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Global phase diagrams for freezing in porous media
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Using molecular simulations and free energy calculations based on Landau theory, we show that
freezing/melting behavior of fluids of small molecules in pores of simple geometry can be
understood in terms of two main parameters: the pore widthH* ~expressed as a multiple of the
diameter of the fluid molecule! and a parametera that measures the ratio of the fluid-wall to the
fluid–fluid attractive interaction. The value of thea parameter determines the qualitative nature of
the freezing behavior, for example, the direction of change in the freezing temperature and the
presence or absence of new phases. For slit-shaped pores, largera values lead to an increase in the
freezing temperature of the confined fluid, and to the presence of a hexatic phase. For pores that
accommodate three or more layers of adsorbate molecules several kinds of contact layer phase
~inhomogeneous phases in which the contact layer has a different structure than the inner layers! are
observed. Smallera values lead to a decrease in the freezing temperature. The parameterH*
determines the magnitude of shift in the freezing temperature, and can also affect the presence of
some of the new phases. Results are presented as plots of transition temperature vsa for a particular
pore width. Experimental results are also presented for a variety of adsorbates in activated carbon
fibers~ACF! covering a wide range ofa values; the ACF have slit-shaped pores with average pore
width 1.2 nm. The experimental and simulation results show qualitative agreement. ©2002
American Institute of Physics.@DOI: 10.1063/1.1426412#
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I. INTRODUCTION

Experimental studies of freezing and melting of confin
phases within porous media present a complicated and so
what confusing picture. Such studies must address sev
difficulties. First is the lack of well-characterized materia
having a simple pore geometry, making interpretation di
cult. The second difficulty is that of unambiguously det
mining the nature of the confined phases. The diffraction
scattering experiments commonly used to investigate b
phases are more difficult to apply to confined phases. A th
problem is the prevalence of metastable states, resultin
extensive hysteresis. Molecular simulation studies do
suffer from these difficulties. Although hysteresis is o
served, it is possible to calculate free energies of the confi
phases, and thus locate true thermodynamic transiti
However, simulations experience other difficulties, partic
larly uncertainties concerning intermolecular potentials a
limitations due to the speed of current computers. T
complementary nature of the difficulties in experiment a
simulation can make combined experimental-simulat
studies in this area rewarding.

Many of the early experimental studies of freezing
porous media1 employed silica-based materials, and show
a depression of the freezing temperature relative to the b
fluid (DTf5Tf ,pore2Tf ,bulk,0); the lowering ofTf became
greater as the pore size decreased. Since these studie
ployed a range of adsorbates, many scientists concluded
depression of the freezing temperature due to confinem
1140021-9606/2002/116(3)/1147/9/$19.00
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was a general phenomenon. For pore widths much la
than the diameter of the adsorbate molecules the Gib
Thomson equation,1 the freezing analogue of the Kelvi
equation for condensation, provides a relation between
shift in the freezing temperature (DTf), the pore width (H)
and the surface tensions of the pore wall with the confin
fluid (gwl) and the confined solid (gws) phase, and for slit-
shaped pores has the form,

DTf

Tf ,bulk

522
~gws2gwl!n

Hl f ,bulk

, ~1!

wheren is the molar volume andl f ,bulk is the latent heat of
melting, both for the bulk fluid. Most of the early exper
ments, which were for pore widths of 5 nm and high
showed a linear relation betweenDTf and 1/H, in accord
with Eq. ~1!. However, the Gibbs–Thomson equation
based on classical thermodynamics, and does not prop
account for inhomogeneity of the confined phase or for
adsorbate-wall intermolecular forces. Thus it breaks do
for small pores, where the confined phases are hig
inhomogeneous.1

Miyahara and Gubbins,2 using Grand Canonical Monte
Carlo ~GCMC! simulations of the freezing of Lennard-Jon
~LJ! methane in slit pores, found that the magnitude and s
of DTf depended on the strength of the adsorbate-wall att
tive interaction. For weakly attractive walls, such as silic
DTf was negative, corresponding to a lowering of the fre
ing temperature on confinement, as found in the experime
7 © 2002 American Institute of Physics
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However, for strongly attractive walls such as carbonsDTf

was positive, corresponding to an elevation of the freez
temperature. For walls in which the fluid-wall interactio
was similar to the fluid–fluid interaction, and the density
wall atoms was similar to the adsorbate density, little or
change inTf was observed. In this study the freezing a
melting temperatures were determined by heating or coo
the sample, and so were the hysteresis temperatures r
than thermodynamic equilibrium ones. However, the findin
of Miyahara and Gubbins were later confirmed by simu
tions in which the free energy of the phases we
determined.3,4 These studies gave the true thermodynam
equilibrium freezing temperatures in the pores, and show
that the transitions were first order in slit pores.

That an elevation of the freezing point might be reas
able for carbons is suggested by the experimental studie
Castroet al.,5 who observed a 10% increase inTf for the first
layer of adsorbed methane and alkanes on a planar gra
substrate. The first experimental observation supporting s
an increase in confined systems seems to be that of Klein
Kumacheva,6 who studied the behavior of cyclohexane co
fined between parallel mica surfaces in a surface force a
ratus. At a pore width of about 4 nm they observed the s
den exhibition of a yield stress, suggesting crystallization
this interpretation is accepted, the increase in freezing t
perature over the bulk material was 17 K. Similar expe
ments on linear alkanes using the surface force appar
also show an apparent increase in the freezing tempera
relative to the bulk value7,8 and support for these resul
comes from a simulation study by Cuiet al.9 However, some
controversy remains concerning the interpretation of th
results; thus, the finding of Klein and Kumacheva6 for cyclo-
hexane has been disputed by Christenson,10 who repeated the
experiment and found no evidence of an increase in free
temperature for this system.

More recently, a number of studies for adsorbates c
fined within activated carbon fibers have shown evidence
an increase in freezing temperature. These materials h
approximately slit-shaped pores, and can be prepared
pore widths from 0.7 to about 2 nm. Using differential sca
ning calorimetry~DSC!, Kaneko and co-workers11,12 found
evidence of a large increase in the freezing temperature
both carbon tetrachloride and benzene in these carbons.
elevations in freezing temperature were 57 and 65 K, resp
tively, for a mean pore width of 1.1 nm. Using both DSC a
dielectric relaxation spectroscopy, Sliwinska-Bartkowiak a
co-workers have studied the freezing of water,13 methanol,13

nitrobenzene,14 aniline15 and carbon tetrachloride16 in acti-
vated carbon fibers, and observed a range of freezing be
ior. For water, a significant decrease in the freezing temp
ture was observed, while for nitrobenzeneTf was almost
unchanged. For aniline a melting temperature of 298 K w
observed, 31 K above the bulk melting temperature of 2
K, for methanol a melting temperature increase of 43 K w
observed, while for CCl4 the results agreed with those o
Kaneko et al.,11 the freezing temperature for the confine
system being about 57 K above the bulk value. We note
the reduced dipole moment@m* 5m/A(es3), see Table II# of
Downloaded 16 May 2002 to 18.63.2.61. Redistribution subject to AIP
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these adsorbate molecules decreases in the o
H2O.C6H5NO2.CH3OH.C6H5NH2.CCl4.

Many authors17–24 have reported experimental eviden
that the adsorbed molecular layers adjacent to the pore
have a different structure than that of the inner adsor
layers. These studies have been for silica materials, and s
to indicate a fluid layer of adsorbate near the walls, while
internal adsorbate layers are solid or crystalline. Some re
DSC and dielectric relaxation studies13,15,16 of phases con-
fined within slit-shaped carbon pores, for which strong la
ering of the adsorbate occurs, suggest that a hexatic p
may occur as an intermediary phase between the fluid
crystalline ones. Hexatic phases, which retain long-range
entational, but not positional, order are known to occur
quasi-two-dimensional systems. For cylindrical pores, s
as those in MCM-41 and controlled pore glasses, it
found24–27 that for pore diameters below about 20s, where
s is the diameter of the adsorbate molecule, the fluid p
tially crystallizes into a mixture of defective crystal an
amorphous regions, and for diameters below about 15s only
amorphous regions are observed. These results are in a
ment with molecular simulation results for cylindrical por
in this size range.24

In this study, we show that the apparently diverse a
complex freezing behavior for small molecules in pores c
be classified and understood in terms of two predomin
parameters:~1! the relative strength of the fluid-wall to th
fluid–fluid attractive interaction,a, and~2! the reduced pore
width, H* 5H/s f f , where s f f is the LJ diameter for the
adsorbate–adsorbate interaction. By carrying out molec
simulations, together with rigorous free energy calculatio
based on Landau theory, we are able to present global p
diagrams for slit pores in terms ofa and H* . We further
show that the simulation results are in qualitative agreem
with existing experimental measurements for activated c
bon fibers and mica slit pores. The molecular models a
simulation methods are described in Secs. II and III, and
results are presented and discussed in Sec. IV.

II. MODELS AND SIMULATION METHODS

We perform Grand Canonical Monte Carlo~GCMC!
simulations of a fluid adsorbed in slit-shaped pores of wi
H, whereH is defined as the perpendicular distance betw
the planes passing through the nuclei of the first layer
molecules that make up the pore walls of the slit-shap
pore. The interaction between the adsorbed fluid molecule
modeled using the Lennard-Jones~12,6! potential with size
and energy parameters,s f f , e f f . The Lennard-Jones poten
tial was cut off at a distance of 5s f f , beyond which it was
assumed to be zero. The pore walls are modeled as a
tinuum of LJ molecules using the‘‘10-4-3’’ Steele potential28

given by

f f w~z!52prwe f ws f w
2 DF2

5 S s f w

z
D 10

2S s f w

z
D 4

2S s f w
4

3D~z10.61D!3D G . ~2!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1149J. Chem. Phys., Vol. 116, No. 3, 15 January 2002 Freezing in porous media
Here, thes ’s ande ’s are the size and energy paramete
in the Lennard-Jones~LJ! potential, the subscriptsf and w
denote fluid and wall, respectively,D is the distance betwee
two successive lattice planes of pore wall,z is the coordinate
perpendicular to the pore walls andrw is the number density
of the wall atoms. For a given pore width,H, the total po-
tential energy from both walls is given by,

fpore~z!5f f w~z!1f f w~H2z!. ~3!

The strength of attraction of the pore walls relative to t
fluid–fluid interaction is determined by the coefficient

a5
rwe f ws f w

2 D

e f f

~4!

in Eq. ~2!. Throughout the study three different fluid–flu
interaction parameters were used~see Table I!: ~1! LJ meth-
ane withs f f50.381 nm,e f f /kB5148.1 K;~2! LJ CCl4 with
s f f50.514 nm, e f f /kB5366 K; ~3! LJ aniline with s f f

50.514 nm,e f f /kB5395 K. Eight different sets of param
eters were chosen for the pore wall interaction. This w
achieved by fixingsww50.34 nm andD50.335 nm, the size
corresponding to graphitic pores,28 and letting the product o
rw3e f w vary over a range, resulting in eight different alp
values, from a purely repulsive wall to a strongly attracti
wall (a50 to a52.14). For example,a52.14 corresponds
to LJ methane in activated carbon fibers, for whichrw

5114 nm23 andeww /kB528 K. The Lorentz–Berthlot mix-
ing rules, together with thef f andww parameters, were use
to determine the values ofs f w ande f w . The simulation runs
were performed by fixing the chemical potential,m, the vol-
ume, V, of the pore and the temperature,T. Two different
pore widths,H53s f f andH57.5s f f were chosen for study
A rectilinear cell of dimensions (60s f f360s f f) in the plane
parallel to the pore walls was used. Typically the syst
consisted of up to 12 000 adsorbed fluid molecules. The
sorbed molecules formed distinct molecular layers paralle
the plane of the pore walls. The simulation was set up s
that insertion, deletion and displacement moves were cho
at random with equal probability. Thermodynamic propert
were averaged over 2000 million individual Monte Car
steps.

TABLE I. Potential energy parameters for fluid–fluid interactions.

Fluid
LJ parameters

s f f /nm, e f f /(kBK) Property fitted

Simple fluids
C6H6 0.6, 401.0 Freezing point
C6H12 0.5, 412.0 Freezing point
CCl4 0.514, 366.0 Freezing point
CH4 0.381, 148.1 2nd Virial Coefficient

Dipolar fluids
C6H5NO2 0.514, 425.0 Freezing point
C6H5NH2 0.514, 395.0 Freezing point
CH3OH 0.45, 256.0 Freezing point

H-Bonding fluids
H2O 0.3154, 401.0 Freezing point
Downloaded 16 May 2002 to 18.63.2.61. Redistribution subject to AIP
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III. FREE ENERGY DETERMINATION

We extend the Landau free energy approach used in
lier studies4,29,30 to incorporatespatial inhomogeneityin the
order parameter, and develop the generalized Land
Ginzburg approach to calculate the free energy surface
inhomogeneous fluids. The Landau–Ginzburg formalism
volves choosing an order parameterF, that is sensitive to
the degree of order in the system. For the general case
spatially varying order parameterF(r ), the probability dis-
tribution function of the order parameterP@F̃(r )# is defined
as

P@F̃~r !#5
1

J (
N51

`
exp~bmN!

N!l3N E DN@F~r !#

3d~F̃~r !2F~r !!exp~2bHN!, ~5!

whereJ is the partition function in the grand canonical e
semble, N the number of molecules in the system,b
51/kBT, l is the de Broglie wavelength, andHN is the
configurational Hamiltonian of the system. The path integ
notation,DN@F( r̃ )#, should be interpreted as31

E DN@F~r !#[ lim
vo→0

)aE dFa5E
rN

drN. ~6!

Equation~6! defines the path integral in terms of a trace ov
a discrete number of sitesa, andvo represents the volume
per site. The Landau free energyL@F̃(r )# is defined by

exp~2bL@F̃~r !# !5 (
N51

`
exp~bmN!

N!l3N E DN@F~r !#

3d~F̃~r !2F~r !!exp~2bHN! ~7!

so that, from Eq.~5!

L@F~r !#52kBT ln~P@F~r !# !1Constant. ~8!

The Landau free energy can be computed by a histog
method combined with umbrella sampling that calculates
probability distribution of the system in the order parame
space. The probability distribution functionP@F(r )# is cal-
culated during a simulation run by collecting statistics of t
number of occurrences of a particular value of the funct
F(r ). This is accomplished by constructing a histogram w
respect toF values in different domains obtained by di
cretizing the spatial coordinates. The procedure to col
statistics, construct the histograms and the choice of wei
ing functions for performing the umbrella sampling are d
scribed in Refs. 4 and 30. The grand free energy of a p
ticular phase A,VA52kBT ln(J), is then related to the
Landau free energy by

exp~2bV!5E DN@F~r !#exp~2bL@F~r !# !, ~9!

where the limits of integration in Eq.~9! are from the mini-
mum value ofF(r ) to the maximum value ofF(r ) that
characterizes the phase A. We use a two-dimensional b
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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orientational order parameter to characterize the orientati
order in each of the molecular layers that is defined as
lows:

C6,j~r!5
1

Nb
(
k51

Nb

exp~ i6uk!. ~10!

C6,j (r) measures the hexagonal bond order at positionr in
thexy plane within each layerj, and is calculated as follows
Nearest neighbors were identified as those particles that w
less than a cutoff distancer nn away from a given particle
and belonged to the same layer. We used a cutoff dista
r nn51.3s f f , corresponding to the first minimum ofg(r ).
The orientation of the nearest neighbor bond is measure
the u coordinate, which is the angle the projection of t
nearest-neighbor vector on thexy-plane, makes with thex
axis.C6,j (r), is calculated using Eq.~10!, where the indexk
runs over the total number of nearest-neighbor bondsNb at
positionr, in layer j. The order parameterC̄6,j in layer j is
given byC̄6,j5u*drC6,j (r)u/* dr. For the case of LJ CCl4

in slit-shaped pores, where there is significant ordering i
distinct molecular layers, the order parameterF(r ) can be
reduced toF(z) and can be represented by

F~z!5(
j 51

n

C̄6,jd~z2 ẑj !. ~11!

In Eq. ~11!, the sum is over the number of adsorbed mole
lar layers andẑj is thez coordinate of the plane in which th
coordinates of the center of mass of the adsorbed molec
in layer j are most likely to lie on. It must be recognized th
each of theC̄6,j ’s are variables that can take values in t
range@0,1#. The histograms can be collected to evaluate
probability P@C̄6,1,C̄6,2, . . . ,,C̄6,n# as a function of the or-
der parametersC̄6,1,C̄6,2, . . . ,C̄6,n . The grand free energy
is then calculated using the equation

exp~2bV!5P j 51
n E

j
dC̄6,j P@C̄6,1,C̄6,2 . . . ,,C̄6,n#.

~12!

IV. RESULTS

The state conditions in the simulations were chosen s
that the confined phase was in equilibrium with the bu
phase at 1 atm pressure. For each set of values of th
fluid–fluid interaction anda, the simulations were starte
from a well equilibrated confined liquid phase, and in su
cessive simulation runs, the temperature was reduced.
two-dimensional, in-plane positional and orientational p
correlation functions@gj (r ) and G6,j (r ) of layer j ], were
monitored to keep track of the nature of the confined pha
The positional pair correlation function is the familiar rad
distribution function. The orientational pair correlation fun
tion is given byG6,j (r)5^C6,j* (0)C6,j (r)&. The Landau–
Ginzburg free energy calculations were then performed
locate the phase transitions in state space.

We illustrate the above scheme for LJ CCl4 confined in
activated carbon fibers of pore width,H* 53. Our results for
the positional and orientational pair correlation functions
Downloaded 16 May 2002 to 18.63.2.61. Redistribution subject to AIP
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the two confined molecular layers of LJ CCl4 at three differ-
ent temperatures are given in Fig. 1. It is evident from Fig
that the high temperature phase atT5360 K, with an isotro-
pic g(r ) and exponentially decayingG6,j (r ), is a dense fluid
~liquid! phase with short-range positional order and sho
ranged orientational order. The confined phase atT5340 K
is characterized by an isotropic positional pair correlat
function and an algebraically decaying orientational corre
tion function; this is a clear signature of the hexatic pha
with short-range positional order and quasi-long-ranged
entational order. AtT5290 K the confined phase is a two
dimensional hexagonal crystal, with quasi-long-range po
tional order and long-range orientational order.

Two-dimensional systems have a special significance
phase transitions in which continuous symmetry is brok
such as freezing transitions. The Mermin–Wagner theor
states that true long-range order cannot exist in s
systems.32 Nelson and Halperin33 proposed the ‘‘KTHNY’’
~Kosterlitz–Thouless–Halperin–Nelson–Young! mechanism
for melting of a crystal in two dimensions which involve
two transitions of the Kosterlitz–Thouless~KT! kind:34 the
first is a transition between the two-dimensional crys
phase~with quasi-long-range positional order and long ran
orientational order! and a hexatic phase~with positional dis-
order and quasi-long-range orientational order!; the second
transition is between the hexatic phase and the liquid ph
~having positional and orientational disorder!. Each KT tran-
sition is accompanied by a nonuniversal peak in the spec
heat above the transition temperature, associated with
entropy liberated by the unbinding of the vortex pairs. T
crystal to hexatic transition occurs through the unbinding
dislocation pairs, and the hexatic to liquid transition involv
the unbinding of disclination pairs.

For the pore width,H* 53, the Landau free energy su
face is a function of two variables~there are two confined
layers in the system!, L/kBT5L@C̄6,1,C̄6,2#/kBT. This
function was calculated at two different temperatures,T
5335 K andT5290 K, from which the grand free energie

FIG. 1. g(r ) andG6(r ) in the two molecular layers of CCl4 confined in a
graphite pore of widthH53s f f (a51.92): ~a! liquid ~‘‘L’’ ! phase atT
5360 K; ~b! hexatic~‘H’’ ! phase atT5340 K; ~c! crystalline~‘‘C’’ ! phase
at T5290 K.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1151J. Chem. Phys., Vol. 116, No. 3, 15 January 2002 Freezing in porous media
of the liquid ~L!, hexatic~H! and crystal~C! phases at thes
different temperatures were calculated using Eq.~12!. The
grand free energy of the three phases at other tempera
were further calculated using thermodynamic integration35

using the temperaturesT5335 K andT5290 K as reference
The first order distribution function of the Landau free e
ergy functions for the first molecular layer~layer 1!, L (1)

3@C̄6,1# @which is obtained by the taking the functional d
rivative of Eq.~12! with respect to the order parameterC̄6,1

in layer 1#, at T5335 K andT5290 K are shown in Fig. 2
The distribution functions in Fig. 2 are good represen

tions of the three-dimensional Landau free energy surface
the system considered here because the fluid-wall pote
energy is symmetric with respect to the two confined m
lecular layers of CCl4 , causing the matrixL@C̄6,1,C̄6,2# to
be symmetric. Further, the lowest free energy state po
that govern the equilibrium thermodynamics of the syst
are given by the diagonal elements and the elements nea
diagonal of the matrix.

The presence of the three phases~‘‘L,’’ ‘‘H,’’ and ‘‘C’’ !
of the system is clearly seen in Fig. 2, along with their re
tive thermodynamic stabilities; the nature of these pha
were determined from the positional and orientational co
lation functions ~Fig. 1!. It is clear from Fig. 2 that the
hexatic phase is the thermodynamically stable phase aT
5335 K, while T5290 K is close to the temperature
which the hexatic and crystalline phases coexist. The gr
free energy function for the three phases~‘‘L,’’ ‘‘H,’’ and
‘‘C’’ ! are given in Fig. 3. The crossover of the free ene
functions atT5347 K andT5290 K provide the transition
temperatures of the liquid-hexatic and the hexatic-cry
transitions. The crossover of the free energy of the differ
phases at different slopes at the transition temperatures
plies that both transitions are first order, at least for this p
ticular system size.

FIG. 2. The first order distribution functions of the Landau free energy
layer 1 atT5335 K andT5290 K, for LJ CCl4 in a graphite pore,H*
53.

FIG. 3. The Grand free energy as a function of temperature for liq
hexatic and crystalline phases, for LJ CCl4 in a graphite pore,H* 53.
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In a previous study14 we used corresponding state
theory to show that the freezing temperature of the confi
fluid relative to that of the bulk fluid was a function of th
dimensionless parametersH* ,a, and the diameter ratio
s f w /s f f . However, the freezing temperature ratio was fou
to be only very weakly dependent on the diameter ratio, p
vided the diameters were not very different and the pore s
did not closely approach the molecular sieving regime. H
we show that the global freezing behavior, i.e., other tran
tions associated with the liquid to crystalline change, in a
dition to the freezing temperature, obeys such a correspo
ing states argument, and so is governed by the variablesH*
anda; the diameter ratio again plays a minor role, subject
the caveats above. This corresponding states principle s
that the phase behavior for two different adsorbates in
different materials will be~approximately! the same if they
have the same values ofH* anda. Thus, the construction o
phase diagrams from a minimum of simulation or expe
mental data, provided they cover a suitably wide range
H* anda values, can be used to predict the phase beha
of other systems that have not been studied. In what follo
we present such global phase diagrams for a range of re
tic values ofa. In addition to varyinga in our simulations,
we also carry out calculations for two different values
s f w /s f f , corresponding to methane and carbon tetrachlor
in graphite pores, and thus show that the phase behavi
almost independent of the diameter ratio for the range s
ied (s f f values from 0.38 to 0.51 nm!.

Global phase diagrams for two different pore widt
were constructed by spanning the parameter space ina and
Tf ,pore/Tf ,bulk , maintaining a pressure of 1 atm. A summa
of the phase behavior of a Lennard-Jones fluid in slit-sha
pores of widthH57.5s f f is given in Fig. 4. For this system

r

,

FIG. 4. Global freezing phase diagram for a Lennard-Jones fluid in a
shaped pore of widthH57.5s f f and a bulk pressure of 1 atm. The symbo
~filled diamonds, filled circles and filled squares in present figure! specify
the conditions of co-existence of two phases, obtained using Landau
energy calculations. The solid lines passing through the symbols are a g
to the eye and represent the phase boundaries separating the dif
phases. Five different phases are observed: liquid, contact-hexatic, con
crystal, contact-liquid and crystalline. The different phases are characte
by the positional and orientational correlation functions as depicted in F
5–9. The ‘‘dash-dot-dot-dot’’ line represents the freezing temperature
LJ fluid under ambient pressures and is provided for reference. The p
marked by the open circle is the experimental result of Klein and Kum
cheva~Ref. 6! for cyclohexane in a mica slit pore.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the Landau free energy is a function of seven variables
there are seven confined layers in the pore,L/kBT
5L@C̄6,1,C̄6,2, . . . ,C̄6,7#/kBT. This function was calcu-
lated at three different temperatures, for eight different v
ues ofa. For a given value ofa, the grand free energie
were calculated for each phase at three different tempera
using Eq.~12!. Grand free energies at intermediate tempe
tures were then computed using thermodynamic integrati4

For a givena, the condition for phase coexistence was d
termined by identifying the temperature at which the gra
free energies of the corresponding phases were equal.
phase diagram obtained using this procedure is depicte
Fig. 4. The reduced freezing temperature of the b
Lennard-Jones fluid~with the LJ potential cutoff at 3s f f ,
and long-range correction applied!, at 1 atm pressure, isT*
50.682,36,37 and is depicted byTf ,pore/Tf ,bulk51, the hori-
zontal ‘‘dash-dot-dot-dot’’ line in Fig. 4. In the case of th
confined system, the crystal phase boundary is marked by
circles, below which the crystalline~C! phase is stable. The
freezing temperature of the confined phase~given by the

FIG. 5. The 2D in-plane~a! positional and~b! orientational pair correlation
functions in the confined molecular layers for a LJ fluid in a slit-shaped p
of width H57.5s f f for a52.16, T* 51.02: liquid phase. The zero ofg(r )
has been shifted on the vertical scale for layers other than the middle l
for clarity.
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solid circles! shifts upward on confinement for values ofa
greater than 0.95~strongly attractive pores!, and shifts down-
ward for values ofa less than 0.95~weakly attractive pores!.

In Fig. 4, the solid squares represent the freezing te
perature of a ‘‘partially crystalline phase;’’ the contact laye
~layers adjacent to the pore walls! freeze~become crystal-
line! at a different temperature than the inner layers. F
strongly attractive pores, the contact layers freeze at a t
perature higher than the inner layers, while for weakly attr
tive walls the contact layers freeze at a temperature lo
than the inner layers; this leads to the formation of two n
phases that we termcontact-crystalline~CC! and contact-
liquid ~CL! phases, respectively. The contact-crystalli
phase is thermodynamically stable in the regiona.0.95,
between the squares and the circles. The contact-liquid p
is a stable phase in the regiona,0.95, between the square
and the circles. For strongly attractive pores,a.0.95, the
contact layers undergo a second, liquid-hexatic phase tra
tion ~shown as solid diamonds!, that leads to the formation o
another new phase that we termcontact-hexatic~CH!.38 The
stable regions of the contact-hexatic phase are between
lines marked by the diamonds and the squares in Fig. 4.

The only experimental data we are aware of for freez
of a fluid of small molecules in a slit-shaped pore of this po
width are those of Klein and Kumacheva6 for cyclohexane in
a mica pore. Based on the reported freezing temperature
this system and the mica potential parameters of Cuiet al.9

~see Table III!, we find Tf ,pore/Tf ,bulk51.055 anda52.22.
This point is in excellent agreement with the simulation
sults shown for the freezing transition~Fig. 4!, the freezing
temperature being about 6% above that for the bulk flu
However, as noted in Sec. I, there is still some controve
associated with the nature of the shift in the freezing po
for cyclohexane in mica, so that this result should be trea
with some caution. In addition, the value given for the p
rametereww /kB for mica of 940 K by Cuiet al.9 may be
somewhat uncertain.39 However, a significant change in thi
parameter~and hence in the value fora) would not signifi-

e

er,

FIG. 6. The 2D in-plane positional correlation functions in the confin
molecular layers for a LJ fluid in a slit-shaped pore of widthH57.5s f f for
a52.16, T* 50.61: crystalline phase.
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cantly affect the agreement with simulation shown
Fig. 4, since the freezing curve is almost flat in the ran
1.5,a,3.

While the co-existence curves from simulation are o
tained from the grand free energies, the nature of the dif
ent phases is distinguished on the basis of the behavior o
two-dimensional, in-plane pair correlation function,g(r ),
and the orientational correlation function,G6,j (r), in the
confined molecular layers. Examples are shown in Figs. 5
The pair correlation functions in the liquid phase are isot
pic @Fig. 5~a!# and those in the crystalline phase correspo
to a 2-D hexagonal crystal@Fig. 6#, in each of the confined
layers. In addition, the behavior of the orientational corre
tion functions in the liquid phase show an exponential de
@Fig. 5~b!#. The contact-crystalline phase consists of a cr
talline contact layer and liquid-like inner layers~Fig. 7!,

FIG. 7. The 2D in-plane positional correlation functions in the confin
molecular layers for a LJ fluid in a slit-shaped pore of widthH57.5s f f for
a52.16, T* 50.75: contact-crystalline phase.

FIG. 8. The 2D in-plane positional correlation functions in the confin
molecular layers for a LJ fluid in a slit-shaped pore of widthH57.5s f f for
a50.62, T* 50.61: contact-liquid phase.
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while the contact-liquid phase consists of a liquidlike cont
layer and crystalline inner layers~Fig. 8!. The 2Dg(r ) in the
contact-hexatic phase is liquidlike in all the confined laye
@Fig. 9~a!#; however, the orientational correlation function
the contact layer shows an algebraic (1/r ) decay while those
in the inner layers show an exponential decay@Fig. 9~b!#.

To illustrate the phase changes that occur on cooli
consider a slit-shaped pore of widthH57.5s f f having ana
value of 2.0. We start from the liquid phase
Tf ,pore/Tf ,bulk51.5 and lower the temperature while mai
taining a bulk pressure of 1 atm and ensuring that the sys
is at equilibrium. There will be a liquid-hexatic transition i
the contact layers atTf ,pore/Tf ,bulk51.35. Upon further re-
ducing the temperature toTf ,pore/Tf ,bulk51.15, the hexatic
contact layers crystallize~while the inner layers remain flu
idlike!, leading to the formation of the contact-crystallin
phase. AtTf ,pore/Tf ,bulk51.08, the inner layers crystallize
and below this temperature the confined phase is compr
of stacked configurations of 2D hexagonal crystal.

The global phase diagram for a smaller pore width
H53s f f is shown in Fig. 10~a!. For this choice of pore
width there are no ‘‘contact’’ phases, as only two confin

FIG. 9. The 2D in-plane~a! positional and~b! orientational pair correlation
functions in the confined molecular layers for a LJ fluid in a slit-shaped p
of width H57.5s f f for a52.16, T* 50.85: contact-hexatic phase.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 10. ~a! Global phase diagram of a fluid in a sli
pore of widthH53s f f from simulation. Three different
phases are observed: liquid~L!, hexatic~H!, and crys-
talline ~C!. The dashed line represents an extrapolat
of the phase boundaries based on MC simulations w
out free energy calculations.~b! Global phase diagram
of a fluid in a slit pore of widthH.3s f f from experi-
ment. The experiments are for various adsorbates c
fined within activated carbon fibers~ACF, mean pore
width 1.4 nm!: 1. H2O ~Ref. 13!, 2. C6H5NO2 ~Ref. 14!,
3. C6H5NH2 ~Ref. 15!, 4. CH3OH ~Ref. 13!, 5. CCl4
~Refs. 11, 16!, 6. C6H6 ~Ref. 12!.
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molecular layers are present, both of which are contact
ers. A similar phase diagram obtained from experimental
sults is shown in Fig. 10~b!. The experimental results wer
taken from our previously published work and from t
literature.6,12–15,29For each experimental system, the fluid
fluid interaction parameters were determined by fitting
Lennard-Jones potential to reproduce the bulk freezing p
data ~Table I!. For methane, the Lennard-Jones parame
were chosen to reproduce the second virial coefficient d
these parameters gave a reasonable description of the f
ing point of bulk methane. The pore wall potential para
eters for activated carbon fiber were obtained from Stee29

For fluids with predominantly dispersive interaction (CCl4 ,
C6H12, and C6H6), the fluid-wall potential parameters wer
obtained from the fluid–fluid and wall–wall parameters, u
ing Lorentz–Berthlot mixing rules. For dipolar fluid
(C6H5NO2, C6H5NH2, and CH3OH), the second virial coef-
ficient data predicted by the LJ potentials in Table I w
fitted to a Stockmayer potential,41 and thee f f of the Stock-
mayer fluid was used in the Lorentz–Berthlot mixing rules
determine the fluid-wall parameters. This procedure w
adopted as the dipole interactions of the polar fluids do
contribute to the fluid-wall potential, which is assumed to
purely dispersive~the polarizability of graphite and mica su
faces is small!. For water, which has a hydrogen bondin
character in addition to a large dipole moment, thee f f of the
TIP4P potential42 was used to determine the fluid-wall po
tential parameters. Again this assumes that the pa
charges in the TIP4P potential do not contribute to the flu
wall potential. The fluid–fluid parameters and the fluid-w
parameters for the experimental systems we have consid
are given in Tables I, II, and III.
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The phase boundaries shown in Figs. 10~a! and ~b! are
qualitatively similar. Asa becomes smaller the temperatu
range where the hexatic phase is stable decreases. This
be expected, since asa becomes small the fluid-wall inter
actions are relatively weaker, and the adsorbate no lon
arranges itself into well defined quasi-two-dimensional la
ers. The crystal/hexatic boundary curves from simulation a
experiment are in good agreement, within a few % for t
freezing temperatures. The liquid/hexatic curves are qua
tively similar, but the experimental points show a larger sc
ter, with the agreement between simulation and experim
being within 12%.

All of the results shown here are for slit-shaped por
for which well-defined phase transitions occur for all po
sizes. For cylindrical pores there will be two main diffe
ences in the freezing behavior. First, the freezing tempe
tures in a cylindrical pore are in general lower than for a
pore of the same porous material and pore width.43 This is
because of the additional confinement in cylinders; it
clearly harder for the molecules to arrange themselves on
appropriate lattice points in a cylinder than in a slit geome
Second, although freezing transitions occur in slit pores
all pore widths down to widths that accommodate just o
layer of adsorbate, this is not the case for cylindrical por
Both simulation24 and experimental24–27 studies have shown
that for pore diameters below about 20s f f only partial freez-
ing occurs, with a mixture of microcrystal and amorpho
domains, while for still smaller pores even partial crysta
zation is not observed. Recent simulation and experime
studies suggest that this lower pore diameter below which
crystal domains occur is roughly 12s f f for silica
materials.24–27
TABLE II. Fluid–fluid interaction parameters used to calculate the fluid-wall interactions.

Fluid Model Parameters a

Simple fluids s f f /nm, e f f /(kBK)
C6H6 LJ 0.6, 401.0 2.18~ACF!
C6H12 LJ 0.5, 412.0 2.22~Mica!
CCl4 LJ 0.514, 366.0 1.92~ACF!
CH4 LJ 0.381, 148.1 2.16~ACF!

Dipolar fluids s f f /nm, e f f /(kBK), m/Debye
C6H5NH2 Stockmayer 0.514, 358.0, 1.1 1.75~ACF!
CH3OH Stockmayer 0.45, 176.0, 1.7 1.815~ACF!

C6H5NO2 Stockmayer 0.514, 212.0, 4.2 1.22~ACF!
H-Bonding fluids

H2O TIP4P 0.3154, 77.9,qO521.04 0.51~ACF!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Recently more realistic models of porous glasses
activated carbon fibers have been developed,44,45that include
dispersions in pore size, networking, connectivity and s
face roughness found in the real porous materials. In
future, it is important to study the effect of the disorder of t
porous matrix on the thermodynamic stability of the differe
confined phases.
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