2+ from the DTS:

d[Ca2+]i
dt

= NPoγe
RT

zF
ln

(
[Ca2+]dts
[Ca2+]i

)
(4.1)

Here, N is the total number of channels per platelet, γ is the single-channel conductance (10 pS)

of the platelet IP3R [186], and e is the number of elementary charges (z) per second per Ampere

(6.24 × 1018). The cytosolic volume of the platelet is ≈6 fL [174].

The unknown quantities in the module were the number of IP3R and SERCA per platelet, [Ca2+]dts ,

and the volume of the DTS. The range of values sampled for each quantity is shown in Figure 4.3A.

A dense sampling (n = 109) of these quantities generated 100,000 unique configurations of the

Ca2+ module (with [Ca2+]i = 100 ± 10 nM) that were further divided into three groups (low-

, mild-, and high-response) based on the estimated [Ca2+]dts , an indicator of the configurations

response to an increase in [IP3] (Figure 4.3B). To examine any molecular or structural differences

among low-, mild-, and high-response groups, we compared the levels of SERCA, IP3R, IP3, and

relative DTS volume that were estimated for each group. These values are presented as probability

distributions (Figure 4.3C), where regions of high density reflect frequently occurring values for

the estimated concentrations and compartment sizes. For example, low response configurations

tended to have ≈ 1000 IP3R channels per platelet as indicated by red regions (Figure 4.3B). We

note that, of 109 sampled configurations, only 0.005% satisfied the dual constraints of steady-state

Ca2+ homeostasis and IP3 responsiveness (mild- or high-response configurations). This observation

indicated that the kinetic properties of Ca2+-regulating enzymes such as IP3R and SERCA alone

place strong constraints on the physical size and molecular makeup of the platelet.
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compartment sizes in the platelet Ca2+ module were estimated by randomly sampling the unknown
quantities in panel A and selecting only those molecular “configurations” that produced a resting
[Ca2+]i of 100 ±10 nM. (B) This reduced set of configurations was divided into 3 groups based on
the estimated [Ca2+]dts (top), which corresponded to the [Ca2+]i release behavior after a 10-fold
increase in [IP3] (bottom). (C) Probability distributions for estimates of SERCA, IP3R, IP3, and the
relative DTS volume in low-, mild-, and high-response configurations (n = 100, 000). The measured
IP3 level from resting platelets [161] is boxed. (D) Image obtained from glucose-6-phosphatase stain
of the DTS from a human platelet [46] was used to quantify the cytosolic (gray) and DTS (black)
area from a 2D section of the platelet.
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Configurations with a negligible gradient ([Ca2+]dts ≈ 100nM) lacked IP3-responsiveness and had

relatively low SERCA levels (67% had ¡ 5000 copies) with a median estimate of 1600 IP3R chan-

nels/platelet. By contrast, mild-response configurations ([Ca2+]dts ¡ 10 μM) responded to elevated

[IP3] with a transient rise in [Ca2+]i and were characterized by high SERCA levels (≈ 106/cell) and

higher IP3R abundance (median = 2000 channels/cell). High-response configurations ([Ca2+]dts ¿

10 μM) clustered near 106 SERCA pumps but showed a broad distribution of IP3R abundance.

The calculated IP3R/SERCA ratio for low-response configurations had a loosely defined distri-

bution, while the mild- and high-response configurations favored 103-105 more pumps than chan-

nels (1:6900 for mild-response and 1:5200 for high-response). Thus, the model predicted a very

low IP3R/SERCA ratio for functioning platelets, a hypothesis supported by noting that a single

SERCA3b pump operating at a membrane with a 1000-fold Ca2+ gradient transports ≈0.4 Ca2+

ions/s [45], while a single type 2 IP3R channel in the same membrane at 37◦ conducts ≈3,000 Ca2+

ions/s, assuming a steady-state Po of 0.0005 [154].

The low-response configurations harbored high resting concentrations of IP3, inconsistent with a

resting platelet [16]. The median IP3 count for mild-response configurations was 750 molecules/cell,

similar to the measured value (≈1200 molecules/platelet or ≈ 200 nM) [161] in resting platelets.

More than 80% of high-response configurations harbored ¡1000 IP3 molecules/cell in resting platelets.

The relative volume of the DTS compartment to cytosol, as predicted from the estimation proce-

dure, was quite constrained at 0.5-5% (median = 2%) of the non-granular intracellular volume. To

compare this result to a direct physical observation, we quantified the relative area of the platelet

DTS as revealed by glucose-6-phosphatase staining [46]. This calculation gave a DTS/cytosol frac-

tion of 4.3%. Assuming the stained region marks the true DTS border, this estimate is accurate

within a factor of two (see Section 4.2). Thus, estimates obtained from independent kinetic calcu-

lations or image analysis of stained platelets gave similar values for the DTS compartment volume

fraction.

4.3.3 PI Metabolism

PIs are continually interconverted in platelets, even under resting conditions [16, 150, 176]. To

capture this behavior, we employed a set of synthesis and degradation reactions that continually

recycles PIs in the absence of a stimulating dose of agonist (Figure 4.2B, [129]). Failure to account

for PI resynthesis would have prevented prediction of steady-state concentrations. Using the same

strategy for modeling platelet Ca2+ regulation (see Section 4.3.2), we generated 10,000 unique PI

module configurations that were consistent with the measured resting concentrations of PtdIns,
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Figure 4.4: Comparison of PI and P2Y1 modules to experimental data. (A) At t = 0, platelets
were treated with 27 nM thrombin and the levels of PtdIns, PIP, and PIP2 were measured (data
obtained from Wilson et al. [176]). To simulate this turnover in the PI module, [PLC-β∗] was
raised to 1 μM and PI levels were calculated over time. Average results from 100 simulations are
plotted as solid lines. (B,C) Kinetic parameters in the P2Y1 module were fit to GTP hydrolysis
measurements from proteoliposome assay containing 300 nM P2Y1, 1 μM Gα·GDP, 3 M Gβγ,
2 μM GTP, RGS4, and 2MeSADP (data obtained from Waldo et al. [169]). Best-fit simulation
results are plotted as solid lines. (B) Time-course GTPase activity is shown with (filled squares)
or without (open squares) 100 nM RGS4. (C) P2Y1 dose-response to 2MeSADP in the absence
(open squares) or presence (filled squares) of 100 nM RGS4. In the final platelet model, Kd and
kcat values for ADP-binding and PLC-β-mediated hydrolysis, respectively, were substituted for the
2MeSADP- and RGS4-mediated activities used in the calibration procedure shown here.

PIP, PIP2, DAG, and PA [126, 168, 176]. Thus, each configuration represents a potential molecu-

lar arrangement of PIs in the platelet that is consistent with published kinetic rates and resting

measurements for key membrane phospholipids.

To examine the transient behavior of the PI module under activating conditions, we set the con-

centration of PLC-β∗ in the module to 1 μM (≈100-fold above basal levels). Figure 4.4A compares

the measured and simulated changes in the platelet PIs after treatment with thrombin or elevated

PLC-β∗, respectively (both thrombin and ADP signal through Gq-mediated stimulation of PLC-

β1). The simulated time course for PtdIns degradation was consistent with experiment throughout

the 90 s interval following activation. Simulated levels of PIP and PIP2 were consistent with

experiment [176] through the first 25 s (Figure 4.4A). After this time, PIP and PIP2 continued

to be degraded in the simulation but were sustained, or slightly elevated, in thrombin-stimulated

platelets. A recent study in murine megakaryocytes [170] has confirmed that resynthesis of PIP2

is necessary to replenish basal levels following agonist stimulation, a feature that is included in the

model. However, because the rate of hydrolysis exceeds the rate of PI synthesis, we observed a

monotonic decrease in PIs when the level of PLC-β∗ was held fixed. To address this discrepancy

between model and experiment, we introduced a negative-feedback module (see Signal Attenua-

tion, Figure 4.2C) in which the activity of PLC-β∗ is attenuated by activated PKC (PKC∗) through

phosphorylation of the phospholipase.
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4.3.4 Signal Attenuation

As noted above, the degradation of PIs in platelets following PLC-β activation does not decrease

monotonically [150, 176]. Furthermore, the sharp rise in [IP3] and [Ca2+
i ] following GPCR stim-

ulation returns to near-basal levels within 30-60 s [43]. This negative-feedback mechanism was

modeled by allowing direct inactivation of PLC-β by PKC through a phosphorylation reaction,

which has been observed in several cell types [55, 135]. In the PKC module (Figure 4.2C), acti-

vation of the kinase requires association with Ca2+
i and DAG and translocation to the PM [13].

Activated PKC (PKC∗) phosphorylates PLC-β, rendering it unable to bind Gq·GTP. Clearly, this

represents only one of several potential mechanisms for regulation of Gq-dependent PI hydrolysis in

platelets. Other mechanisms include receptor internalization [11], deactivation of G proteins [17],

and accelerated dephosphorylation of IP3 [37]. While these mechanisms will provide useful contri-

butions to future iterations of the platelet model, it is interesting that the use of PLC-β regulation

was sufficient to reproduce the observed attenuation in PI signaling following agonist stimulation

(see Figure 4.5C,D). Specifically, the gradual accumulation of Ca2+ and DAG during the first 10-15

seconds provides the appropriate time-delay for shutting off PIP2 hydrolysis.

4.3.5 Receptor Activation

P2Y1 is a GPCR expressed on the surface of human platelets (≈ 150 copies/platelet [12]) that is

essential for ADP-induced platelet shape change and aggregation [82]. Although other ADP re-

ceptors are involved in platelet Ca2+ signaling (e.g., P2X1 and P2Y12), P2Y1 contributes ¿90% of

the Ca2+ signal [138]. In our representation of P2Y1 activation (Figure 4.2D,H), binding of extra-

cellular ADP to P2Y1 leads to activation of Gq through GDP/GTP exchange reactions. Gq·GTP

is a substrate for GTPase activating proteins (GAPs) such as PLC-β and RGS4, which can accel-

erate Gq·GTP hydrolysis over 1000-fold [114]. Bornheimer et al. showed that the combination of

G proteins, active GPCRs, and GAPs can form kinetic “ternary” modules with distinct signaling

patterns [15]. Thus, we used results from a published in vitro assay of P2Y1 activity to construct

a ternary model of the P2Y1 receptor. In that assay, Waldo et al. combined purified human P2Y1,

ADP, Ga and Gβγ subunits, PLC-β or RGS4, and radiolabeled GTP in large phospholipid vesicles

and measured the agonist binding and Gq-stimulating activities of the receptor [169]. GTPase

activity was measured with and without agonist (Figure 4.4B). ADP dose response was measured

with and without GAP protein (Figure 4.4C). Using identical simulated conditions, we obtained

the kinetic parameters in the P2Y1 module from these time-course measurements. The kinetic
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Figure 4.5: ADP dose response for the full platelet model. (A) Relative fluorescence of Fluo-4-
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rate constants, given in Table 1 of ref. [129], accurately reproduced both sets of measurements

(Figure 4.4B,C).

4.3.6 Signaling in Platelet Populations

The four modules described above were merged into a single kinetic model using a bootstrap method

(Figure 4.6). With a fixed reaction network (Figures 4.1 and 4.1) and fixed kinetic rate constants

[129], initial conditions were fit to dose-response [Ca2+]i time-course data from ADP-stimulated

platelets (Figure 4.5A,B). In the presence of basal ADP levels similar to human venous plasma [8],

the model maintained a resting [Ca2+]i of 75 nM (Figure 4.5B). At higher ADP concentrations,

[Ca2+]i reached peak levels ≈ 20 s after addition of agonist with a decay constant of ≈1 min. We

found the synchronous [Ca2+]i peak-response at all agonist doses to be a complex and unique feature

in the data, particularly well-suited for testing model validity. Achieving this characteristic shape

required a transient (non-monotonic) rise in [IP3]. In ADP- and thrombin-stimulated platelets

[43, 132], [IP3] increases rapidly after agonist addition, peaks around 15 s, and then decreases to

near-basal levels. The model predicted this behavior accurately (Figure 4.5C). We observed that

PLC-β∗, which comprised ≈ 0.2% of the total PLC-β pool in the model, strongly controlled this

rise and fall of [IP3] (Figure 4.5C,D). Phosphorylation of inactive PLC-β by PKC∗ (Figure 4.5E)

was sufficient to dampen Gq-mediated PI hydrolysis. The simplicity of this negative-feedback

model suggests a mechanism whereby the phosphorylation of inactive PLC-β, present at much

higher abundance than PLC-β∗, fine-tunes the hydrolytic activity of the enzyme by sequestering

it from Gq·GTP. Addition of ADP caused a sharp burst in [Gq·GTP] that saturated within 5-

10 s for all doses (Figure 4.5F). This trend was consistent with the observed time-scale for G

protein activation [87]. Maximal [Ca2+]i and [IP3] responses to increasing ADP was predicted

quantitatively (Figure 4.5G,H).

4.3.7 Signaling in Individual Platelets

Deterministic simulations, such as those in Figure 4.5B-F, resemble data obtained from suspen-

sions of platelets (Figure 4.5A), in which a million or more cells may be assayed simultaneously.

These conditions often produce average or “smooth” responses that are typical of cell populations.

However, when platelets are monitored individually, the addition of agonist can produce a series of

sharp, asynchronous Ca2+ spikes [63,64]. To test the single-platelet response in the model, we used

the Stochastic Simulation Algorithm [59] to simulate Ca2+ release in a single platelet during rest or

activation by ADP. Using the estimated sizes of the platelet compartments, species concentrations

were converted to integer values for use in the stochastic simulation. Note that any species present
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Figure 4.6: Modular calibration and feature extraction. (A) Example construction of a functional
module, showing calibration of platelet Ca2+ balance. A fixed reaction network containing one or
more unknown ICs (e.g., the concentration of a protein or the size of a compartment) was simulated
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variability in the module. (B) Simulated release of intracellular Ca2+ for sampled points along the
first principal component. Traces show the first second of Ca2+ release after a ten-fold increase in
IP3. See Chapter 5 for a detailed description of the method.

at 1 nM in a 6 fL platelet constitutes less than 4 molecules, a level that can give rise to stochastic

fluctuations.

Dramatic, asynchronous [Ca2+]i spikes increased in frequency and amplitude after activation with

ADP (Figure 4.7A,B). Before agonist stimulation, the resting platelet model showed occasional

Ca2+ spikes with relatively small amplitude. Similar behavior was noted in a third of recorded

platelets [63], which spiked on average 1.6± 0.2/min without ADP stimulation. The onset of Ca2+

release after agonist addition was rapid in the model (≈5 s) and persisted for several minutes, also

consistent with experimental results [63,64]. Key drivers in this asynchronous spiking were the chan-

nel open probability, the low copy number of IP3R channels, the size of the cytosolic compartment

(8 fL in the model), and the large Ca2+ gradient at the DTS membrane. To determine the fre-

quency distribution of Ca2+ spiking, we followed exactly the empirical strategy used by Heemskerk

et al. [64] to distinguish individual Ca2+ release events in a detailed study of video-imaged platelets

(see Figure 4.8). There was a striking resemblance between simulation and experiment for the peak

interval distribution (Figure 4.7C), with the most common intervals occurring at 6-8 s or 11-13 s.

As platelet volume was artificially increased 100-fold in the stochastic simulation (Figure 4.7D),

the Ca2+ spiking was lost and typical, smooth ADP responses (as in Figure 4.5B) for populations

emerged. Thus, the asynchronous spiking appeared to be a result of the fundamentally stochastic

nature of signal transduction in cells as small as human platelets.
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Figure 4.7: Stochastic simulation of a single platelet. (A) A single, fura-2-loaded platelet was
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i

trace was obtained from Heemskerk et al [63]. (B) After 90 s of simulated rest, the platelet model
was activated by setting extracellular [ADP] to 40 μM. [Ca2+]i was sampled every 0.1 s. (C) Single
platelets were simulated for 10 min and [Ca2+]i was sampled once per second. Ca2+ peaks were
identified as described by Heemskerk [64]. Peak intervals between 5 and 30 s were counted from 10
simulations as described for video-imaging studies (see Figure 4.9). Interval times were binned in
2 s increments for direct comparison with experiment (inset). (D) The platelet model compartment
sizes were artificially scaled to 1, 10, or 100 times their original sizes. Simulation results are shown
for 300 s stochastic simulations with 20 μM ADP added at 90 s. The bottom plot shows results for
the deterministic simulation.
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4.4 Discussion

We deployed available kinetic data, electrochemical calculations, measurements of cell size, and

modular organization of signaling function to estimate the physical structure and dynamical prop-

erties of ADP-stimulated Ca2+ release in human platelets. For the first time, a single model has

accounted for several fundamental attributes of known platelet behavior: (i) In the presence of

basal ADP levels, the model remained at steady state and accurately predicted the resting concen-

trations of Ca2+
i , IP3, DAG, PA, PI, PIP, and PIP2. Under these conditions, the model underwent

slow turnover of signaling molecules (e.g., IP3, PLC∗, and Gq·GTP), yet the rates of synthesis and

degradation of these metabolites were exactly balanced. At the same time, Ca2+ was continually

leaked from the DTS and actively pumped back into stores, maintaining a resting platelet [Ca2+]i

near 100 nM. This “active” homeostatic state is representative of the situation in vivo, since inhibi-

tion of SERCA pumps causes a gradual depletion of Ca2+ stores [150]. (ii) Increased [ADP] caused

a transient rise in [Ca2+]i and [IP3] with the correct dose response and time-course profiles. (iii)

Stochastic simulation of the platelet model generated noisy Ca2+ release and reuptake behavior

with a nearly instantaneous onset. (iv) Calculation of peak-to-peak interval times revealed a distri-

bution of intervals favoring 6-8 and 11-13 s gaps. These results were strikingly similar to what was

observed in video-imaged platelets and demonstrate that both averaged and stochastic behaviors

may be accurately captured by the same molecular model. Importantly, the model fulfilled the

dual requirement of maintaining homeostasis under resting conditions while remaining capable of

generating an activation response in the presence of sufficiently high agonist concentration. This is
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a critical quality to consider when modeling platelets, which must be sensitive enough to respond

to injury without activating prematurely [17, 150].

Our analysis also produced several novel predictions: (i) The number of SERCA pumps was pre-

dicted to outnumber IP3R channels (¡5000 IP3R copies were predicted in most configurations).

This was largely a consequence of the kinetic properties of the enzymes, which transport Ca2+

at significantly different rates. (ii) The relative volume of the platelet DTS was predicted to be

2-4% of the non-granular intracellular volume, both by kinetic modeling and image analysis of a

DTS-stained platelet. (iii) Lower resting [IP3] was associated with greater [Ca2+]dts and more

acute Ca2+ release. (iv) Restoration of basal PI levels following PLC-β∗ hydrolysis was predicted

to occur in part through a negative-feedback mechanism in which PKC∗ phosphorylates PLC-β

and thereby diminishes its hydrolytic activity. (v) By artificially increasing the volume of the sim-

ulated platelet, we were able to quench the fluctuation of Ca2+ spikes, achieving a response more

similar to that of megakaryocytes, in which regular oscillations in [Ca2+]i are observed with fixed

amplitude and frequency [162]. Since mature megakaryocytes are more than 1000 times larger than

platelets [69], these observations suggest that the asynchronous and stochastic Ca2+ response in

platelets may simply be the consequence of a small intracellular volume.

The model also provided some insight into why thrombin is a more potent agonist than ADP.

Both agonists act through Gq-coupled GPCRs [17], yet there are about 10 times as many thrombin

receptors as ADP receptors [12, 17]. To determine whether the increased potency of thrombin

may be due to greater receptor surface expression, we increased the number of P2Y1 receptors

in the model and examined the ADP response. A 10-fold increase in [P2Y1] caused a 2-fold

higher peak response and more sustained elevation of [Ca2+]i (Figure 4.9), similar to the observed
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difference between thrombin- and ADP-stimulated platelets. While a more thorough analysis will

involve examining the coupling efficiency to Gq and the duration of the receptor active state, these

calculations imply that the low copy number of P2Y1 may be a limiting factor for ADP signaling.

Our estimation procedure generated 10 individual platelet models (unique sets of initial conditions

representing the resting concentrations for the 70 species in the model) that each satisfied home-

ostasis constraints and fit all available data (Figure 4.10). These models may be thought of as

individual cells in a platelet population that vary in their exact molecular makeup but are each

capable of generating the same activation response. For certain species such as Ca2+
i , DAG, and

PIP2, the similarity among the models can be easily explained since these quantities were held

fixed (with a small variability term) to the values reported in the literature. Other similarities

in the concentrations, as for GTP and PLC-β∗, are more interesting because these values were

not explicitly restricted by the estimation procedure. Rather, these uniformities reflect implicit

constraints in the platelet model that emerged because of other species concentrations or signaling

reactions that strongly control the production or consumption of these species. As such, these

quantities are predicted to be rigid, or inflexible, “nodes” in the model [105] and are subject to

further investigation as a new hypothesis revealed by the analysis. By contrast, we observed sev-

eral instances of variability in concentrations (node flexibility) among the 10 models. For example,

the concentrations of PKC and Gq·GTP both varied over 3 orders of magnitude. Similarly, the

values for P2Y1, SERCA, PMCA, PLC-β, Ins, IP2, and CDP·DAG varied appreciably. The large

variability observed for many of the estimated phospholipids (e.g., Ins, IP2, and CDP·DAG) was

due to allowable node flexibility and/or insufficient experimental data to constrain the estimation

of the resting concentrations. Thus, while the essential steady-state and activation properties were

accurately captured by the module as a whole (Figure 4.4A), additional experimental data will be

necessary to generate reliable estimates for individual phosphoinositides. Finally, the estimated

number of IP3R channels was generally low (¡2500 channels/cell) as expected from the analysis of

the Ca2+ module. Higher [Ca2+]dts appeared to be compensated by higher SERCA levels.

Through a computational analysis of the human platelet, we have demonstrated the successful inte-

gration of heterogeneous data sets and legacy knowledge to construct a predictive model of platelet

homeostasis and activation. This assembly of molecular detail represents, for the first time, a

substantial description of the platelet signaling apparatus and was capable of reproducing diverse

experimental observations as well as providing specific, testable hypotheses regarding platelet en-

zymatic regulation, the physical structure of the cell, and the dynamics of intracellular calcium

release. Specifically, this is the first work to provide a quantitative molecular explanation of the

asynchronous calcium spiking observed in stimulated human platelets. By incorporating additional
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Figure 4.10: IC map for 10 best-fit platelet models. Raw values for model quantities (steady-
state concentrations, compartment sizes, or kinetic parameters) are color-coded according to the
indicated units for each value type. Note color bar on right-hand side of figure. In most cases,
colors correspond to molar concentrations (mol/L or mol/m2, see footnote). For example, Ca2+

dts

values shaded orange correspond to molar values of 110 μM. Many quantities displayed a narrow
range of values (e.g., PLC-β·Gq·GTP, IP3, DAG Kinase) that reflect either imposed restrictions
based on experimental evidence or implicit constraints due to the model structure (see Section 4.4).
Other quantities varied considerably (e.g., IP2 and CDP·DAG). Species are grouped according to
compartment. ∗DTS species (mol L-1). †Extracellular species (mol L-1). ‡DTS volume (L). §PM
leak conductance/area (S m-2).
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experimental data, future versions of the model can include mechanisms for store-operated Ca2+

influx mechanisms, the acidic Ca2+ store, integrin activation, granule secretion, phosphatidylserine

exposure, as well as additional receptors for prostacyclin, nitric oxide, thromboxane, epinephrine,

thrombin, fibrinogen, and collagen. As experimental investigation of platelet function continues,

new data will be used to challenge, confirm, and expand the platelet signaling model presented

here.
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Chapter 5

Steady-State Kinetic Modeling

5.1 Introduction

Computational models help quantify the reaction dynamics and regulatory modes in complex bio-

chemical systems [4,7,9,13,50], particularly when a system is so intricate that its behavior cannot be

predicted by intuition alone. The building blocks for constructing large reaction networks are often

available in numerous databases [10,83,108,152] and journal archives. Here, one can obtain many of

the experimentally-derived elementary reaction steps, kinetic constants, or rate laws for individual

steps in a given biochemical system or pathway. Despite this wealth of information, however, com-

piling these data to construct models with accurate system-wide behavior represents a significant

challenge in systems biology [70, 81]. Comprehensive models of metabolism have been successfully

developed for microbial systems [49, 50, 139] and a few eukaryotic cell types [145, 155, 175]. These

constraint-based models [88] are often represented by stoichiometric networks that lack an explicit

description of substrate concentrations, reaction mechanisms, or the transient behavior of the sys-

tem. Although various strategies have been proposed to incorporate these features into large-scale

models [124,153], the task of assembling complex kinetic models with nonlinear dynamics remains

a difficult problem. One of the major obstacles to building accurate kinetic models is the number of

unknown parameters in the model that must be estimated using experimental datasets [153], which

themselves are often massive, incomplete, noisy, and/or imperfect [76]. A number of parameter es-

timation methods, such as genetic programming, simulated annealing, and various gradient-based

routines [111,127], have been proposed to infer unknown quantities in biochemical models. Most of

these methods address the problem of estimation in purely abstract terms and do not take into ac-

count the unique mathematical features of biochemical systems, such as a well-characterized kinetic

59



subsystem (e.g., the dynamics properties of an ion channel [154]). Estimated parameters must still

meet constraints imposed by the other experimentally measured parameters in the model.

To address these challenges, we propose a strategy for assembling large kinetic networks that retain

the nonlinear dynamics governing individual reactions in the system. The key features of the method

are: (i) restriction of steady-state values by subsystem kinetics, (ii) reduction of the steady-state

solution space by principal component analysis (PCA), and (iii) combination of independently

constructed submodels (modules). The first feature is a Monte Carlo sampling over unknown

concentrations with fixed kinetic parameters derived from the literature. The opposite strategy has

been used in microbial systems to restrict kinetic parameters based on species concentrations [49].

The second feature, reduction of the steady-state space by PCA, has been applied previously for

metabolic systems described by a stoichiometry matrix [50, 139], but not, to our knowledge, for

nonlinear systems. In the last step, a full model representation is assembled by combining PCA-

reduced, steady-state solutions from each module to form a combined steady-state solution space

for the entire system. This global space may then be searched for solutions with accurate time-

dependent behavior using any number of established routines [61, 127].

The method exploits three properties common to many biological systems: modularity, homeosta-

sis, and known quantitative kinetic relationships among interacting molecular components. Inter-

estingly, this physiology-inspired approach enforces natural constraints on the range of allowable

system states and allows one to monitor shifts in steady states due to kinetic perturbations. To il-

lustrate the method with an example, we show how 77 reactions from 17 primary data sources were

integrated to construct an accurate model of intracellular calcium and phosphoinositide metabolism

in the resting and activated human platelet. Finally, we extend our analysis of this modeling ap-

proach by examining the steady-state characteristics of a system that is affected by changes in

kinetic rate constants.

5.2 Materials and Methods

5.2.1 Model Definitions and Requirements

Our method builds upon a common representation of biochemical reaction networks [38] consisting

of a system of ordinary differential equations (ODEs). In this paradigm, the concentration of

each molecule in the system changes with time as a function of the instantaneous values of other

concentrations and fixed kinetic parameters in the model. We separate this model description

into two parts: The concentration vector (CV) of the model refers to the set of all molecule

concentrations at a given instant in time and is denoted by the vector c:
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c = (c1, c2, . . . , cn) (5.1)

The model topology refers to the entire set of kinetic parameters and rate equations that determine

how these concentrations evolve with time. Mathematically, this is represented by the vector

function f , which defines the rate of change of c with time as a function of the model concentrations

and rate parameters:

dc
dt

= f(c) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1(c)

f2(c)

. . .

fn(c)

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.2)

The functional form of each fi is a sum of rate equations for each reaction that consumes or

produces ci and will generally vary for each molecule. Typical functional forms for f may include,

for example, a series of Michaelis-Menten or nonlinear rate expressions. A simple reaction topology

is shown in Figure 5.1A with corresponding ODEs in Figure 5.1B. It is useful to separate a large

model into two or more modules with subset CVs that overlap at reaction edges, as shown in

Figure 5.1A.

Often, the topology of a biological system is better characterized than its CV [88]. For example, the

major protein-protein interactions in a signaling pathway may be deduced from mutation or knock-

out studies, providing a molecular wiring diagram that links together the various components in the

network. For each of these interactions, purified enzymes may be used to measure the strength of

the interaction in vitro or to measure the rate of some enzyme-catalyzed reaction in the system. An

important caveat is that the kinetic rate constants within the cellular milieu (the cell context) may

be different from those obtained in an in vitro experiment with purified components. In contrast, it

is generally more difficult to accurately measure the absolute abundance of intracellular enzymes or

metabolites in vivo, although progress is being made in this area [107]. Our method thus assumes

that the topology of a given system is known and that the unknown set of concentrations exists in a

linear space of dimension n in which each species ci comprises a separate dimension (Figure 5.1C).

The ultimate goal of the method is to efficiently search this concentration space to find a set of

values that, when combined with the fixed topology, renders the full model consistent with known

resting states and experimental time-series data obtained by perturbation of the cell.
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Figure 5.1: Example structure of model topology, ODEs, and concentration space. (A) The model
topology defines the state transitions (arrows) and rate equations (f) that determine how molecules
are interconverted. This example model is organized into three overlapping modules, with molecules
c3 and c5 each occurring in two modules. Corresponding (B) ODEs and (C) concentration space
for the example topology in panel A. Each of the 7 molecules occupies a separate linear dimension,
with each module comprising a subspace of the full 7-dimensional space. Modules that share a
common molecule have intersecting subspaces.
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5.3 Homeostasis and the steady-state assumption

A special situation arises when dc/dt = 0 in equation 5.2. Under these conditions, the model is

said to be at steady state, and the vector css is a steady-state solution to the system of ODEs.

If f contains nonlinear terms, there may be an infinite number of steady-state solutions for the

system of ODEs [38]. This set of solutions occupies some nonlinear subspace of the concentration

space exemplified in Figure 5.1C. To guarantee that nonzero steady-state solutions may be found,

the method requires the model topology (and all module topologies) to be balanced, meaning that

the production and consumption of each molecule must be equal so that the total mass of the

system is conserved. This steady-state assumption [88] is a common constraint in stoichiometric

modeling and metabolic flux analysis and is conceptually related to the biological phenomenon

of homeostasis [68], in which opposing processes are coordinated to maintain the stability of a

cell or organism. For example, a nerve cell may maintain a constant electrochemical gradient by

continually transporting ions across a lipid membrane.

5.4 Results and Discussion

5.4.1 Reduction of Modular Kinetic Networks

The first phase of the method involves generating a compact representation of the steady-state

solutions for each module. The steps for module reduction are outlined in Figure 5.2A. First,

conservative bounds are chosen for c based on physiological and practical considerations. For

example, a regulatory enzyme is expected be present in at least one copy per cell and not to exceed

an intracellular concentration of one molar. Knowledge about the physical size of the system is

useful in this step to convert a raw copy number to a concentration. For small systems, this

information can provide a rigid lower bound on unknown concentrations (see Chapter 4). For

example, a single molecule in a 6 fL platelet has a concentration of 4 nM. Also, because molecular

concentrations can span several orders of magnitude, it is often more efficient to delineate this range

of values on a logarithmic scale rather than a linear scale.
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Figure 5.2: Steps in dimensionality reduction of steady-state modules and example from platelet signaling
model. (A) Steps in dimensionality reduction of kinetic modules: (1) Restrict value ranges for each ci to
physiologically realistic ranges. (2) Compute multiple steady-state solutions to the model ODEs using initial
guesses sampled randomly from the defined distribution. (3) Reduce the dimensionality of the steady-state
solution set by PCA. (B) Results obtained from modular reduction 4 kinetic modules in a platelet signaling
model. For each module, a fixed topology was combined with initial guesses from the defined distribution
and simulated until equilibrium was reached (dc/dt < 10−18) using 109 initial guesses for c0. Specific
concentrations within these steady-state solutions were compared to experimentally measured values, and
solutions with low error (±10% of known concentration values) for these elements were selected as “points”
in the steady-state concentration space. PCA was then applied to transform these points to a new coordinate
set that maximally covers the space of steady-state solutions.

Once the sampling distribution for c has been defined, steady-state solutions (css) for each mod-

ule are calculated using fixed kinetic parameters for each reaction in the module obtained from

the literature [10, 108, 152], novel kinetic experiments, or estimation. For this step, each initial

guess is sampled from the distribution for c and combined with the predetermined topology. The

combination of fixed rate equations, fixed parameters, and forms a well-posed initial value problem,

dc
dt

= f(t, c), c(t0) = c0 (5.3)

that may be computed using a numerical solver [34]. For non-oscillating systems, steady-state

solutions may be obtained by simulating the system until equilibrium is reached (i.e., until dc/dt ≈
0). Alternatively, one may use any number of multidimensional root-finding routines, such as those

available in the GNU Scientific Library [58], to find the closest n-dimensional root to the vector

function f using starting guess c0.

In the third step, a large collection of steady-state solutions for each module is subjected to principal

component analysis (PCA). A sample size of 1000 points per unknown concentration is generally

sufficient to minimize error due to over-fitting [62]. PCA is then used to transform these points

to a new coordinate set that optimally covers the space of steady-state solutions using the fewest

number of dimensions. For example, if two molecule concentrations in the steady-state space are

highly correlated due to participation in the same reaction, PCA will locate a single dimension

to represent each pair of points in the transformed space. Ultimately, these new dimensions will

be combined across all modules to search for global solutions that lie in the steady-state space

for the fully combined network. Since PCA is a linear method, a steady-state solution space

that is highly nonlinear may require more principal component vectors to accurately estimate the

solutions. Nonlinear methods of dimensionality reduction, such as kernel PCA [96] or local linear

embedding [134], may provide a more compact representation of steady-state solutions spaces in

future iterations of the method.
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The reduction procedure is illustrated with an example of a human platelet model comprising 4

interlinked signaling modules (Figure 5.2B). For each module, we used published reaction mech-

anisms and kinetic parameters to construct the module topologies [129]. Each topology was held

fixed while the unknown CVs were sampled from empirically-defined distributions. For this step,

we generated more than 109 sets of initial guesses (c0) for each module, computed the initial value

problem for each c0 until a steady state was reached (dc/dt ≈ 0), and selected only those steady-

state CVs (css) that were consistent with known concentrations. For example, the concentration

of intracellular Ca2+ ([Ca2+]i , Figure 5.2B) in platelets is known to be 1̃00 nM. Thus, only those

with [Ca2+]i ≈ 100 nM were kept as part of the steady-state solution space for the Ca2+ balance

module. This procedure was used to generate 10,000 steady state solutions for each module for

subsequent reduction by PCA. A minimal set of principal component (PC) vectors (those capturing

90% or more of the variance in the solution set) were used as search directions in the final estimation

step, in which the transient behavior of the perturbed steady-state was compared to experimental

time-series data.

Interestingly, only a small fraction of initial guesses produce steady-state solutions that are also

consistent with known concentration values. For example, it was previously shown that only 50,000

of 109 initial guesses (0.005%) in the Ca2+ balance module (Figure 5.2B) met both requirements

and were suitable for further analysis [129]. Among this set of CVs, marginal distributions for

individual molecules were often confined to a narrow range of values. As an example, 80% of

steady-state solutions for the calcium module contained ¡1000 IP3 molecules/cell, although initial

guesses were sampled uniformly between 1 and 106 molecules/cell. This observation shows that

the kinetic topology of these molecular networks places very strong constraints on the range of

concentrations that can exist at steady state. In biological terms, this suggests that fixed kinetic

properties at the molecular level (e.g., IP3R and SERCA kinetics) can affect not only the dynamical

features of a biochemical system but can also determine the abundance of chemical species and the

compartmental structures that contain them.

5.4.2 Merging Steady-State Modules

In the final step of the method, the full model is assembled by combining PCA-reduced, steady-

state solution spaces from each module into a combined steady-state solution space for the entire

system (Figure 5.3A). This global space is searched for full-length, steady-state solution vectors

that satisfy both the individual steady-state requirements of each module and the desired time-

dependent properties when the steady-state is perturbed (for example, by increasing the initial

concentration of a signaling molecule). For the platelet signaling model, consisting of 77 reactions,
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132 fixed kinetic parameters, and 70 species [129], a set of 16 PC vectors representing all 72

unknown variables (70 molecule concentrations, 1 compartment size, and 1 rate constant) in the

model were used as search directions in a global optimization routine. The global solution space

was searched for models with accurate dynamic behavior using experimental time-series data for

ADP-stimulated Ca2+ release (Figure 5.3A). Equality constraints are imposed during optimization

to maintain consistent concentrations of molecules that are present in more than one module.

Specifically, for a steady-state space A represented by m PC vectors and a steady-state space B

represented by n PC vectors, the projections of each space onto must be equal,

Aci = Bci (5.4)

where ci is the unit vector for the shared molecule, ci. This condition forms a linearly-constrained

optimization problem for which a number of efficient routines exist [127]. We used the Asynchronous

Parallel Pattern Search (APPSPACK) to perform a derivative-free optimization of the platelet

signaling model [61]. A least-squares objective function was used to score the difference between

simulated (after perturbation of steady state) and experimental time-series data points. One of

the high-scoring steady-state solution vectors for the full model is shown in Figure 5.3B, along

with individual steady-state vectors for each of the four modules. This 72-dimensional vector (i)

satisfies the homeostasis constraint in that it is a steady-state solution, (ii) is consistent with the

known steady-state levels for 8 of the molecules in the 72-dimensional space, and (iii) predicts the

entire dynamic Ca2+ and IP3 response of platelets exposed to ADP (0100 μM). Additionally, rigid

and flexible nodes (steady-state concentrations) in this 72-dimensional space were readily identified

when a set of allowable steady-state solution vectors are compared [129].

5.4.3 Applying the Method To Monitor Cellular Resting States

Resting systems remain in a steady state by the coordinated action of opposing but balanced

kinetic processes. Thus, in general, altering one ore more of these rate processes (e.g., increasing

the catalytic rate of a reaction) should upset the balance of the system and cause it to adopt

a new steady state. Various cell types have been shown to have altered steady-state properties

because of mutations that affect the constitutive rates of reactions. For example, patients with

type 1 diabetes harbor more Ca2+ ATPase activity in their platelets than healthy volunteers and

experience high resting levels of intracellular Ca2+ [24]. In a separate case, a mutation within the

tyrosine kinase domain of epidermal growth factor receptor causes significantly higher basal (growth

factor-independent) tyrosine phosphorylation levels than the wild-type receptor [26]. Therefore, to

examine the changes in steady-state properties caused by kinetic perturbations in our example
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Figure 5.3: Assembly of full model from steady-state modules. (A) The full model is assembled by
combining PCA-reduced, steady-state solution spaces from each module into a combined steady-
state solution space. This global space is searched for full-length, steady-state solution vectors
that satisfy both the steady-state requirements of each module and the desired time-dependent
properties when the steady-state is perturbed (in this example, by increasing the concentration
of the signaling molecule ADP and measuring the change in intracellular Ca2+ concentration). A
simple linear constraint is imposed for every pair of modules that share a common molecule ci to
ensure that steady-state solutions are consistent. (B) To assemble the platelet signaling model,
a set of 16 PC vectors representing all 72 unknown variables in the model were used as search
directions in a global optimization routine. The global solution space was searched for models with
accurate dynamic behavior using experimental time-series data for ADP-stimulated Ca2+ release.
Species are grouped according to compartment. Color values correspond to molar concentrations
(mol/L or mol/m2) or as indicated: ∗ DTS species (mol L-1). † Extracellular species (mol L-1). ‡
DTS volume (L). § PM leak conductance/area (S m-2).
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model, we altered the rates of 3 important regulatory reactions and observed the system response

to each perturbation. Each perturbation cause a brief adjustment phase lasting 2̃00 s followed by

a more gradual phase characterized by a new steady-state profile (Figure 5.4, left). After 1 hr

of simulated time, steady-state concentrations and reaction fluxes were quantified relative to their

original steady-state levels (Figure 5.4, right).

As expected, increasing the rate of Ca2+ release from intracellular stores resulted in higher cytosolic

Ca2+ levels (7-fold increase) and 10-fold greater pumping activity by plasma membrane Ca2+ pumps

(PMCA), although the new steady-state Ca2+ release flux remained relatively unchanged (Figure

5.4.4 Method Application, Computational Efficiency, and Extensions

We have presented a novel strategy for enumerating permissible steady-state solutions to fixed

kinetic topologies and combining these solutions spaces to form large kinetic models. This is a

practical strategy because kinetic parameters are commonly reported whereas absolute concentra-

tions are not (see, for example, refs. [10, 108, 152]). The method extends the capability to build

“genome-scale” models [50,53,70,81] to include nonlinear kinetic features. Through application of

the method, we have also explored the implicit restrictions on steady-state solutions that can be

imposed by the underlying kinetic structures within a system [13]. This is useful from a physiologi-

cal standpoint since the regulation and distribution of molecular species in living systems is largely

regulated by the coordinated action of synthetic, degrading, and transporting enzymes.

The proposed method requires the model to fulfill a steady-state assumption (i.e., the model must

contain nontrivial steady states) even if the system is typically characterized by transient behavior.

It is precisely this requirement that allows the model to have the dual functional behavior observed

in many biological contexts, such as in cellular signaling responses. At very low levels of activating

signal, the model remains at rest by quenching the low level of activating signal through feedback

mechanisms or futile cycling. When activating signals are increased, the system responds with the

appropriate transient signaling behavior. As an example, a human platelet must remain quiescent

under normal circulating conditions, tolerating a number of fluctuations in its surrounding chemical

and physical environment. In the presence of the appropriate stimulus, however, it must be able

to respond rapidly to bleeding conditions and trigger a precise program of molecular signaling

events. Developing a mathematical model that is consistent with two or more biological behaviors

is analogous to writing a single equations that has multiple solutions, each dependent on a given

set of initial conditions and parameter values.
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Figure 5.4: Shifts in steady-state profiles caused by kinetic perturbations. The steady-state
platelet model was perturbed by changing selected kinetic parameters (±10-fold) and simulating
for 1 h (left panels). After approaching a new steady state, the model concentrations and fluxes
were determined relative to their original steady-state values and colored according to fold-change
(right panels). Green indicates no change (NC) relative to initial flux/concentration. Red indicates
a relative increase and blue indicates a relative decrease. Note that the color scale in each panel
is normalized separately to maximize distinctions in fold change. New steady states were achieved
after a (A) 10-fold increase in Ca2+ release through open IP3R channels [129], (B) 10-fold decrease
in PKC-mediated inhibition of PLC-β, and (C) 10-fold increase in PIP2 hydrolysis (10-fold increase
in kcat of hydrolysis). Reactions with perturbed rate constants are circled and correspond to
reaction mechanisms from ref [145]. (A) Ca2+
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i , (B) PKC∗+PLC−β → PKC∗+pPKC−β,

(C) PLC − β ∗ +PIP2 → PLC − β ∗ +IP3 + DAG.
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Our approach differs critically from metabolic flux analysis and previous genome-scale metabolic

network reconstructions [50, 139] because it accommodates nonlinear terms that describe the dy-

namic behavior of each reaction in the system. Previous large-scale network reconstructions typ-

ically use a stoichiometry matrix to represent the gross flux of metabolites in the system [88].

Here, we have preserved the mathematical form of each kinetic rate equations as reported in the

literature, allowing models to be built from existing data in a “bottom-up” fashion [70] while still

allowing calibration to whole-system experimental data. This feature will substantially improve

the accuracy of dynamical system simulation and parameter estimation.

Additional computational savings are provided through modularization. When estimating modules

of modest size (5 or less unknown concentrations), we use a brute-force Monte Carlo approach to

densely sample the feasible space of initial conditions. Larger networks (20 or more unknowns)

cannot be efficiently searched in this brute-force manner, but can be built piecewise by combining

subspaces of smaller size that have been densely sampled. Using the nave Monte Carlo approach,

estimating n free parameters is exponential in n. By dividing these parameters into k independent

networks, each with n/k free parameters, the estimation procedure becomes exponential in n/k

and thus more tractable. By assembling the entire system from smaller, more manageable kinetic

modules, data may be used to test the functionality of individual modules before incorporating

them into the entire system. In several cases, this approach was shown to offer a substantial com-

putational benefit (e.g., reducing the global search space by over 10,000-fold) by simply requiring a

steady-state solution with known subcomponent values. The search space can be reduced further

by principal component analysis if there is correlation between free parameters within a module.

This was found to be the case for enzymes that have opposing regulatory roles; increasing the levels

in one enzyme required a similar increase in the other in order to preserve homeostasis. Lastly,

modules sharing common components must hold the same value for that component, which imposes

an additional constraint on the steady-state solutions (equation 5.4).

As presented, the method exploits known kinetic parameters to restrict unknown concentrations

due to kinetic interactions. However, the method is equally valid for estimating unknown kinetic

parameters and/or utilizing known concentrations. Both concentrations and kinetic parameters

appear indistinguishably as nonlinear terms in the ordinary differential equations that describe

the system (Figure 5.1B). Hence, it does not matter which types of values are known and which

are estimated; the procedure is valid for mixed or incomplete sets of unknown values. The use of

qualitative data may also be exploited by the method. For example, beginning with a large set of

steady-state solutions for a given module, the size of the set may be reduced by determining which

solutions in the set contain some qualitative behavior or function. In a previous application of the
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method [129], a set of 109 steady-state solutions representing calcium balance in a resting platelet

were divided into 3 groups, according to their qualitative response to increased IP3 concentration

(low, mild, and high response). Using this technique, the functional testing of steady-state modules

may be used to eliminate a large subset of the original steady-state solution set. As another example,

one may use data from a Western blot to establish the relative abundance between two proteins

in the model. This qualitative information may be used to filter the steady-state solutions to a

reduced set that is consistent with experimental results. This kinetically-driven, constraint-based

approach, which combines a homeostasis requirement with known kinetic parameters and cellular

concentrations, naturally enforces numerical limits on unknown system quantities.
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Chapter 6

Conclusions and Future Directions

6.1 Summary of Results

The central theme of this work is the integration of complex data sets and mathematical modeling

to understand and predict intracellular signaling responses. We have used a variety of mathath-

ematical methods—including ordinary differential equation modeling, principal component analy-

sis, stochastic markov processes, artificial neural networks, digital image processing, and numeri-

cal optimization—to better understand the mechanistic basis of signaling in both growth factor-

responsive cells and in human platelets. Our analyses have not only duplicated known signaling

behaviors in these cell types, but have also predicted and confirmed new behvaviors.

In Chapter 2, we sought to understand how mutations that change the kinetic properties of the

tyrosine kinase domain of the EGFR can affect the cell’s survival response. This was accomplished

by monitoring changes in two downstream signaling proteins, ERK and Akt, which showed dispro-

portionate levels of activation in cells bearing mutated receptors. Chapter 3 extended this analysis

by studying the effect of tyrosine kinase inhibitors on both receptor behavior and downstream

responses. Specifically, a gain of signaling flux through the PI3K/Akt pathway in EGFRL858R mu-

tants was strongly downregulated when the mutant was exposed to the tyrosine kinase inhibitor,

erlotinib. Using a branched signaling model to quantify phosphorylation patterns in the EGF

receptor, we showed that the EGFR mutants had increased binding to tyrosine kinase inhibitors

(TKIs), enhanced phosphorylation of substrate tyrosine residues, and preferential activation of the

Akt signaling pathway, a critical pathway for cell growth, survival, and motility. Future compu-

tational and experimental studies will be necessary to pinpoint the exact molecular players that

mediate both this increased activation of Akt and the potent efficacy of the inhibitor.
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In Chapter 4, we used a kinetic model of calcium and phosphoinositide regulation in human

platelets to study P2Y1 activation by adenosine diphosphate (ADP). The model accurately pre-

dicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate,

diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phos-

phatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-

trisphosphate, and Gq-GTP in response to ADP; and (3) the volume of the platelet dense tubular

system. A more stringent test of the model involved stochastic simulation of individual platelets,

which display an asynchronous calcium spiking behavior in response to ADP. Simulations accu-

rately reproduced the broad frequency distribution of measured spiking events and demonstrated

that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small vol-

ume of the platelet. The model also provided insights into possible mechanisms of negative-feedback

signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet popula-

tions. This integrative approach to platelet biology offers a novel and complementary strategy to

traditional reductionist methods.

Both of these studies made extensive use of ordinary differential equations to describe the system

dynamics and relied on published kinetic parameters. Building on this modeling framework, Chap-

ter 5 presented a new method for constructing large-scale kinetic networks. This method involved

building kinetic models in stepwise fashion, beginning with small “resting” subnetworks that are

combined to form larger networks with complex time-dependent behaviors. The key step in the

method is the enforcement of a “homeostasis requirement” on all subnetworks (dC/dt = 0), which

ensures that all species concentrations remain constant over time even though each species may

undergo a gradual turnover through coupled reactions. This constraint was shown to not only

reduced the computational cost of fitting experimental time-series data, but also provided insight

into limitations on system concentrations and architecture. This strategy afforded a biologically

intuitive framework for building large-scale kinetic models of steady-state cellular systems and their

dynamics.

6.2 Extensions and Future Work

The insights derived from these studies (which have employed a relatively modest collection of

signaling pathways and reaction steps) indicate that increased biological knowledge may be gained

by incorporating additional cellular processes to form larger and more complex models. In this

section, we outline some additional projects that extend both the numerical methods and biological

scope of the work presented in this dissertation.

74



6.2.1 Extension: Modeling the Platelet Response to Combinatorial Ag-

onists

As we have seen, the platelet activation response requires a precise program of molecular signaling

events, including the activation of multiple platelet surface receptors (G protein-coupled recep-

tors, receptor tyrosine kinases, integrins), phospholipid hydrolysis, release of intracellular Ca2+,

cytoskeletal rearrangement leading to shape change, secretion of storage granules, and paracrine

signaling between platelets [17]. When one or more of these signaling mechanisms is perturbed by

genetic or exogenous factors [118], pathological thrombus formation can result [57].

It is important to note that—in the environment of a forming clot—platelets experience all of these

signaling cues at the same time. For example, the potent platelet activator thrombin activates the

G protein-couple receptors (GPCRs) PAR1 and PAR4 on the platelet surface; exposed collagen on

subendothelial tissue binds to the tyrosine kinase GPVI and integrin α2β1; ADP and thromboxane

A2 (TxA2), which are both released from the storage granules of activated platelets, activate the

P2Y family of GPCRs or the TP receptors, respectively. Although it is well appreciated that

these signaling events occur simultaneously in vivo, most of our understanding of platelet biology

is based on studies that examine a single agonist in isolation. For example, Yee et al. [182] have

used agreggometry to phenotype normal donors and classify some as hyperreactive based on their

individual responsiveness to ADP, epinephrine, collagen, collagen-related peptide and ristocetin.

While these studies have been useful for characterizing the effect of individual agonists and their

receptors, they fall short of capturing the highly heterogeneous and dynamic platelet environment

in flowing blood. A better understanding of platelet function in vivo will require the simultaneous

measurement of multiple interacting signaling pathways.

To broach this challenge, we developed a high-throughput experimental platform that measures

the human platelet response to arbitrary combinations of 6 major agonists (Figure 6.1A,B). Ago-

nists tested were: convulxin (GPIV activator), ADP, thromboxane analog (U46619), PAR1 agonist

peptide, PAR4 agonist peptide, and PGE2. The method yields high-resolution time-series measure-

ments of intracellular calcium levels over the first few minutes of platelet activation. Intracellular

calcium concentration is a logical choice for monitoring the platelet activation response because it is

the common result of most signaling pathways and is critical to many of the processes that control

activation, such as actin mobilization and integrin activation [150]. We first tested the platelet

response to all pair-wise combinations of 6 agonists at 3 doses (0.1, 1, 10 × EC50). These 135 cal-

cium traces trained a 2-layer neural network (NN) (Figure 6.1C) to successfully predict the platelet

response to sequential addition of agonists and all ternary combinations of convulxin, TRAP and

ADP (Figure 6.2A,D). The NN model also identified 45 conditions of 4, 5, and 6 agonists predicted
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to display a range of synergistic signaling (Figure 6.2B,C). These predictions were confirmed ex-

perimentally (R = 0.88) and revealed 4 highly synergistic conditions of high U46619/PGE2 ratio

(Figure 6.2E), consistent with the known thrombotic risk of COX-2 therapy. Finally, we identi-

fied unique patterns of pairwise agonist synergy among 4 healthy donors, providing a functional

fingerprint of each donor’s individual platelet phenotype. Pairwise Agonist Scanning (PAS) pro-

vides a sensitive, patient-specific experimental/computational platform for understanding how an

individual’s cells integrate multiple molecular signals.

6.2.2 Extension: Quantifying the role of store-operated calcium entry

in platelet signaling

The platelet model presented in Chapter 4 did not contain a description for extracellular cal-

cium, which plays an important role in sustaining the intracellular calcium levels during activation.

Store-operated calcium entry (SOCE) is the process by which the depletion of Ca2+ from the en-

doplasmic reticulum activates Ca2+ entry through channels in the plasma membrane. SOCE has

recently emerged as an important mechanism for many cellular processes including growth, motility,

secretion, and gene expression [99]. This mechanism has also been detected in human platelets and

shown to be essential for pathological thrombus formation [18]. However, little is known about the

relative importance of SOCE in platelet Ca2+ signaling in response to soluble agonists. Platelets

provide an ideal test system to study SOCE in vivo since they are easily obtained from healthy

donors and may be readily assayed for intracellular Ca2+ using fluorogenic dyes. A full description

of platelet Ca2+ regulation is necessary to understand the observed correlations between platelet

Ca2+ handling and thrombus formation [18], diabetes [166] and hypertension [47].

Extending our work in Chapter 4, a kinetic model of SOCE, calibrated to measurements of Ca2+

release from internal and external platelet stores, could be used to predict dysfunctional Ca2+

flux in thrombosis. Experimentally, the relative contribution of extracellular Ca2+ to the platelet

activation response may be quantified using a small panel of platelet agonists. The concentration of

free extracellular Ca2+ may be manipulated by adjusting the concentration of EDTA in the medium.

Time-course measurements of intracellular Ca2+ release will be generated for 3 major physiological

agonists: thrombin, ADP, and collagen-related peptide. For each agonist, differences among these

traces will show how intracellular calcium levels depend on the amount of extracellular calcium

that enters the platelet via SOCE. One may then construct an ODE-based model that quantifies

the role of SOCE in platelet calcium signaling (Figure 6.3). Building upon the existing platelet

model, additional mechanisms for thrombin and collagen receptors as well as SOCE may be added.

Sufficient kinetic data exists to construct the model. For example, store-operated channel activation
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was recently related to luminal Ca2+ concentration in human Jurkat leukaemic T cells [136]. These

kinetic measurements will be used to supply an inward calcium current into the cytosol of the

platelet model as calcium in the platelet internal stores is depleted.

6.2.3 Future Work : A signal processing model to predict apoptotic re-

sponse

Cellular signaling networks may be probed experimentally by changing molecular “inputs” (e.g.,

the concentration of an activating ligand) and recording molecular outputs (e.g., a change in gene

expression). The obvious challenge is to determine the processing “logic” [20] that occurs in be-

tween these experimental endpoints. Accomplishing this goal in a laboratory would require the

spatial and temporal measurement of all of the molecular participants in a signaling response—a

task that is clearly intractable using current methods of experimental analysis. An alternative

strategy is to develop a computer simulation of the signaling system of interest, hoping that the

simulation is accurate enough to reasonably approximate the true behavior of the system. Using an

accurate simulation of signaling, one may harness the powerful analytical capability of numerical

methods to slow down, speed up, perturb, calculate and analyze the quantitative elements in these

systems, affording extended knowledge about how individual molecules interact to produce a signal.

Various modeling strategies have been used to predict cellular responses to molecular signaling. Or-

dinary differential equation models [38] provide excellent mechanistic detail but require extensive

knowledge of network topology and kinetic rate parameters. “Data-driven” approaches [74] such
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as clustering, principal component analysis, and partial least squares regression can derive use-

ful biological insights from large data sets [71] but do not incorporate information about network

topology. Alternatively, artificial neural networks (NNs) offer a flexible framework for modeling

cellular signal networks and contain both topological and time-dependent features. We recently

trained a recurrent NN model to learn the platelet calcium response to all pair-wise combinations

of 6 platelet agonists at 3 doses (Figure 6.4A-B).

To determine whether a NN model can predict cytokine-induced apoptotic response and inden-

tify important functional interactions within the signaling network, we can train a collection of

recurrent NN models to predict existing time-course measurements [72] of 19 apoptotic proteins

in response to 3 molecular stimuli (tumor necrosis factor, epidermal growth factor, and insulin).

By generating a large number of random network topologies, we will search for common features

that appear in most of the high-scoring network structures (Figure 6.4C). A similar technique,

Bayesian network inference [122], was used to reconstruct causal influences in human primary T

cell signaling [136]. Our choice of using a recurrent NN, however, is novel and offers two important

advantages over Bayesian methods in that it allows cyclical structures (e.g., negative feedback)

and time-dependence in the model. This aim will provide a time-dependent model of cell survival

responses (e.g., nuclear fragmentation) to 3 cytokines and identify gross features of the network

that processes these molecular signals. To quantify the network response to perturbation, the inter-

action of pharmacological agents with the NN will be modeled by performing a sensitivity analysis

on the “consensus” NN structures identified in the training step. For example, by eliminating a

single node or edge in the apoptotic network, one can examine the network’s survival response and
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thereby quantify the impact of each perturbation to the NN. This analysis will identify specific

components of the network that may be targeted for rational drug design.

6.2.4 Future Work : Predicting global regulators of transcription in

“oncogene-addicted” cell lines

Mutations that affect cell signaling can cause differences in basal gene expression [14]. For example,

mutations in the tyrosine kinase domain of EGFR (e.g., EGFRL834R) can cause distinct patterns

of gene expression [26] and are associated with sensitivity to tyrosine kinase inhibitors (TKIs) [35].

Statistical methods such as principal component analysis have been used to identify disrupted

signaling pathways based solely on expression signatures [173]. While this approach is useful for

placing mutant cells into previously known categories, there are currently no methods for predicting

the signaling mechanisms that regulate transcription based on entirely new gene expression profiles.

Such a method could be used to identify the upstream events that cause these differential expression

signatures and predict novel drug targets.

Here, statistical and graph-theoretical methods can be used to predict upstream signaling events

that cause changes in global gene expression for TKI-sensitive cell lines (e.g., H3255 with EGFRL834R).

To identify programs of transcription factor (TF) regulation, we can extend a simple approach [167]

in which the abundances of known binding motifs in the upstream sequence of differentially ex-

pressed genes are used to determine a probable set of transcription factors responsible for generating

the observed expression profile (Figure 6.5A). Focusing on a set of TKI-sensitive cell lines [35], we

will incorporate a confidence score for each differentially expressed gene to weight the estimation

of enriched TF binding sites. This Bayesian approach will afford a more powerful prediction of TF

activation by incorporating all of the information obtained from microarray analysis. Specifically,

we will calculate for each TF the probability that it is overrepresented in the data set:

Prob(Hi|D) =
(πiProb(D|Hi)∑

jπjProb(D|Hj)
(6.1)

The probability that TFi binding sites are overrepresented (Hi) in the data is weighted by πi, a

confidence value for each gene that contains binding sites for TFi . Predictions are validated by TF

protein arrays (Figure 6.5B). This aim will provide a ranked list of TFs that are similarly regulated

in a pool of TKI-sensitive cell lines.

To predict upstream transcriptional regulators, publically available databases of protein-protein

interactions (e.g., IntAct [84]) will be used to construct an in silico signaling network (a directed

graph) that also includes the TFs identified in the previous step. Subnetwork structures within the
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Figure 6.5: Information flow for predicting transcription regulatory networks. (A) Confidence
scores for measured differences in gene expression (Δ) are used to calculate the abundance of TF
binding sites in the DNA sequence surrounding each gene. (B) TF protein arrays [20] are used
to validate predictions. (C) Relative TF activities are used to search protein-protein interaction
networks for upstream signaling pathways that cause the predicted changes in TF activity.

full graph are identified that most likely explain the calculated changes TF activities (Figure 6.5C).

Beginning with the TF nodes, a recursive algorithm performs a breadth-first search along neighbor-

ing edges and assigns a score to each node based on the consistency between the known interaction

(activating or inhibiting) and the TF activity. Predictions are validated by RNAi [20].

6.3 Future Outlook

Systems biology—the discipline of integrating complex data sets to understand and discover the

molecular basis of emergent properites of biological systems—is nearly a decade old but still in a

nascent state. To truly advance our understanding of complex cellular systems and derive high-

impact clinical applications using this approach, the field requires a new suite of computational

tools and creative experimental strategies. The single greatest asset of all computational methods

is the ability to perform simple arithmetic in a very short period of time. Thus, to the extent

that signaling networks can be represented as a series of elementary calculations that describe the

dynamics of the system (e.g., ODEs that describe catalytic steps in an enzyme pathway), numerical

methods offer a technological benefit that is not directly accesible to the unaided human brain. The

grand challenge for systems biologists, however, will be to more clearly define which problems to

solve, how they may be cast in mathemtical terms, and—most importantly—how to interpret the

solutions. The work presented in this dissertation illustrates how novel computational strategies

can be used to derive meaningful insight from two mammalian signaling systems with important

clinical implications. At the very least, these analyses may serve as a starting point for future

investigation of signaling systems from a computational systems perspective.
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