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Abstract 

Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family 

Receptors at Atomic Resolution through Molecular Modeling and Simulations 

Andrew Shih 

Advisor: Ravi Radhakrishnan 

 

The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine 

kinases that are important regulatory elements in key signaling pathways.  To elucidate 

the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we 

have performed molecular dynamics simulations of the intracellular kinase domains of 

the four members of the ErbB family (those with known kinase activity), namely EGFR, 

ErbB2 (HER2) and ErbB4 (HER4) as well as ErbB3 (HER3), an assumed pseudokinase, 

in different molecular contexts: monomer vs. dimer, wildtype vs. mutant. Using 

bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate 

sequence similarities to correspondence of specific bond-interaction networks and 

collective dynamical modes. We find that in the active conformation of the ErbB kinases 

(except ErbB3), key subdomain motions are coordinated through conserved hydrophilic 

interactions: activating bond-networks consisting of hydrogen bonds and salt bridges.  

The inactive conformations also demonstrate conserved bonding patterns (albeit less 

extensive) that sequester key residues and disrupt the activating bond network. Both 

conformational states have distinct hydrophobic advantages through context-specific 

hydrophobic interactions.  The inactive ErbB3 kinase domain also shows coordinated 
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motions similar to the active conformations, in line with recent evidence that ErbB3 is a 

weakly active kinase, though the coordination seems to arise from hydrophobic 

interactions rather than hydrophilic ones.  We show that the functional (activating) 

asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and 

hydrophilic interactions that characterize the inactivating interaction network, resulting in 

motion of the αC-helix through allostery. Several of the clinically identified activating 

kinase mutations of EGFR act in a similar fashion to disrupt the inactivating interaction 

network.  Our molecular dynamics study reveals the asymmetric dimer interface helps 

progress the ErbB family through the activation pathway using both hydrophilic and 

hydrophobic interaction.  There is a fundamental difference in the sequence of events in 

EGFR activation compared with that described for the Src kinase Hck. 
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Chapter 1.) Regulation of ErbB Receptor Tyrosine Kinases 

 

Lung Cancer is the number one cause of death (157,000 in 2010) in America and 

accounts for almost as many deaths as the next three cancers (Breast/Prostate 

(40,000/32,000 in 2010), Colon (51,000 in 2010) and Pancreas (36,000 in 2010)) in both 

genders combined (American Cancer Society).  About 85-90% of Lung Cancer cases are 

Non-Small Cell Lung Cancers (NSCLCs), and present a poor prognosis in comparison to 

breast/prostate and colon cancers.  Recent advances in Cancer Therapeutics targeting the 

EGFR/ErbB family of Receptor Tyrosine Kinases (RTKs) have shown promise in 

providing an alternate therapy for NSCLC patients with efficacy at least equivalent to 

chemotherapy in patients harboring mutant forms of EGFR.  Here in this chapter we shall 

focus our attention upon the ErbB family, and in particular the intracellular kinase 

domain; however we will review overall RTK function and regulation as well. 

 

1.1) RTK Structure and Signaling 

 

The ErbB family kinases are a set of four homologous RTKs: EGFR/ErbB1/HER1, 

ErbB2/HER2, ErbB3/HER3, ErbB4/HER4.  RTKs are single pass transmembrane protein 

important in intercellular communication, by translating extracellular signals (ligands) 

into activation of specific cell signaling cascades (reviewed in [1, 2]).  In humans, there 

are currently 58 known RTKs divided into 20 families.  RTKs are composed of an 

extracellular ligand binding domain, a single transmembrane helix, a juxtamembrane 
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domain, a cytoplasmic kinase domain and a C-terminal tail containing multiple 

phosphorylatable tyrosines.  Activation of the extracellular domain by ligands triggers 

receptor dimerization and trans-phosphorylation of both the cytoplasmic kinase domains 

as well as the C-terminal tail.  Dimerization and phosphorylation of the kinase domains 

activates the kinase domain which then phosphorylates the tyrosines in the C-terminal 

tail.  The phosphorylated tyrosines serve as a docking site for downstream signaling 

molecules containing Src homology domain 2 and/or phosphotyrosine-binding domains 

and in turn relay the signal into the cell.  The cell signaling pathways RTKs modulate 

involve crucial cellular processes such as cell proliferation, differentiation, metabolism, 

migration, and apoptosis. 

 

The ErbB signaling network presents a “bow-tie” architecture, where multiple inputs and 

outputs are linked through a set of core processes [3].  The ErbB kinases are capable of 

binding a variety of ligands resulting in homo and heterodimerization, improving the 

flexibility and robustness in the ErbB signaling network by increasing response to 

extracellular signaling as well as allowing for cross-talk between ErbB kinase dimers, 

compensating for any reduced signaling of an individual ErbB member in a given cell 

type.  For example, ErbB2 does not currently have a known ligand and ErbB3 is missing 

key residues in the active site, greatly reducing its kinase efficacy: a pseudo kinase [4].  

However, ErbB2/ErbB3 heterodimers are extremely relevant in the signaling picture as 

overexpression is correlated with oncogenic transformation in breast cancers [5, 6].  

Extracellular signaling is reduced to the four ErbB family kinases, which is then fed 
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through the core process: a conserved, relatively small collection of biochemical 

interactions.  The ErbB network then expands again through transcription factors and 

positive as well as negative feedback mechanisms, eventually leading to the important 

cell signaling pathways of proliferation, differentiation, etc. 

 

1.2) Regulation of RTK signaling duration at the cell surface 

 

Following the phosphorylation of the RTK kinase domains, there are pathways to 

modulate the length of time the kinase is active on the cell surface, mainly receptor-

mediated endocytosis and phosphatases.  Upon ligand induced activation, RTKs are 

internalized which removes the active RTK as well as the ligand from the cell surface 

(reviewed in [7-9]).  The predominant pathway for endocytosis for RTKs is clathrin-

mediated endocytosis, where the RTKs are rapidly endocytosed via clathrin-coated pits.  

There are also clathrin independent endocytosis pathways for RTK internalization, but 

they are not as well understood physiologically.  One of the members of the ErbB family, 

ErbB4, has an alternate method of internalization by means of proteolytic cleavage [10], 

which constitutes a biochemical switch and is involved in proper cardiac and neural 

development [11, 12].  

 

Protein Tyrosine Phosphatases (PTPs) are the opposite half of the RTKs, removing the 

phosphate group on phosphotyrosines.  The balance of the interplay between the RTKs 

and PTPs act as a major switch controlling the full activation of RTKs and thereby the 
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cell decision fates [13].  Before RTK activation, PTPs are in constant activity to reduce 

any residual phosphorylation from cross-talk and accidental activation.  Given significant 

ligand, the RTKs inhibit local PTP activity and have enhanced signal propagation [14].  

Paradoxically, ligand binding also causes recruitment of PTPs that bind to target RTKs, 

dephosphorylates them, stabilizes the inactive form at the cell surface and inhibits further 

signaling [15].  The bivalent reaction of PTPs to RTK ligand binding may be from 

general non-specific PTP function versus RTK specific PTP function, however this is 

beyond the scope of this thesis. 

 

Adding to activation and regulation of RTKs is the role of recently discovered 

cytoplasmic proteins cytohesins in EGFR [16] (and the proteins Dok7 in MuSK [17]).  

The proteins modulate the activity of the proteins in both a positive and negative fashion 

dependent on concentration.  Increased amounts of the proteins activate the RTKs 

without any ligand binding events, while lacking the proteins prevents the activation of 

the RTKs even with a ligand binding event.  It is clear that cytohesins are important in the 

scheme of ErbB in dimerization and activation though their specific role in the cell is 

unclear: as an extra layer of control, where a level of local concentration is necessary for 

activation or as an activator from the cytoplasmic side, where the cell can trigger the 

RTK cascade without a ligand binding domain or as a signal propagator, where activation 

of a single EGFR molecule causes recruitment of cytohesins to further increase the 

activity or if any combination of the three are true. 
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1.3) Regulation, Structure and Auto-inhibition of RTKs  

 

At the protein level, the extracellular domains are locked into an auto-inhibitory state 

preventing dimerization and are released with a ligand binding event.  The specifics of 

how ligand binding facilitates dimerization for each RTK falls in the spectrum of “ligand 

mediated” dimerization, where the ligands bridge the two receptors without the receptors 

making direct contact, and “receptor mediated” dimerization, where the ligands make no 

direct contribution to the dimer interface (all mechanisms are reviewed in [18]).  The 

ErbB family represents the extreme of “receptor mediated” dimerization [19, 20].  The 

ErbB extracellular domain consists of four domains, with auto-inhibitory interaction 

between domains II and IV in a tethered conformation (Figure 1.1A) [21-24].  Ligands 

for the ErbB family are bivalent and bind to Domains I and III which cause a 

conformational change breaking the tethered conformation and exposing a dimerization 

arm in domain II allowing the dimerization arm to contact another ErbB RTK molecule. 

 

Each RTK kinase domain is cis-autoinhibited in a characteristic fashion (reviewed in 

[18]) with activation mechanisms being unveiled as each RTK is being studied more in-

depth.  In RTK signaling, the intracellular kinase domain catalyzes transfer of the -

phosphate of ATP to tyrosines on both the RTK itself and in other target substrates 

(reviewed in [1]). Regulation of the RTK kinase domain is thought to involve 

contributions from several conserved subregions: the catalytic loop (C-loop), the 

activation loop (A-loop), the glycine-rich nucleotide binding loop (P-loop), and the C-
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helix, which together define the active site in the cleft between the  strand-rich N-lobe 

and the helical C-lobe. The catalytic loop residues directly participate in phosphoryl 

transfer. The A-loop and the C-helix (Figure 1.1B) modulate the activity of the kinase 

domain by regulating accessibility of the active site to binding and coordinating both 

ATP and the substrate tyrosine. The ~20 amino acid A-loop in ErbB kinases contains one 

phosphorylatable tyrosine (Y845 in EGFR, Y877 in ErbB2, Y850 in ErbB4, note: there 

are two numbering schemes for the ErbB family where Y845 is equivalent to Y869).  The 

C-helix and P-loop must be positioned correctly to coordinate the ATP and the substrate 

tyrosine for effective phosphoryl transfer.   

 

Figure 1.1: (A) Activation scheme for the ErbB family.  The inactive kinase 
(brown N-lobe) is auto-inhibited through the A-loop and αC-helix (Purple).  
Introduction of the asymmetric dimer interface rotates the αC-helix to the 
active state (orange N-lobe). (B) Enhanced view of the inactive and active 
kinase domains (C) Hydrophobic core (cyan) in the inactive and active 
conformations (D) C-spine (left yellow spine) and R-spine (right yellow 
spine) in the inactive and active conformations. 
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In the inactive state there is a small hydrophobic ‘core’ formed between the αC-helix and 

the A-loop, that helps maintain the kinase in the inactive conformation (Figure 1.1C).  

Disruption of this hydrophobic core by single point mutations has been shown to activate 

EGFR [25-29].  Recent structural studies have revealed highly conserved hydrophobic 

“spines” within active kinases that are considered important in catalysis [30, 31], shown 

in Figure 1.1D.  The regulatory spine (R-spine) consists of four hydrophobic side chains 

(M742, L753, H811, F832 in EGFR) anchored by an aspartic acid in the αF-helix (D872 

in EGFR) and coordinates the motion of the N- and C-lobes of the kinase [30]. The 

catalytic spine (C-spine) involves eight hydrophobic side-chains (V702, A719, L774, 

V819, L820, V821, T879, L883 in EGFR) that help support and coordinate the adenine 

ring of ATP in the active state during phosphotransfer [31].   

 

Many of the kinase domains are inhibited through steric hindrances of a protein segment 

blocking off the active site and greatly reducing the efficacy of the kinase.  Dimerization 

puts two kinase domains in close proximity to each other and although the kinase 

efficiency is greatly reduced, it is theorized that each kinase still has enough activity to 

phosphorylate its dimer partner.  Phosphorylation of the protein segment prevents the 

protein segment from binding into the active site and allows the kinase to fully function.  

For the Ins [32] and FGFR [33] family of kinases, the A-loop serves as the inhibitory 

segment, while the juxtamembrane domain serves the same autoinhibitory role as the A-

loop in MuSK [34], Flt3 [35], KIT [36] and the Eph [37] family and in the Tie2 [38] 

kinase, a segment of the C-terminal tail acts as the auto-inhibitor.   
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The ErbB family has a different method of inactivation as phosphorylation of the A-loop 

or any other protein segment does activate the kinase; rather than a steric hindrance of the 

active site, there are collective auto-inhibitory interactions preventing the proper 

coordination between key loops in the kinase [39, 40].  Activation of the kinase domain is 

also achieved through dimerization, though in this case, the dimer interface itself serves 

as the activating mechanism.  In the ErbB family, the dimer interface is asymmetric 

similar to that of the cyclin dependent kinases and cyclin; the C-lobe one kinase, the 

“activator”, contacts the N-lobe of the other kinase, the “receiver,” with the asymmetric 

dimer contacts causing a conformational change towards the active state through 

allosteric methods (Figure 1.1A) [41, 42].  The αC-helix in the inactive ErbB kinase is 

rotated out preventing key bonds from forming.  Introduction of the activating 

asymmetric dimer interface forces the αC-helix to sample a different conformational 

space biasing towards the active state.  Furthermore, the juxtamembrane domain in EGFR 

serves as latch to facilitate the asymmetric dimer interface between kinase domains [43-

45]. 

 

1.4) Kinase Domain Mutations in Cancer and their Therapeutic Importance 

 

Deregulation and mutation of RTKs have been correlated with cancer almost 

immediately after their discovery and purification in the early 1980s.  The v-erbb 

oncogene in the avian erythroblastosis virus, that was capable of inducing acute leukemia 
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encoded, was found to encode a constituently active form of the homologous ErbB kinase 

protein [46].  With the increased study upon RTKs, the correlation between deregulation 

of RTKs and a variety of ailments and particularly in cancer has only grown stronger.  

Deregulation of RTKs in cancers can occur at several points: (1) increased ligand 

production through enhanced local autocrine activation (2) specific gene translocations to 

produce kinase fusions with altered signaling profiles (3) RTK overexpression at the cell 

surface (4) mutation of the RTK protein to modulate activity (5) disregulation of 

phosphatase and endocytosis mechanisms to increase RTK signal propagation.   

 

Further exploration of pathway (4) above and specifically clinically identified activating 

RTK mutations in the intracellular kinase domain have been discovered throughout many 

cancers (Table 1.1 a&b).  The results from Table 1.1 a&b are curated from Catalog of 

Somatic Mutations In Cancer (COSMIC [47]), which has a much more thorough listing 

for all the mutations and all cancers.  The oncogenic mutations cluster near the 

characteristic aspects of kinase activation (Table 1.1 a&b).  In Kit the predominant 

clinically identified activating mutations are focused on the juxtamembrane domain and 

the A-loop, both of which alter how the juxtamembrane domain serves as a steric 

hindrance to the active site.  In the FGFR family, the kinase mutations are around the A-

loop which serves as its inactivating segment.  EGFR is cis-inhibited through 

autoinhibitory bonds centered around the rotation of the αC-helix and is released by the 

asymmetric dimer interface.  The activating mutations observed in cancers for 
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Lung  Colon  Skin Breast Prostate Leukemia 

EGFR  

PL:[27, 28] 
αC: [27-29, 48]  
HC:[27-29, 48] 
AD1: [48] 

αCβ4:[49]  
AD1:[49, 
50]  αC:[51]  

AL:[52]  
αC:[53] 
AD1:[53]  

ErbB2 
αC:[54]  
αCβ4:[55-57] αCβ4:[54]  ---- 

αCβ4:[54] 
αC:[58]  ---- ---- 

ErbB4 ---- AL: [59] AL:[60] AL: [59] ---- ---- 

PDGFRα 
JM:[61]  
CT:[62]  ---- ---- ---- ---- AL:[63]  

CSF1R/F
ms ---- ---- ---- ---- ---- CT:[64, 65]  

Kit/SCFR JM:[66]  ---- 

JM:[67-70]   
αC:[68, 70] 
AL:[68-70] ---- ---- 

JM:[71, 72]  
AL:[71-74]  

Flt3/Flk2 ---- ---- ---- ---- ---- 
JM:[75-77] 
AL:[78, 79] 

VEGFR2/ 
KDR 

CT:[61]  
 ---- 

TM:[80] 
AL: [80]  ---- ---- 

FGFR1 AL:[62]  ---- ---- ---- ---- ---- 

FGFR2 ---- ---- 

JM:[81]  
αC:[81]  
AL:[81]  ---- ---- ---- 

FGFR3 ---- ---- AL:[82-84] ---- ---- AL:[85-87]  
FGFR4 AL:[61]  ---- ---- ---- ---- ---- 
Met JM:[61, 88-90]  αC:[91]  ---- ---- ---- ---- 
EphA1-
8,10 

AL:[61, 62]  
CT:[61]  ---- ---- ---- ---- ---- 

LTK 
AL:[61] 
CT:[61] ---- ---- ---- ---- ---- 

Table 1.1a: Currently known clinically identified activating cytoplasmic 
domain mutations in RTKs classified by kinase sub-domains in each of most 
common tumor types.  JM: juxtamembrane domain, PL:P-loop, αC: αC-helix, 
αC-β4: αC-β4 loop, HC: Hydrophobic Core, AL: A-loop, AD1: Asymmetric 
Dimer Interface in ErbB family, AD2: Asymmetric Dimer Interface in Ret, 
CT: C-terminal Tail; See also Table 1.1b  

 

EGFR are dominated by two mutations accounting for ~4500 of the 5000 or so total 

mutations (Figure 1.2): a point mutation (L834R) within the hydrophobic core as well as 

a small in frame deletion at least involving residues 747 to 751, at the tip of the αC-helix. 
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 Ovary Kidney Thyroid 
Gastro 
Intestinal 

Neuro 
Blastoma 

EGFR  αC:[92, 93] 

αC:[94]  
AL:[94]  
AD1:[95]  ---- ---- 

ErbB2 αCβ4:[96-98]  ---- ---- ---- ---- 
ErbB4 ---- ---- ---- αC:[59] ---- 

PDGFRα ---- ---- ---- 
AL:[99-101] 
JM:[99-101] ---- 

Kit/SCFR AL:[102, 103] ---- ---- JM:[104-107]  ---- 
FGFR2 AL:[108]  ---- ---- ---- ---- 

Met 
AL:[109]  
αC:[110]  JM [111, 112]  ---- ---- 

Ret ---- ---- 

AD2:[113-116]  
JM:[116, 117]  
AL:[118]  ---- ---- 

ALK ---- ---- ---- ---- 

AL:[119-122] 
αC: [120-122] 
JM:[119, 120, 122]  

Table 1.1b: Currently known clinically identified activating cytoplasmic 
domain mutations in RTKs classified by kinase sub-domains in each of most 
common tumor types.  JM: juxtamembrane domain, PL:P-loop, αC: αC-helix, 
αC-β4: αC-β4 loop, HC: Hydrophobic Core, AL: A-loop, AD1: Asymmetric 
Dimer Interface in ErbB family, AD2: Asymmetric Dimer Interface in Ret, 
CT: C-terminal Tail 

 

Both of those mutations alter the motion/conformation of the αC-helix thereby causing 

activation.  The ErbB2 RTK is prevented from forming heterodimers through association 

with Hsp90 through the uniquely hydrophobic αC-β4 region [123, 124], which is where 

the majority of the activating mutations present (Figure 1.2).  ErbB4 is not as well studied 

as EGFR and ErbB2; however it has recently come under scrutiny as potential therapeutic 

target.  However there is debate is to whether constituent activation of ErbB4 functions as 

an oncogenic promoter [60] or as protection from oncogenic transformation [125]. 
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Figure 1.2: Non-unique mutations cataloged in cancer samples for the ErbB 
family in catalytically important sub-domains, curated from the COSMIC 
database.  

 
The increased kinase activity increases the dependency of tumor upon the RTK, which 

becomes “oncogenically addicted [126]” and inhibition of the RTK is a viable route for 

cancer therapeutics.  EGFR and one of its small molecule tyrosine kinase inhibitors 

(TKIs), Gefitinib, is a canonical example of RTKs, cancer and targeted therapeutics.  The 

initial discovery of Gefitinib in 1994 was met with much excitement as a potential cancer 

therapeutic since it would be a low-dose targeted oral cancer therapeutic.  In two phase II 

clinical trials of Gefitinib for advanced NSCLC patients after progression of the cancer 

with chemotherapy, patients overall showed symptom improvement rates around 40% 

and a 1-year survival rates of 25-35% [127, 128].  The favorable results from the phase II 

trials gained Gefitinib FDA approval in 2003 prior to phase III clinical trials.  However, 

the phase III clinical trials of Gefitinib versus placebo as a second-line therapy did not 

show any statistical significance in survival in the overall population, but there was a 

therapeutic benefit to the sub-group of Asian non-smokers [129].  Examination of the 

tumors revealed sets of mutations in the EGFR tyrosine kinase domain [27-29].  The sub-

set of the tumors harboring these EGFR mutations are exceptionally sensitive to 
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inhibition through Gefitinib, so much so that Gefitinib has equal to or greater efficacy 

than standard chemotherapy treatments in EGFR mutation positive patients [130, 131].  

There are several other RTK inhibitors already approved by the FDA and in use in the 

clinical settings (Table 1.2).   

Name Target Company Class 
Bevacizumab 
(Avastin) VEGF Genentech 

Monoclonal 
antibody 

Cetuximab (Erbitux) EGFR 
Imclone/Bristol-
Meyers Squib 

Monoclonal 
antibody 

Panitumumab 
(Vectibix) EGFR Amgen 

Monoclonal 
antibody 

Ranibizumab 
(Lucentis) VEGF Genentech 

Monoclonal 
antibody 

Trastuzumab 
(Herceptin) Erb2 Genentech 

Monoclonal 
antibody 

Pegaptanib 
(Macugen) VEGF OSI/Pfizer RNA Aptamer 
Dasatinib (Sprycel) Src/Bcr-Abl Bristol-Meyers Squib TKI 
Erlotinib (Tarceva) EGFR Genentech/OSI  TKI 
Gefitinib (Iressa) EGFR AstraZeneca TKI 
Imatinib (Gleevec) Bcr-Abl Novartis TKI 
Lapatinib (Tykerb) EGFR/Erb2 GSK TKI 
Nilotinib (Tasigna) Bcr-Abl Novartis TKI 

Pazopanib (Votrient) 
VEGFR1/2/3 
PDGFR/c-kit GlaxoSmithKline TKI 

Sorafenib (Nexavar) RAF/VEGFR2/PDGFRB Onyx/Bayer TKI 

Sunitinib (Sutent) 
VEGFR2/PDGFRB 
c-kit/FLT3 Pfizer TKI 

Table 1.2: FDA approved RTK inhibitors currently in use. 

Given the importance of the ErbB family in cancers, it is important to understand their 

activation mechanisms at the molecular level to help design higher specificity 

therapeutics.  This is especially important in recent light as after sustained use of TKIs 

the cancers tend to adapt through resistance mutants, in EGFR the main mutation seen 

after extended treatment with Gefitinib is the T766M mutation [132].  Computational 

methodologies offer a powerful, quantitative, and complimentary alternative for the study 
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of intracellular kinase domains which if utilized correctly can predict resistance 

mutations [133, 134].  The scope of this thesis is to examine the molecular mechanisms 

of activation for the ErbB family of receptors using computational modeling techniques, 

particularly molecular dynamics simulation techniques.  Chapter 2 reviews common 

computational modeling techniques utilized for exploring atomic protein properties.  

Chapter 3 examines the hydrophilic interaction networks in EGFR kinase domain 

contrasting the inactive and active conformations as well as how the asymmetric dimer 

interface and mutations affect these networks.  Chapter 4 extends the interaction network 

analysis to the other canonical ErbB kinases, ErbB2 and ErbB4 as well as adding in 

analysis of hydrophobic interactions.  In chapter 5, we examine the interaction networks 

in the pseudokinase ErbB3.  Chapter 6 examines future work especially in regards to 

umbrella sampling techniques and present preliminary results from targeted molecular 

dynamics simulations.  Finally, chapter 7 places the atomic level analysis in a multi-scale 

model and links them together with cellular signaling network effects.  
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Chapter 2.) Computational Methods Related to Reaction Chemistry 

 

2.1) Introduction 

 

This chapter is altered from work presented in a book chapter on simulation techniques 

for biomaterials [135].  The acceptance of multiscale simulation techniques has helped 

bridge the gap between theory and experiment [136].  Electronic structure (quantum level 

or ab initio) simulations can reveal how specific molecules assume stable geometrical 

configurations and charge distributions when subject to specific chemical environment. 

By examining the charge distributions and structure it is possible to quantify and predict 

structural properties as well as chemical reactivity pertaining to the molecule, which are 

particularly pertinent when investigating novel materials. Although the quantum 

simulations provide a wealth of information regarding structure and reactivity, it is 

currently not possible to model much more than a few hundred atoms at most.  Molecular 

dynamics (MD) simulations based on classical (empirical) force-fields can model 

hundred thousands of atoms for nanoseconds and for some systems, up to a microsecond 

in time.  Since MD simulations can be set up at atomic resolution, they are uniquely 

suited to examine thermodynamic and statistical properties of biomolecules and 

biomaterials: such properties include (but not limited to) Young’s modulus, surface 

hydration energies, and protein adsorption to different surfaces [137]. Coarse-grained or 

mesoscale simulations are used to bridge the gap between the atomistic scale of MD 
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simulations and continuum approaches such as elasticity theory or hydrodynamics at the 

macroscale (i.e. milliseconds, millimeters and beyond) [136]. 

 

2.2) Computational Methods 

 

2.2.1) Molecular Dynamics 

 

Molecular dynamics (MD) simulation techniques are one of the most commonly used to 

model systems of biomolecules and biomaterials because they can track individual atoms 

and therefore  answer questions pertaining to specific material properties [138, 139]. To 

perform MD simulations, the starting point is defining the initial coordinates and initial 

velocities of the atoms characterizing the model system, for example, the desired 

biomolecule plus the biologically relevant environment; i.e. water molecules or other 

solvent and/or membranes.  The coordinates of the desired biomolecule can usually be 

found as structural data (X-ray or NMR) deposited into the protein data bank (PDB) 

[140] (www.pdb.org); otherwise it is possible to derive initial geometry and coordinate 

data from model building techniques, including homology methods (see section 2.2.2).  

This step also typically includes the placement and positioning of the environment of the 

molecules (solvation, ionic strength etc.).  The initial velocities are typically derived from 

the Maxwell-Boltzmann distributions at the desired temperature of the simulation. The 

potential of interactions of each of the atoms are calculated using a force field, which 

parameterizes the non-bonded and bonded interaction terms of each atom depending on 
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its constituent atom connectivity: bond terms, angle terms, dihedral terms, improper 

dihedral terms, non-bonded Lennard-Jones terms, and electrostatic terms.  The potential 

interactions are summed across all the atoms contained in the system, to compute an 

overall potential energy function for the system [141-145]: 
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Taking the derivative of the potential energy function yields the force, and from 

Newton’s second law, this is equal to mass times acceleration. Although, the process 

seems simple, the derivative function results in a set of 3N-coupled 2nd order ordinary 

differential equations that must be solved numerically.  The solution consists of a 

numerical recipe to advance the positions and the velocities by one time step.  This 

process is repeated over and over again to generate MD trajectories of constant energy. 

Constant temperature dynamics are derived by coupling the system to a thermostat using 

well established formulations such as the Langevin dynamics or the Nose-Hoover 

methodologies [146].  Application of MD simulations to biomolecules is facilitated by 
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several popular choices of force fields such as  CHARMM27 [147] (www.charmm.org), 

AMBER [148] (www.ambermd.org), and GROMOS [149] (www.gromacs.org), as well 

as dynamic simulations packages and visualization/analysis tools such as NAMD [150] 

(www.ks.uiuc.edu/Research/namd/) and VMD [151] (www.ks.uiuc.edu/Research/vmd/).  

 

With analysis of molecular dynamics trajectories, it is possible to calculate statistical 

properties under a variety of initial and other external conditions [136] such as hydrogen 

bond analyses for hydrophilic interactions and solvent accessible surface area for 

hydrophobic interactions.  For example, by analyzing the relative positions of the 

hydrogen bond donors to the hydrogen bond acceptors with a preset cutoff angle and a 

bond length, the hydrogen bonds present in the majority of a given trajectory can be 

identified to record permanent stabilizing interactions and differentiate them from 

transient interactions [152]. Similarly, using the solvent accessible surface area analysis, 

i.e. by mapping a surface area created using a probe sphere of 1.4 Å and accumulating the 

statistical data, provides a quantitative metric of hydrophobic stabilization effects.  

 

A popular statistical approach to analyze biomolecular dynamics is principal component 

analysis (PCA) [153, 154], which provides us with a framework to project out 

independent motions in an MD trajectory and sort them in the order of their dominance 

(the strongest motions first). This is achieved by diagonalizing the variance-covariance 

matrix of atomic fluctuations along the trajectory. PCA solves the eigenvalue equation: 

[ - I] = 0 to project out principal components (PC) or independent modes of atomic 
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motion, captured in an MD trajectory and sort them by their variance (in decreasing 

order). Here  is a two dimensional variance-covariance matrix of atomic fluctuations 

about the trajectory average, with elements σij=(xi−xi)(xj−xj)  (i,j =1,…,3N, N being 

the total number of atoms with position given by Cartesian coordinates x);. 

=(1,2,…,3N) are the 3N independent (uncorrelated) eigenvectors (PC) with 

eigenvalues =(I, 2,…,3N) sorted in descending order i.e. 1>2…,3N-7>3N-6. All 

global translations/ rotations about the center of mass are removed prior to evaluating  

and the six eigenvalues corresponding to these degrees of freedom are close to zero. The 

resulting eigenvectors represent the uncoupled principal components (PCs), (modes 

orthogonal to each other) and the eigenvalues reflect their magnitude (strength) in the 

trajectory. Generally, the top 10 principal components contain most of the atomic 

fluctuations in the MD trajectory (>40-90%); moreover, pair wise correlations between 

motions of atoms in an extended region of interest such as the active site of an enzyme 

can provide valuable information in relating structure to function through dynamics (or 

fluctuations) captured in the MD trajectory [153]. 

 

The utility of MD simulations generally depend on the accuracy of the underlying force-

field. Since force-fields are created using empirical energy functions, they are 

parameterized and tuned to specific class of molecules; this introduces a constraint on 

their transferability to model non-native systems or environments and results must often 

be compared to experimental results, not only to verify their accuracy, but also to identify 
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where methodological improvements can be made. Thus, there is continued development 

of the basic force-field as well as the simulation methodology. 

 

Another important consideration is the ability to perform sufficient sampling of the 

combinatorially large number of conformations available to even the simplest of 

biomolecules [155, 156]. In this respect, a potential disadvantage of molecular dynamics 

calculations is that there is an inherent limitation upon the maximum time step used for 

the simulation (≤ 2 fs). Solvated systems of protein monomers typically consist of 40000 

atoms, and those of higher order complexes such as dimers or membrane-bound proteins 

can be as large as 200,000 to 500,000 atoms. For such system sizes, with current 

hardware and software, simulation times extending into the microsecond regime and 

beyond is an exceedingly difficult and labor intensive endeavor which requires a 

combination of algorithmic enhancements as well as the utilization of high-performance 

computing hardware infrastructure. For example, cutoff distances reduce the number of 

interactions to be computed without loss of accuracy for short-range interactions but not 

for long-range (electrostatic) interactions; to help maintain accuracy, long-range 

corrections such as the particle mesh Ewald algorithm [157] along with periodic 

boundary conditions are typically implemented. Parallelization techniques enable the 

execution of the simulations on supercomputing resources such as 4096 processors of a 

networked Linux cluster.  Although a cluster of this size is a big investment, its 

accessibility is feasible through the US National Science Foundations’ TeraGrid Initiative 

(founded in 2001) for academic researchers.  TeraGrid resources (www.teragrid.org) 
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currently include more than a petaflop of computing capability and more than 30 

petabytes of online and archival data storage, with rapid access and retrieval over high-

performance networks. Capitalizing on advances in hardware architecture, another 

approach is the creation of custom hardware for MD simulations, and offers one-two 

orders of magnitude enhancement in performance; examples include MDGRAPE-3 [158, 

159] and ANTON [160, 161].  Recently, graphical processing unit (GPU) accelerated 

computation has come into the forefront to enable massive speed enhancements for easily 

parallelizable tasks with early data indicating that GPU accelerated computing may allow 

for the power of a supercomputing cluster in a desktop, see examples [162, 163]. 

 

2.2.2) Homology Modeling 

 

Protein structure prediction is a fast-growing research field with applications to 

biotechnology [164-166]. Current experimental techniques for resolving protein structure 

through X-ray crystallography or NMR spectroscopy are laborious and thus can solve 

only a small fraction of proteins sequenced by large-scale genome sequencing endeavors.  

At present, at least 6,800,000 protein sequences have been deposited in the non-

redundant protein sequence database (NR; accessible through the National Center for 

Biotechnology Information: ftp://ftp.ncbi.nlm.nih.gov/blast/db/), yet the Protein Data 

Bank (PDB; http://www.rcsb.org/pdb/) contains fewer than 50,000 protein structures 

[167].  Given this discrepancy, computational modeling of protein structure has proven to 

be an invaluable tool for bridging the gap between protein sequence and structure.  In 
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particular, homology modeling, or prediction of an unknown structure by using a related 

protein with a known structure as a template, has been one of the most successful 

computational techniques for protein structure prediction [168-171]; see also  several 

computer programs and web servers: Swiss-Model server 

(http://www.expasy.ch/swissmod/); CPH models 

(http://www.cbs.dtu.dk/services/CPHmodels/); MODELLER [172] 

(http://salilab.org/modeller/). Homology modeling typically consists of the following 

steps:  search for homologous protein structures, selection of an appropriate template, 

target-template alignment, model construction, and model quality assessment.   

 

The search for homologous or highly related protein structures to be used as the template 

for model-building typically involves querying the Protein Data Bank (PDB) with the 

target sequence: the target sequence is compared with the sequence of every structure in 

the database, and potential templates are identified.  In order to select the best template 

for comparative modeling, several factors must be considered.  First, the higher the 

degree of sequence identity between the target and template, the better the quality of the 

template.  Secondly, the similarity between the environment (i.e., the type of solvent, pH, 

presence of ligands) of the template and the environment of the target should be 

considered [172].  In addition, the quality of the template structure, which has been 

experimentally derived, must be taken into account.  For example, resolution of a 

crystallographic structure is an indicator of the structure quality.  Once a template 

structure has been selected, a target-template alignment must be performed, which can be 
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done by using standard sequence alignment methods [173-175].  However, if the degree 

of sequence identity between the target and template is below 40%, user intervention is 

required to correct any gaps or misaligned residues generated in the alignment.  More 

accurate alignments can be generated by incorporating structural information from the 

template, and some modeling programs, including MODELLER, utilize a combination of 

sequence and structure information in the alignment algorithm.   

 

Once a target-template alignment is created, several algorithms may be used to build a 

3D model of the target protein [164, 166].  One commonly employed method is to use 

distance geometry to satisfy spatial restraints determined from the target-template 

alignment [176-178].  MODELLER, for instance, imposes spatial restraints that are 

derived from two sources:  homology-derived restraints on the bond distances and angles 

in the target structure that are based on its alignment with the template structure, and 

stereochemical restraints on bond distance and dihedral angle preferences that are 

obtained from a representative set of all known protein structures.  The model is then 

constructed using molecular dynamics methods to minimize violations of the spatial 

restraints.   

 

A reliable homology modeling program should allow for modeling of insertions (i.e., 

loops) during model building.  The ab initio loop modeling method involves exploring 

multiple conformations for the specified loop region, and each are then scored by an 

energy function to identify the most likely loop conformation [179].  Alternatively, a 



24 
 

database approach may be employed, which involves identification of a main chain 

segment that fits the two stem regions of a loop by searching a database of many known 

protein structures.  A limitation of the database approach is the availability of only a 

small number of known protein structures [180], whereas the ab initio approach is more 

widely applicable to loop regions bound to ligands or other molecules.  Currently, loop 

regions of up to 12 residues can be modeled accurately using these techniques, provided 

that the loop environment is well-defined [172]. 

 

The final step in homology modeling is model quality assessment.  Over the past couple 

of decades, several techniques have been developed to assess the quality and correctness 

of protein structural models. These methods analyze the stereochemical quality of the 

model, including bonds, bond angles, dihedral angles, and non-bonded atom-atom 

distances.  Several programs, including PROCHECK (www.ebi.ac.uk/thornton-

srv/software/PROCHECK [181]) and (WhatCheck swift.cmbi.ru.nl/gv/whatcheck [182]), 

perform this type of analysis.  When there is less than approximately 30% sequence 

identity between the target and template, external assessment methods must be applied to 

determine whether a correct template was used [183].  Thus, several different alignments 

for the same template may be tested, in addition to alternative templates.  The model can 

be further analyzed by computing a residue-by-residue energy profile, where peaks in the 

profile represent model errors.  However, a potential pitfall of this method is that a 

segment of residues may appear to be erroneous, when in fact it is only interacting with 
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an erroneously modeled region.  Therefore, the use of energy profiles should not be the 

only means of model assessment. 

 

Despite the predictive power and utility of homology modeling, several challenges 

persist.  First, the level of target-template structural conservation and the accuracy of the 

alignment are key determinants of the quality of the resulting model.  If the target-

template sequence identity is less than 20%, approximately half of the residues in the 

model may be misaligned [184].  This issue can be addressed by modeling based on more 

than one template, to integrate the most relevant features from each template.  Another 

challenge is that homology modeling programs must evolve new techniques to keep pace 

with the increasing number of known protein structures.  Pre-computing structural 

relationships within the PDB may be helpful in addressing this issue, as many irrelevant 

structures may be excluded without the need to align them explicitly [184].  An 

additional challenge in comparative modeling is determination of side-chain 

conformation.  Many side-chain programs are based on rotamer libraries [185], which 

contain values for side-chain torsional angles for preferred conformations of specific side 

chains.  However, as the number of rotamers increases, the issue of sampling all potential 

conformations becomes a combinatorial problem.  Xiang et al. [186] have recently shown 

that the use of a rotamer library based on Cartesian coordinates of known structures, 

rather than optimal bond lengths and angles, can successfully predict side-chain 

conformation.  Thus, local minima for side-chain prediction may be nearly as reliable as 

the global minimum, and renders the combinatorial problem less of an issue.  Despite 
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these present challenges, homology modeling remains a powerful tool for reliable 

prediction of protein structure.  As the accuracy of the technique increases over the next 

several years, comparative modeling will further close the gap between the number of 

known sequences and the number of available structures, as well as deepen our 

understanding of the relationship between protein structure and function. 

 

2.2.3) Free Energy 

 

The first law of thermodynamics states that natural systems seek a state of minimum free 

energy at equilibrium.  Thus computation of free energy of a system is important in 

comparing the results of simulation and experiment.  Several different methods have been 

implemented for calculation of the free energy of various biological systems, and here we 

will discuss two of the more commonly employed techniques, namely the free energy 

perturbation (FEP) method [187] and umbrella sampling [188].   

 

Free Energy Perturbation (FEP): In molecular systems, the free energy problem is 

typically presented in terms of computing a free energy difference, ΔF, between two 

defined thermodynamic states, for example, a ligand-bound versus unbound molecule.  

The free energy difference between the two states is expressed as [189]: 
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where the subscript zero indicates configurational averaging over the ensemble of 

configurations representative of the initial state of the system, kB is the Boltzmann 

constant, T is the temperature, and v(x) is the potential energy function that depends on 

the Cartesian coordinates of the system, [x].  ΔF can also be computed by the reverse 

integration: 
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where the subscript one indicates averaging over the ensemble of configurations 

representative of the final state of the system. The most straightforward implementation 

of the FEP method involves defining the potential energy function for each state and 

performing a molecular dynamics simulation for the initial state of the system, hence 

calculating the ensemble average.  Both forward and backward integrations may be run to 

obtain an estimate of the statistical uncertainty in ΔF.  This uncertainty arises from 

configurations sampled in the ensemble representative of the initial state but not the final 

state and vice versa, and is typically small when the initial and final states of the system 

are very similar (i.e., the free energy difference between the initial and final states is on 

the order of 2kBT, or 1.5 kcal/mol) [190].  However, for systems in which the free energy 

difference is significantly larger, a series of intermediate states must be defined and must 

differ by no more than 2kBT.  The total ΔF can then be computed by summing the ΔFs 

between the intermediate states: 
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where M indicates the number of intermediate states and λ is the coupling parameter, a 

continuous parameter that marks the extent of the transition from the initial to the final 

state.  As λ is varied from 0 (initial state) to 1 (final state), the potential energy function 

v(x; λ) passes from v0 to v1.  

 

A limitation of this method is that the end points of the transformation, which correspond 

to the creation or elimination of a group of atoms, are subject to VDW clashes that result 

in end-point catastrophes [191, 192].  To obtain an accurate estimate of the free energy at 

the diverging end points, the number of windows at the beginning and end of the FEP 

simulations can be increased to collect data at several points with λ values close to zero 

or one.  Another challenge is particularly relevant to biological systems, as there are often 

multiple ways that a ligand can bind to a receptor [189].  Indeed, some of these 

possibilities will result in comparable free energy estimates.  However, the current FEP 

methodology must improve upon ways to distinguish among the alternative possibilities 

and thoroughly sample the possible conformations at a binding site. Despite these 

limitations, the FEP method is capable of providing an accurate theoretical estimate of 

the free energy of numerous biomolecular systems [193-196]. 

 

Umbrella Sampling: This procedure enables the calculation of the potential of mean force 

(free energy density) along an a priori chosen set of reaction coordinates or order 
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parameters, from which free energy changes can be calculated by numerical integration 

(see for example, [197]). For the free energy calculation, the probability distribution P(χi) 

is calculated by dividing the range of order parameter χi into several windows. The 

histograms for each window are collected by harvesting and binning trajectories in that 

window, from which the potential of mean force Λ(χi) is calculated; the potential of mean 

force Λi(χi) is given by [198, 199],  

 

Λi( χi) = −kBT ln(P(χi)) + Constant; Then, exp(-F)= exp(-Λi( χi)) dχi 

 

The functions Λi(χi) in different windows are pieced together by matching the constants 

such that the Λi function is continuous at the boundaries of the windows. Thus, the 

arbitrary constant associated with each window is adjusted to make the Λ function 

continuous. The standard deviation in each window of the potential of mean force 

calculations is estimated by dividing the set of trajectories in two blocks and collecting 

separate histograms. The calculation of the multi-dimensional potential of mean force 

(multiple reaction coordinates) using the weighted histogram analysis method (WHAM) 

reviewed by Roux [200], which enables an easy and accurate recipe for unbiasing and 

combining the results of umbrella sampling calculations, which simplifies considerably, 

the task of recombining the various windows of sampling in complex systems and 

computing F, see examples [199-203]. 

 

2.2.4) Electronic Structure Methods 
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Molecular simulations using the empirical force-field approach are rooted in the validity 

of classical mechanics. Electronic structure methods [204-206] that relieve this 

fundamental assumption are often necessary in force-field development as well as in 

understanding chemical reaction pathways and catalytic mechanisms. While electronic 

structure methods are computationally rather demanding, recent advances in mixed 

quantum mechanics molecular mechanics (QM/MM) methods enable us to combine high 

level electronic structure methods with molecular mechanics [207-218]. This multiscale 

description of force-fields provides a route to extend the electronic structure methods to 

the nanometer scale to enable the study of biomolecular systems. Compared to their 

classical counter-parts [142, 219-243], the quantum approaches (such as the empirical 

valence bond [207, 208]) and mixed QM/MM approaches are more challenging to apply 

in the biochemical context, though several successful demonstrations are available [193, 

215, 244-247]. Here, we describe the utility of electronic structure methods in the study 

of catalytic reaction mechanisms. 

 

Quantum Mechanics Molecular Mechanics (QM/MM) Simulations: In the QM/MM 

simulations, the system is sub-divided into two sub-regions, the quantum mechanical sub-

region (QM region) where the reactive events take place, and the molecular mechanical 

sub-region (which provides the complete environment around the reactive chemistry) 

[208, 210]. Since electronic structure methods are limited by the number of atoms they 

can handle (typically 50-500), the QM sub-region is restricted to a small number of atoms 
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of the total system. For example, in an enzymatic system, the quantum region can consist 

of Mg2+ ions, water molecules within 3 Å of the Mg2+ ions, parts of the substrate 

molecules and the catalytic amino acid residues (such as aspartic acids). The remaining 

protein and solvent molecules are treated classically using the regular classical force-field 

(such as CHARMM27).  

 

In QM/MM simulations, wave function optimizations are typically performed in the 

quantum (or QM) sub-region of the system using an electronic structure method such as 

density functional theory (DFT) [205]. In this step, the electrostatic coupling between the 

QM and the MM sub-regions is accounted for: i.e., the charges in the MM sub-region are 

allowed to polarize the electronic wave functions in the QM sub-region. The forces in the 

quantum sub-region are calculated using DFT on-the-fly assuming that the system moves 

on the Born-Oppenheimer surface [210, 248]. That is, we assume a clear timescale of 

separation between the electronic and nuclear degrees of freedom and the electronic 

degrees of freedom are in their ground state around the instantaneous configurations of 

the nuclei. The forces on the classical region are calculated using a classical force-field. 

In addition, a mixed Hamiltonian (energy function) accounts for the interaction of the 

classical and the quantum sub-regions. For example, since the QM/MM boundary often 

cuts across covalent bonds one can use a link atom procedure [213] to satisfy the 

valences of broken bonds in the QM sub-region. Also, bonded terms and electrostatic 

terms between the atoms of the QM region and those of the classical region are typically 

included [211].  
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From a practitioner’s stand-point, QM/MM methods are implemented based on existing 

interfaces between the electronic structure and the molecular dynamics programs, one 

implementation is between GAMESS-UK (www.cfs.dl.ac.uk [249]) (an ab-initio 

electronic structure prediction package) and CHARMM [147]. The model system can 

then be subjected to the usual energy minimization and constant temperature 

equilibration runs at the desired temperature using the regular integration procedures in 

operation for pure MM systems; it is customary to carry out QM/MM dynamics runs 

(typically limited to 10-100 ps because of the computationally intensive electronic 

structure calculations) using a standard 1 fs time step of integration. The main advantage 

of the QM/MM simulations is that one can follow reactive events and dissect reaction 

mechanisms in the active site, while considering the explicit coupling to the extended 

region. In practice, sufficient experience and care is needed in the choices of the QM sub-

region and the many alternative choices of system sizes, as well as the link-atom schemes 

need to be compared to ensure convergence and accuracy of results [211]. The shorter 

length of the dynamics runs in the QM/MM simulations (ps) relative to the MM MD 

simulations (ns) implies that sufficiently high resolution structures are usually necessary 

for setting up such runs as the simulations only explore a limited conformational space 

available to the system. Another challenge is an accurate and reliable representation of 

the mixed QM/MM interaction terms [214]. These challenges are currently being 

overcome by the suitable design of next generation methods for electronic structure and 

molecular mechanics simulations [250, 251]. 
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2.2.5) Methods for Determining Reaction Paths 

 

Brute-force molecular dynamics simulations of realistic models are restricted to the nano-

microsecond regimes. The development of long-time dynamics and sampling algorithms 

is a well appreciated central objective of single molecule biophysics as the prediction of 

biologically relevant properties, which occur in the timescale upwards of a microsecond, 

has remained a problem. Sampling the complex configurational space of biomolecules is 

a challenge, but can be partially overcome via smart sampling techniques [252-255], 

umbrella sampling [194, 200], steered and targeted dynamics [229, 256], meta-dynamics 

[257, 258], Tsallis statistics [259, 260], adaptive sampling [261], and density of states 

Monte Carlo [262, 263]. Path-based methodologies seek to describe transition pathways 

connecting two well defined states [224, 264, 265]; practical applications of this ideology 

are available through methods such as stochastic path approach [266], nudged elastic 

band [267-269], finite temperature string [261], and transition path sampling [270-272], 

which each exploit the separation in timescales in activated processes, namely, the 

existence of a shorter time scale of relaxation at the kinetic bottle neck or the transition 

state (relax), in comparison to a much longer timescale of activation at the transition state 

itself (TS). Below, we review the path-based method of transition path sampling and the 

related method of Bolas sampling. 
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Transition path sampling (TPS) [270, 271] aims to capture rare events (excursions or 

jumps between metastable basins in the free energy landscape) in molecular processes by 

essentially performing Monte Carlo sampling of dynamics trajectories; the acceptance or 

rejection criteria are determined by selected statistical objectives that characterize the 

ensemble of trajectories. In transition path sampling, time reversible MD trajectories in 

each transition state region are harvested using the shooting algorithm [272] to connect 

two metastable states via a Monte Carlo protocol in trajectory space. Essentially, for a 

given dynamics trajectory, the state of the system (i.e., basin A or B) is characterized by 

defining a set of order parameters =[1,2,…]. Each trajectory is expressed as a time 

series of length . To formally identify a basin, the population operator hA=1 if and only 

if a particular molecular configuration associated with a time t of a trajectory belongs to 

basin A; otherwise hA=0. The trajectory operator HB=1 if and only if the trajectory visits 

basin B in duration , i.e., there is at least one time-slice for which hB=1; otherwise HB=0. 

The idea in TPS is to generate many trajectories that connect A to B from one such 

existing pathway. This is accomplished by a Metropolis algorithm that generates an 

ensemble of trajectories [] according to a path action S[] given by: 

S[]=(0)hA(0)HB[], where (0) is the probability of observing the configuration at 

t=0 ((0)exp(-E(0)/kBT), in the canonical ensemble). Trajectories are harvested using 

the shooting algorithm [272]: a new trajectory * is generated from an existing one  by 

perturbing the momenta of atoms at a randomly chosen time t in a symmetric manner 

[272], i.e., by conserving detailed balance. The perturbation scheme is symmetric, i.e., 

the probability of generating a new set of momenta from the old set is the same as the 
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reverse probability. Moreover, the scheme conserves the equilibrium distribution of 

momenta and the total linear momentum (and, if desired, the total angular momentum). 

The acceptance probability implied by the above procedure is given by Pacc=min(1, 

S[*]/S[]). With sufficient sampling in trajectory space, the protocol converges to 

yield physically-meaningful trajectories passing through the true transition state (saddle) 

region. 

 

Figure 2.1: Convergence analysis in TPS simulations. Left: order parameter 
correlation functions transitioning between A

2 and AB in a timescale of 
mol. Right: decorrelation of transition paths  

 

The convergence of each sampling run is monitored by calculating the autocorrelation 

function of the order parameter. The characteristic relaxation time mol associated with the 

crossing of each transition state region is given by the time taken for the gradual 

transition of the autocorrelation function χi(0)χi(t), where  · denotes the average over 

the ensemble of generated trajectories. Order parameter autocorrelation functions 
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transition from an initial value  χi(0)χi(t) ≈ χA
2 to a final value χi(0)χi(τ) ≈ χA*χB, to 

indicate crossing of the barrier region between two metastable regions A and B over time 

τ . The timescale of barrier relaxation τmol is inferred from these correlation functions 

graphically. Shown in Figure 2.1 are these functions for four different sampling runs.  

The top left panel captures a large subdomain motion while the bottom left panel captures 

three residue flips during the closing conformational change [273]. The gradual change in 

the order parameters indicates the decorrelation in each TPS run. In addition to the 

autocorrelation functions associated with order parameters, an assessment of the quality 

of our sampling by checking for the decorrelation of order parameters in path (Monte 

Carlo) space is necessary. This is achieved by calculating the function i
*(0)i

*(n), 

where n represents the harvested trajectory number, and i
* is the value of the order 

parameter evaluated at a particular time-slice at the bottleneck of the transition.  

 

In calculating this correlation function, no shifting with respect to the first trajectory is 

done. This removes the trivial decorrelation because of the shifting moves. Figure 2.1 

shows such correlation functions; it is evident from Figure 2.1 that on an average, every 

10th to 20th trajectory is statistically decorrelated; therefore the 200 to 300 trajectories 

that are generated for each TS ensure sufficiently good sampling, see examples [273, 

274].  

 

Bolas Sampling for Calculating Free Energies: BOLAS is motivated by the method of 

transition path sampling. BOLAS generates an ensemble of molecular dynamics 
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trajectories using a Monte Carlo protocol with an appropriate action S based on shooting 

perturbations. Below, we define the BOLAS action S and show that using BOLAS, the 

free energy as a function of a reaction coordinate or order parameter chosen a priori can 

be computed. The BOLAS path action (different from the TPS path action) is: 

S[]=(0). The need to use a modified path action for BOLAS stems from our 

requirement to compute the unbiased probability distribution of a given order parameter 

at equilibrium. In principle, configurations contained within the trajectories harvested by 

TPS are also obtained from the shooting algorithm. However, the bias imposed at the 

boundaries due to the hA(0) and HB[] in the TPS action prevents the correct estimation 

of the equilibrium probability distribution P(). This is because the contribution to P() 

comes from six classes of trajectories: trajectories that start in A and visit B in time 

interval ; trajectories that start in B and visit A; trajectories that neither originate in A 

nor B, but visit both the states in the time interval ; trajectories that visit A and not B; 

trajectories that visit B and not A; and trajectories that neither visit A nor B. The TPS 

action includes only the first class of trajectories; an action defined by 

S[]=(0)HA[]HB[] includes the first three classes of trajectories; the BOLAS action 

includes all six classes of trajectories. 

 

Since detailed balance is preserved for the momentum perturbation move of the shooting 

algorithm, and the individual molecular dynamics trajectories conserve a stationary 

(equilibrium) distribution , the configurations contained within the ensemble of the 
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generated trajectories are also distributed according to the equilibrium distribution , (see 

derivation in [201]). Thus, from the ensemble of trajectories generated using the BOLAS 

action, the equilibrium probability distribution of the order parameter can be calculated 

by binning the data from accepted trajectories into histograms of the order parameters. In 

our implementation, the desired range of  is divided up in terms of smaller windows and 

the BOLAS protocol is used to independently sample the configurations in each of these 

windows. This is equivalent to performing an umbrella sampling. The functions in 

different windows are then pieced together by using the WHAM algorithm [200]. The 

validity and application of BOLAS have been illustrated in several applications of protein 

nucleic acid interactions [201, 273, 275]. 

 

2.2.6) Effect of Force on Biomolecules 

 

In the single molecule experiments, a force applied can linearly couple to a reaction 

coordinate and alter the free energy landscape. If A and B denote the ground and 

transition states for a given transition (associated with catalysis or a ligand-binding 

event), then according to transition state theory the equilibrium constant for the system to 

switch from state A to B in the absence of any external force is:

 TkGK Beq /exp)0(  ,  where G is the free energy difference between A and B 

[276]. Within the linear response limit, the applied force will shift the ground state 

equilibrium position XA(F) and the position of the transition state XB(F) [276]. Thus, the 

change in the total (free) energy cost to transition from state A to state B, i.e. W=W(0)-
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W(F), under an applied force F acting along X is W(F)=W(0)-0.5kx[XB(F)- XA(F)]2, 

which will alter the equilibrium constant, see Figure 2.2 [276]: 

 

  TkWGK Beq /)]([exp)( FF  .  

 

Such a linear response, which assumes a perfect alignment of the applied force and the 

reaction coordinate, is assumed in the Bell model for receptor-ligand interactions, as well 

as in models of two-state transitions used to interpret single-molecule experiments [276, 

277]. However, the force will change X only if a coupling exists between X and the 

applied force.  We can explore this coupling by carrying out principal component 

analysis, PCA, see section 2.2.1 [154]. The coupling between the applied force and a 

coordinate X occurs through the alignment of the force and the PCs and how the PCs 

impact the coordinate X. While the former can be quantified by projecting the force 

component along the eigenvectors, the latter can be quantified linearly combining the 

PCs to describe the motion along X, as we illustrate below [278]. 
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Figure 2.2: Schematic of the effect of the force on the free energy landscape. 

 

An external force applied to a molecule will displace atoms in a given active site. Let x 

= (x1, y1, z1, x2, y2, z2,…,x3N, y3N, z3N) be the 3N dimensional displacement 

vector which represents the displacement of the N atoms in the active site due to the 

applied force F. We can express this displacement vector in terms of the 3N normalized 

PC modes m which form a complete basis as: x = m am  m., with expansion 

coefficients am . Under the quasiharmonic approximation and linear response, the 

Hamiltonian (energy function) for the system is given by: 
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That is, in the quasiharmonic approximation, for each eigenvector m the spring constant 

corresponds to km=kBT/m [154].  At equilibrium we have H/am = 0 for each am which 

gives: 
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Here F is a 3N dimensional vector representing the force on the active site fragment and 

m is a generalized angle between F and m  (PCs are normalized): 
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Where j
iF  denotes the component of applied force acting on the ith atom of the active site 

fragment in the direction j. In the experiments the force is applied by tethering polymer 

chains (e.g. DNA) to the ends of the molecule, based on which we can define the applied 

force to be: 

 

j
j
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iF                                             i     [xT] 
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Here F0(i) is the magnitude of force acting on the ith atom ( 



TN

i

iF
1

2
0 ))((|| F  ) and [xT] 

is a subset of NT atoms subject to the force. The components nj (j=x,y,z) belong to a unit 

vector along the applied force direction. We generally assume that [xT] includes only the 

heavy atoms and that the region subject to the force is small enough that the same force 

TNiF /||)(0 F acts on all the atoms. Calculations are performed by varying |F| to get 

the resultant change in the active site geometry due to the applied force F:


m

mma )0()( RFR , where, R = (x1,x2….x3N) is the vector representing the geometry 

of the active site. Here, R(0) is the ground state active site geometry at zero force, for 

which X=XA(0), and R(F) is the new active state geometry due to F for which X=XA(F). 

The force along X which causes a displacement, XA(F)=XA(F)-XA(0) is:

)()( FF Axx XkF  . The spring constants kx can simply be obtained from the 

distribution (histogram) of X values Px in MD trajectories by fitting a harmonic function 

to the energy of the distribution E(X)=(1/2)kxX
2=-kBTln(Px). Since the free energy 

surface projected along the reaction coordinate has a maximum at the transition state, the 

negative curvature is approximated as kts = -(ts)
2, where  is the reduced mass of the 

coordinate at the transition state and ts is the passage time in transition state theory, 

ts=-kBT/ħ. Assuming that the same force acts on X throughout the system’s passage 

from ground to transition state (the dynamic coupling is unaltered), the displacement of 

the transition state value of X,  XB(F)=XB(F)-XB(0), is given as:  
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Note that the displacements XA(F) and XB(F) have opposite signs due to 

positive/negative curvatures of the free energy for ground/transition states. We employ 

the full set of 3N-6 PC modes to calculate the displacements XA(F) and XB(F) and 

obtain the ratio Keq(F)/Keq(0)=exp(W(F)/kBT) [278].  

 

2.2.7) Limitations and Caveats 

 

From a structural standpoint, one possible limitation in modeling stems from unresolved 

regions in the high-resolution crystal structures. This problem can somewhat be 

addressed through homology modeling. Molecular dynamics simulations suffer from 

inherent modeling limitations (force-field uncertainties, solvent approximations, limited 

sampling, finite size effects, etc.). Some of these issues (e.g., finite size effects) are 

difficult to overcome because of constraints posed by computational resources, while 

others can be addressed to some degree. It is prudent to test the effect of force-fields on 

active site geometry by comparing, for example, different force-fields such as CHARMM 

and AMBER. While solvent effects are taken into account by explicitly treating water 

molecules, there is in general the problem of determining the protonation states. This can 

be dealt with at the mean field level by using Debye-Huckel calculations for titratable 
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side chain residues and by Poisson-Boltzmann (MMPBSA) [279] evaluation of the 

relative free energies for residues participating in the catalytic reaction. QM/MM 

calculations can be used to further assess the relative stabilities of the different 

protonation states. The QM/MM methodologies make some approximations as well. 

Perhaps the most significant is the choice of the QM/MM boundary. Since the boundary 

between the MM and QM regions cuts through covalent bonds, single link atom 

procedure satisfies valences of broken bonds. In particular, the electrostatic terms 

involving the MM host atoms that connect to the QM region need to be excluded from 

the Hamiltonian. The test cases [211] have shown that the double link atom method 

yields better numerical accuracy to the other popular approaches using local self-

consistent field (LCSF) formalism and single link atom approach [213]. The study also 

notes that single link with partially visible MM atoms yields comparable results with the 

double-link procedure. Other benchmark recipes for link atoms such as the pseudobond 

method [214] are also available. In order to handle complex chemistry, there is generally 

a need employ a high-level electronic structure method such as density functional theory, 

with a reliable energy functional and a high-level set of basis functions often allowing for 

polarization.  

 

The issue of limited time scales explored in molecular dynamics simulations can be 

overcome to an extent by smart-sampling algorithms as discussed in section 2.2.5. Of 

course, these long-time algorithms have shortcomings of their own: these include issues 

of multiple pathways and choice of order parameters. In general, there is a need to devise 
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several assessment tools to monitor the quality of sampling and to control the statistical 

error. The limitations of PCA in extracting dominant modes of protein dynamics arise 

due to the finite simulation time of the molecular dynamics trajectory [280, 281]. While 

principal component analysis is not reliable for describing the slow modes of the system 

beyond what is captured in the dynamics trajectory it is based on, it does provide an 

approximate description of the slow modes faster than the time scale of the trajectory (t). 

The error in the eigenvalue propagates as (ti)
-1/2, where i is the frequency of the ith 

mode. Despite the methodological approximations and limitations, we vouch for the 

notion that the predictions from such simulations can be made to have sufficient accuracy 

to make meaningful contact with experimental literature.  

 

2.3) Future Directions 

 

As computational modeling techniques are improving, their applications to increasingly 

complex biological systems are being explored. Therefore, a renewed focus on direct 

connection with experiments to enable proper validation is critical. One strategic 

approach is to compare the results of the models and experiments as well as require 

consistency at multiple length and time scales, which can be realized by comparing to a 

hierarchy of experiments. For example, structural features can be investigated by means 

of a combination of experimental approaches such as FTIR, NMR, EPR spectroscopy, 

AFM, SEM, TEM microscopy, X-ray diffraction etc. One can simultaneously employ 

thermal (DSC and TG), mechanical (hardness and elastic modulus), and biological 
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properties for validation and require the modeling to predict a range of properties. In the 

future, the utility of well validated models and simulation is in directing the rational 

design and modifications of novel materials. This includes creation of well controlled 

surfaces that mimic multiple recognition sites for compatibility with the extracellular 

matrix, quantifying the effect of chemical heterogeneity (OH- and PO4
3- groups 

distributed randomly as dangling bonds or the presence of divalent metal ions) in 

inducing conformational shifts in biomolecules (such as fibronectin), and the effect of 

applied force mediated through protein-ligand interactions in orchestrating and triggering 

signaling events in the constituent cells. 
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Chapter 3.) Molecular Systems Biology of ErbB1 Signaling: Bridging the Gap 

through Multiscale Modeling and High-Performance Computing. 

 

3.1) Introduction 

 

This chapter has been altered from work published in Molecular Biosystems [282]. ErbB 

family receptors (named because of their homology to the erythroblastoma viral gene 

product, v-erbB and consisting of the epidermal growth factor receptor or 

EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3, and ErbB4) signal by activating crucial 

pathways [283] in response to activation by ligands such as the epidermal growth factor 

(EGF) and other related peptide growth factors. Through ligand-stimulated formation of 

various homodimeric and heterodimeric complexes the ErbB receptors are activated 

leading to the phosphorylation of multiple tyrosine residues on the C-terminal tail of the 

receptors as well as on other substrate proteins. Through specific interactions of the 

phospho-tyrosine sites to binding domains, the receptors bind to cytosolic partners that 

are responsible for the recruitment and activation of multiple down-stream cascades [3, 

284-288]. The activation through the mitogen-activated protein kinase (MAPK) cascades 

of the extracellular signal-regulated kinases (ERKs) is functionally linked to 

proliferation. The phosphoinositide 3-kinase (PI3K) pathway leads to the activation of the 

serine/threonine protein kinase Akt (cellular homologue of the viral oncogene v-Akt) 

which is linked to survival. Other significant pathways mediated by ErbB signaling 

include activation and nuclear translocation of signal transducers and activators of 
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transcription proteins (STATs) [289] and clathrin mediated endocytosis [290]. Yet, the 

molecular context in which ErbB receptors activate and regulate signaling has not been 

fully recognized. More specifically, it is of great interest to investigate the molecular 

mechanisms that lead to the dis-regulation of ErbB signaling in several pathologies such 

as cancer, psoriasis, atherosclerosis, impaired cardiac development, and schizophrenia 

[291, 292]. With rapid progress in high-performance computing methods and 

infrastructure 1 we advocate that multiscale modeling offers a powerful, quantitative, and 

complimentary alternative for the study of functional intracellular modules. We describe 

the application of a hierarchical multiscale modeling procedure (summarized in section 

3.2: Models and Methods) to signaling in the ErbB family receptors to describe how 

point-mutations in the ErbB receptors can profoundly alter signaling characteristics 

leading to the onset of oncogenic transformations.  Here in this chapter, we only discuss 

the atomic level fluctuations governing activation of the EGFR kinase domain, and how 

molecular perturbations (mutations and dimerization) affect them.  For how this 

molecular model fits into a cellular model see Figure 3.1b&c and section 7.2. 

 

3.2) Models and Methods 

 

                                                 
1 Our applications multiscale algorithms to ErbB signaling are enabled by high-performance 
computing infrastructure. As we transition from tera-flops (flops: floating point operations per 
second) computing to peta (1015) flops computing in the near future, we expect that extension of 
our molecular and systems modeling to complete cellular pathways will become tractable. 
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Figure 3.1: Hierarchical multiscale modeling scheme for ErbB signaling. The 
dimer-mediated receptor activation characteristics of ErbB1 receptor tyrosine 
kinase is studied using molecular dynamics simulations. The interactions of 
substrate tyrosine containing peptides derived from the C-terminal tail with 
the ErbB1 kinase are studied using molecular docking simulations. We have 
employed a deterministic network-based kinetic modeling scheme to study 
ErbB1-mediated signaling, and a hybrid discrete/continuum stochastic 
dynamics protocol to study the initiation of ErbB1 receptor internalization. 
(a) Atomistic model for ErbB1 dimer employed in the molecular dynamics 
and molecular docking calculations. (b) Branched network model for ErbB1-
mediated signaling in which phosphorylation of the ErbB1 dimer occurs at 
either tyrosine Y1068, which can bind GAB-1 or Grb2, or at tyrosine Y1173, 
which binds Shc. Phosphorylation of the factors Akt and ERK were used as 
indicators of downstream activation. (c) Hybrid stochastic model for ErbB1 
internalization. (top) Grids in finite difference scheme for membrane 
dynamics and the lattice in the kinetic Monte Carlo scheme for protein 
diffusion; (bottom) snapshot of vesicle bud on the membrane in response to a 
specific spatial ordering of the curvature-inducing protein, epsin, on the 
membrane; inset depicts a stabilized vesicle neck. (d) Flow of information 
between different simulation methods.  

 

We provide a brief summary of the hierarchical multiscale modeling scheme we have 

employed for describing ErbB signaling (see Figure 3.1: a-d). We model the dimer-

mediated receptor activation characteristics of the ErbB1 receptor tyrosine kinase using 

molecular dynamics simulations [293, 294]. Figure 3.1(a) depicts the atomistic model of 

the explicitly solvated ErbB1 kinase dimer employed in the molecular dynamics: 10-20 
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ns trajectories of fully atomistic, explicitly solvated systems of wildtype and mutant 

ErbB1 kinase monomers and dimers are obtained and analyzed for specific stabilizing 

interactions such as hydrogen bonds and salt-bridges, see also Figure 3.2 [293, 294]. For 

how the cellular model interfaces with the cellular model see section 7.2. 

 

3.3) Rationalizing and Predicting the Effects of Molecular Perturbations on 

Receptor Kinase Activation 

 

Small molecule tyrosine kinase inhibitors for ErbB1/2 tyrosine kinase such as gefitinib, 

erlotinib, and lapatinib, which are ATP analogues, are of significant interest as cancer 

drugs. While the receptor tyrosine kinase inhibition approach has shown promise in some 

clinical trials, success has been mixed. In particular, the occurrence of somatic mutations 

in the ErbB1 kinase domain (L834R: where the leucine residue in position 834 is 

replaced by an arginine, L837Q: leucine at 837 replaced by a glutamine, G685S, del 

L723-P729 ins S: deletion of residues 723-729 and an insertion of a serine) as seen in 

patients of non-small cell lung cancer2 [295] renders the cell lines harboring such 

mutations more sensitive to treatment [295, 296].  

 

                                                 
2 There are 2 main types of lung cancer and they are treated differently: small cell lung cancer and 
non-small cell lung cancer. About 85% to 90% of all lung cancers are of the non-small cell type 
with three sub-types. The cells in these sub-types differ in size, shape, and chemical make-up: (1) 
squamous cell carcinoma linked to smoking, (2) adenocarcinoma usually found in the outer part 
of the lung, and (3) large-cell (undifferentiated) carcinoma exhibiting rapid growth and spreading. 



51 
 

 

Figure 3.2: (a, b) Stabilizing network residues in ErbB1 kinase in its active 
and inactive conformations. The numbers in (a, b) correspond to the entries in 
(c). Compared to inactive, the active state presents a significantly increased 
number of stabilizing residues, with approximately the same number of 
residues affected by the asymmetric dimerization (marked D and boxed red) 
and mutation (marked M and boxed green), so the inactive system is much 
more susceptible to a conformational shift triggered by the asymmetric dimer 
or mutation. We identify the residues participating in stabilizing bonds that 
are also proximal (≤3 Å between heavy atoms) to the dimer interface. Cross-
referencing this list with the stabilizing residues provides a list of potential 
residues possibly affected by dimerization: entries marked D in (c) and boxed 
red in (a,b). (d): Symbols represent trace during dimer molecular dynamics 
simulations of wildtype and the two mutants L834R and Del L723-P729 ins S 
or del: (top) Root-mean-squared deviation or RMSD of C-helix, and 
(bottom) RMSD of the activation loop (or A-loop). Insets depict the relative 
positions of the C-helix and the A-loop at the end of the dynamics runs.  
 

 

In order to determine how such molecular perturbations can shape cellular fates, we 

sought to determine how the mutations affect the regulatory mechanisms operational 

within the kinase domain of ErbB1, ErBb2, and ErbB4. A recent structural and 

biochemical study involving the ErbB1 by Zhang et al. [40] proposed a new dimer-

mediated allosteric activation mechanism of kinase activation according to which ErbB1 
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receptor tyrosine kinase dimerizes in an asymmetric head-to-tail configuration. While the 

monomer ErbB1 kinase is stable in an inactive conformation which interferes with ATP 

binding, in the asymmetric dimer configuration, one ErbB1 kinase domain serves as an 

activating protein and activates the other ErbB1 kinase in the dimer, through allosteric 

contacts. The kinase-kinase contact at the asymmetric dimer interface allosterically 

stabilizes the active conformation. Recently, we hypothesized that an underlying network 

of stabilizing hydrogen bonds dominates the relative stabilities of the inactive and active 

conformations and governs the kinase activation. We then performed a hydrogen bond 

analysis of the molecular dynamics data, focusing on the interactions surrounding the 

activation-loop and the C-helix sub-domains in the active and inactive conformations, 

and identified this network, see Figure 3.2(a,b). The total number of interactions in the 

active state out-numbers those in the inactive state by 27 to 13, which led us to 

hypothesize that a particular stimulus such as the asymmetric dimerization preferentially 

destabilizes the inactive kinase conformation triggering the conformational change to the 

active state.  

 

In order to consider the effect of ErbB1 kinase dimerization on the network of stabilizing 

interactions, we identified the protein residues participating in stabilizing bonds that are 

also proximal (≤3 Å between heavy atoms) to the residues involved in the formation of 

the asymmetric dimer interface, (which are P675, L679, L680, I682, V736, L758, V762 

in the kinase undergoing activation). The rationale for the proximity analysis is that the 

interactions in the stabilizing network could be compromised due to the molecular level 
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reorganization upon kinase dimerization. The proximity analysis suggests that 3 out 13 

stabilizing residues in the inactive state may be perturbed or lost upon dimerization (these 

are marked with D in Figure 3.2(c)), which suggests a potential molecular relay 

mechanism by which the kinase dimerization event activates the kinase domain. Indeed, 

when we performed 20 ns molecular dynamics simulations of an ErbB1 kinase dimer 

system (shown in Figure 3.1(a)), we observed a significant rearrangement (change in the 

root-mean-squared deviation or RMSD of 3 Å) of the αC-helix position: see Figure 

3.2(d). The shift in the C-helix position was accompanied by several changes in the 

stabilizing network consistent with the predicted bond-patterns in Figures 3.2(a-c). In 

particular, in the inactive conformation, the bonds between Y740-S744, L834-D813, 

H846-R865, K851-R812 surrounding the activation loop and the αC-helix were severed. 

Thus, already in the wildtype dimer, due to the re-configuration of the C-helix, the bond 

pattern is found to be shifting significantly toward that observed in the active kinase. The 

key bonds stabilizing the wildtype inactive ErbB1 kinase are the E738-K836 and E848-

R865 salt bridge interactions, as well as the L834-D813 hydrogen bond. In our dimer 

simulations, the E738-K836 salt bridge has considerable weakened: the fraction of the 

time this bond was present decreased from >90% in the monomer trajectory to ~60% in 

the dimer trajectory; moreover this bond has undergone considerable stretching allowing 

E738 to  hydrogen bond to F832, which is one of the bonds seen in the active kinase. The 

L834-D813 interaction is at the threshold of still being considered a stabilizing hydrogen 

bond. The residue K851 is hydrogen bonded to E725, moving away from the inactive 

bond K851-R812 and towards the active salt bridge K851-E734. The E848-R865 salt 
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bridge is not perturbed significantly due to the formation of the asymmetric dimer 

interface. Thus, we hypothesize that a few specific bonds act as gatekeepers for each step 

of the conformational change, namely the E738-K836 salt guards against the C-helix 

movement and the E848-R865 salt bridge guards against the activation loop 

rearrangement. Our dimer simulations re-affirm our notion that the stabilizing network is 

susceptible to perturbation in the inactive conformation of the kinase, and that formation 

of the asymmetric dimer will have the effect of directly breaking the network of 

interactions around the C-helix, thereby destabilizing the inactive state. The loss of 

these interactions and the shift of the αC-helix conformation towards the active state will 

provide the impetus for kinase domain activation. Intriguingly, several of the clinically 

identified mutations that have been reported to constitutively activate the kinase also 

directly perturb the stabilizing network by breaking key stabilizing bonds: these are 

marked by the symbol M in Figure 3.2(c). In addition, the del L723-P729 ins S mutant re-

configures the C-helix in the inactive state to a conformation closer to the active state 

(see Figure 3.2(d)). Thus, our delineation of the stabilizing hydrogen bond network 

provides molecular-level insight into the possible mechanisms by which activating 

mutations of ErbB1 kinase such as L834R and del L723-P729 ins S destabilize the 

inactive conformation. This preferential destabilization of the inactive conformation 

renders the receptor kinase constitutively active even as a monomer, producing high basal 

activation levels of the kinase even in the absence of a growth-factor induced 

dimerization. 
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Considering that there is an excellent correlation between the stabilizing network of 

interactions and the clinically identified activating mutations in ErbB1, our structural 

studies on kinase activation are well poised to forecast the mutation landscape associated 

with other ErbB members. We have extended the analysis we have presented for ErbB1 

to ErbB2 and ErbB4 kinases in which we have identified similar networks of stabilizing 

interactions. Based on the similarities between the stabilizing interactions between ErbB1 

and ErbB4 kinase domains, we can predict the effect of analogous mutations in ErbB4 on 

kinase activation: (1) based on the location of the mutations E690G, G700S, the mutants 

are expected to be activating through directly impacting dimerization (similar to the 

activating mutants E685G and G695S of ErbB1). (2) Del 728-G733 ins S and S749I are 

poised to cause a conformation shift of the αC-helix of ErbB4 and hence are predicted to 

be activating. (3) Mutations F740A, L839R and L842Q in ErbB4 are poised to perturb 

the bond network of the inactive kinase and hence expected to be activating. We note that 

in support of our predictions of ErbB4, the F740A and L839R have been tested 

independently by Qiu et al. [297] and indeed found to be activating. Based on the subtle 

differences we have noted in the stabilizing bond networks of ErbB1 and ErbB4, we are 

also able to suggest new activating ErbB4 mutations (that do not have an obvious 

counter-part in the ErbB1 system). In particular, R841 in ErbB4 is featured prominently 

in the stabilizing network and mutating R841 to either alanine or aspartic acid is expected 

to promote activation. Mutation of the two residues blocking the catalytic aspartate, E743 

and G838, to residues with smaller side chains, alanine or glycine, is also expected to 

promote activation. 
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At the molecular level, considering that there is an excellent correlation between the 

stabilizing network of interactions and the clinically identified activating mutations in 

ErbB1, our structural studies on kinase activation are well poised to forecast the mutation 

landscape associated with other ErbB members. Indeed based on our simulations of 

ErbB2 and ErbB4, we have identified similar networks of stabilizing residues and are 

already able to predict activating mutations in these receptors that have not yet been 

reported clinically [unpublished results] which together with the extensions proposed 

above can be valuable for evaluating the likely effect mutations on ErbB2 inhibition 

efficacies in cancer, ErbB4 inhibition in cardiac development and schizophrenia [292].  

How the constituent activity of the mutant ErbB kinases affects cell signaling, both as 

phosphorylation of its C-terminal tail as well as the cell signaling pathways is crucial for 

understanding how ErbB kinases can alter cell fates; the intersection of the atomic level 

simulation with cell signaling models is considered in section 7.2 
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Chapter 4.) Molecular Dynamics Analysis of Conserved Hydrophobic and 

Hydrophilic Bond Interaction Networks in ErbB Family Kinases. 

 

4.1) Introduction 

 

This chapter is from work that has been submitted and is under review at Biochemical 

Journal [298].  Receptor tyrosine kinases (RTKs) are transmembrane glycoproteins 

important in intercellular communication and oncogenesis [299]; they comprise a large 

ligand-binding extracellular domain, a single transmembrane α-helix, an intracellular 

tyrosine kinase domain and a C-terminal tail that harbors regulatory tyrosine 

autophosphorylation sites (reviewed in [1, 2]). The ErbB family consists of four 

homologous RTKs: the epidermal growth factor receptor (EGFR/ErbB1/HER1), ErbB2 

(HER2/Neu), ErbB3 (HER3), and ErbB4 (HER4). Binding of growth factors to the 

extracellular ligand-binding domains of ErbB receptors promotes their homo and/or 

heterodimerization, which in turn leads to activation of the cytoplasmic kinase domain. 

This triggers a multi-layered signaling network of crucial pathways regulating cell 

proliferation, differentiation, migration, etc [3]. Aberrant signaling by EGFR and ErbB2 

is correlated with a variety of diseases, from psoriasis to cancer [300]. In particular, 

clinically identified mutations in EGFR have been shown to increase the basal activity of 

the EGFR kinase domain, and non-small-cell lung cancer (NSCLC) patients carrying 

these mutations respond remarkably to the EGFR RTK inhibitor gefitinib [26, 27, 48]. 

ErbB2 is the target of the therapeutic Herceptin antibody, and its amplification and 
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overexpression in breast cancer correlates with a poor prognosis [301, 302].  The loss of 

ErbB4 signaling in mice has been shown to result in defective heart, nervous system, and 

mammary gland function [303-305]. 

 

Figure 4.1: (A) Alignment of the four catalytic subdomains comprising the 
active site in the ErbB kinases, with accompanying alignment scores for the 
subdomains alone and for the entire kinase. (B-F) Comparison of the inactive 
and active conformations of the ErbB kinases highlighting the conserved 
features.  (B) The C-loop is highlighted in red with the active conformation 
shown in blue with the inactive in green.  (C,D) The hydrophobic core is 
shown in orange, (E,F) while the C-spine is shown in yellow and the R-spine 
is in purple. (G) The residues comprising the C-spine and R-spine for EGFR, 
ErbB2 and ErbB4 kinase.  The residues highlighted in green are hydrophobic, 
the residues in red are hydrophilic and those in white are neutral. (H) The 
residues comprising the Hydrophobic core and the αC-β4 region for EGFR, 
ErbB2 and ErbB4 kinase. Serine is shown in pink as it is slightly hydrophilic, 
though it is still considered neutral. 
 

 

In RTK signaling, the intracellular kinase domain catalyzes transfer of the -phosphate of 

ATP to tyrosines on both the RTK itself and in other target substrates (reviewed in [1]). 

Regulation of the RTK kinase domain is thought to involve contributions from several 
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conserved subregions: the catalytic loop (C-loop), the activation loop (A-loop), the 

glycine-rich nucleotide binding loop (P-loop), and the C-helix, which together define 

the active site in the cleft between the  strand-rich N-lobe and the helical C-lobe. The 

catalytic loop residues directly participate in phosphoryl transfer. The A-loop, P-loop and 

C-helix (marked in Figure 4.1A) modulate the activity of the kinase domain by 

regulating accessibility of the active site to binding and coordinating both ATP and the 

substrate tyrosine. The ~20 amino acid A-loop in ErbB kinases contains one 

phosphorylatable tyrosine (Y845 in EGFR, Y877 in ErbB2, Y850 in ErbB4).  In many 

kinases, e.g. the insulin receptor kinase (IRK), phosphorylation of this A-loop tyrosine 

triggers conformational changes that allow substrate access to the active site. Thus, A-

loop conformational changes constitute a key event in RTK regulation (Figure 4.1B).  

The C-helix and P-loop must also be re-positioned to coordinate the ATP and the 

substrate tyrosine for effective phosphoryl transfer.  The four regulatory subdomains are 

highly conserved across the ErbB family, with 88% sequence identity between EGFR and 

ErbB2 and 77% sequence identity between EGFR and ErbB4 (Figure 4.1A). ErbB3 is 

unique in the ErbB family as it lacks specific conserved residues considered to be 

required for full kinase activity. 

 

Recent structural studies have revealed highly conserved hydrophobic “spines” within 

kinases that are considered important for defining their catalytic state [30, 31], shown in 

Figure 4.1E,F.  The regulatory spine (R-spine) consists of four hydrophobic side chains 

(M742, L753, H811, F832 in EGFR) anchored by an aspartic acid in the αF-helix (D872 
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in EGFR). The R-spine spans several key regulatory subdomains, and coordinates the 

motion of the N- and C-lobes of the kinase [30]. The catalytic spine (C-spine) involves 

eight hydrophobic side-chains (V702, A719, L774, V819, L820, V821, T879, L883 in 

EGFR) that help support and coordinate the adenine ring of ATP in the active state [31].  

Similarly, in the inactive state there is a small hydrophobic ‘core’ formed between the 

αC-helix and the A-loop, which maintains the kinase in the inactive conformation (Figure 

4.1C-F).  Disruption of this hydrophobic core by single point mutations has been shown 

to activate EGFR [25-29].  

 

EGFR stands out among RTKs in appearing not to require A-loop phosphorylation for its 

activity [306]. Mutation of the EGFR A-loop tyrosine Y845 to phenylalanine does not 

appear to change the level of receptor auto-phosphorylation in cells or in vitro [40], in 

contrast to other kinases such as IRK (although Y845 is phosphorylated by Src in EGFR 

signaling [307]). Crystal structures have confirmed that the EGFR and ErbB4 kinase 

domains can adopt active-like conformations even without Y845 (Y850 in ErbB4) 

phosphorylation [25, 42], and have revealed an allosteric mechanism for kinase domain 

activation [40].  Activation of the EGFR TKD involves the formation of an asymmetric 

‘head-to-tail’ dimer in which one kinase domain (the ‘receiver’) becomes activated 

through allosteric changes arising from contacts between its N-lobe and the C-lobe of its 

neighbor (the ‘activator’). The C-lobe of the activator kinase appears to play a cyclin-like 

function in activating its dimerization partner (the receiver).  The importance of the 

asymmetric dimer interface was confirmed by mutational studies in EGFR and ErbB4 
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[40, 42].  More recent studies have shown that the intracellular juxtamembrane region of 

the receptor also contributes to formation of the asymmetric dimer interface, in a manner 

that is necessary for maximal activation [43-45]. 

 

Considering the high degree of sequence similarity and structural homology across the 

ErbB family members (Figure 4.1A,G,H), we sought to identify the degree to which 

molecular mechanisms of activation are conserved across the ErbB family, and to 

identify differences in overall function that arise from variability in primary structure. 

Recently, we and others have hypothesized the existence of distinct networks of 

intramolecular non-covalent bonds that characterize the active and inactive 

conformations of kinases (for Lyn [308, 309], Abl [310], EGFR [152, 310, 311] and 

ErbB2 [312]), with transitions between the states necessitating a shift in these bond 

networks.  Here, we present bioinformatics and fluctuation analyses of molecular 

dynamics trajectories of ErbB kinase domains and relate sequence similarities to 

correspondence of specific bond-interaction networks and resemblances in collective 

dynamical modes.  We investigate how the various stimuli/perturbations such as 

dimerization, phosphorylation of the A-loop tyrosine, and mutations seen in cancer 

patients impact both the active and inactive conformations of the ErbB family kinase 

domains. The solvated systems of the truncated ErbB family kinases we present even 

have a physiological relevance to cell studies. The protein tyrosine kinases, Src and Abl, 

have a highly similar active structure to those in receptor tyrosine kinases [1, 313].  
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Furthermore, ErbB4 is cleaved from the membrane into the s80 protein, a fully active 

soluble form of the ErbB4 kinase domain [305]. 

 

4.2) Methods 

 

Molecular Dynamics (MD) Simulations: Models for ErbB1 (EGFR) kinase were derived 

from the 1M14 (active) and 2GS7 (inactive) structures [25, 40]. Models for ErbB4 were 

derived from the structures of Qiu et al., PDB ID: 3BCE and 3BBW [42]. Structures for 

ErbB2 were constructed using homology modeling following the procedure described in 

[312]. Models for kinase dimers were constructed based on the asymmetric dimer 

interface described in [40].  Each system was simulated as a fully atomistic, explicitly 

solvated-system in NAMD [150], using the CHARMM 27 forcefield [141]. The missing 

hydrogens in the protein were added using the hbuild plugin in the VMD algorithm [151]. 

To simulate a physiological pH of 7.0 the histidines were constructed with +1 protonation 

state on the -nitrogen. The entire system consisted of the protein, water molecules 

(TIP3P model [314]) and ions at 75 mM ionic strength to simulate physiological 

conditions; the water molecules and ions were placed at locations of electrostatic extrema 

(maxima for negative Cl- ions and minima for positive Na+ ions) as determined by a 

Debye-Huckel potential using Solvate 1.0 [315]. The placement of the counter-ions was 

also restricted to 8 Å away from any protein residue. The Rattle algorithm [316] was 

employed to constrain the hydrogens to allow for a 2 fs timestep of integration. Periodic 

boundaries were implemented in all three dimensions and long-ranged electrostatics 
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interactions were accounted for using the Particle Mesh Ewald Algorithm [157]. A 

conjugate gradient algorithm was employed for all energy minimizations.  The solvated 

system was energy minimized and the volume of each system subsequently equilibrated 

with constant pressure and temperature (CPT) simulations.  Both the temperature and 

pressure were constrained using a Langevin algorithm [317]. The pressure Langevin 

piston was set with a reference pressure of 1 atm, a mass of 2000 amu and a collision 

frequency of 5 (1/ps), while the temperature Langevin piston was set with a reference 

temperature of 300 K and a mass of 10000 kcal·ps2.  Following volume equilibration, the 

energy of the system was equilibrated using constant volume and temperature (NVT) 

simulations.  Each system was simulated for at least 10 ns.  For the dimer systems 

restraints of 1 kcal/Å2 were placed on each kinase to their initial state in the inactive 

asymmetric dimers to maintain the equilibrated structures while removing steric clashes.  

The kinase systems were equilibrated and then the restraints were reduced to 0.5 kcal/Å2 

and 0.1 kcal/Å2.  Following this, the production simulations were performed. 

 

Analyses of MD Simulations: Root-mean-squared deviation (RMSD) calculations were 

performed using the RMSD tool plugin in VMD by first removing global translation and 

rotation, and then computing the RMSD of the selected sub-regions (A-loop, C-loop, P-

loop and C-helix) relative to a reference structure (the respective active or inactive 

crystal structure). Principal component analysis (PCA) was performed using the software 

Carma [318], by constructing the covariance matrix of atomic fluctuations  in Cartesian 

space and then diagonalizing  to obtain the principal components (eigenvalues and 
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eigenvectors). An analysis of hydrogen bond (H-bond) patterns in the production 

simulations was performed using CHARMM in conjunction with VMD. The trajectories 

were first analyzed in CHARMM with a hydrogen bond cutoff of 3.4 Å and a cutoff 

angle of 150 degrees.  CHARMM was used to generate a list of hydrogen bonds that 

were present in at least 60% of the trajectory; we note that the threshold of 60% was 

varied from 50-80% in our sensitivity analysis and the results were nor altered 

significantly. These hydrogen bonds were then visualized in VMD and any bonds not 

providing a consistent, sustained bond were removed to reveal the persistent H-bonds. 

During the H-bond analysis, acidic and basic residues formed strong hydrogen bonds. 

Such hydrogen bonds were considered salt bridges if they were between the side chain of 

an acidic and basic residue, with a bond length less than 1.6 Å and present in the majority 

(>60% of the trajectory) of the simulation.  Statistical hydrogen bonding criteria was 

chosen to highlight the contributions of specific residues within the protein regardless of 

its surrounding energetic environment [319].  Solvent accessible surface area (SASA) 

values were calculated in VMD using the measure SASA module using a probe radius of 

1.4 Å larger than the van der Waals radius.  The SASA was calculated for each step in the 

trajectory from which the mean and standard deviation were computed. As an alternative 

measure of hydrophobicity in heterogeneous environments, following Garde et al. [320, 

321], normalized water density fluctuations were computed by recording the ratio of 

VolN*(N2-N2)/N2, where VolN is the volume of interest, N2-N2 is the variance in 

the fluctuation of water number in VolN, and N is mean associated with the number of 

water molecules. We choose the region of interest to be within 5 Å of a specified 
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hydrophobic sub-region in the EGFR monomer kinase.  The results are then divided by 

the water density fluctuations of bulk water for normalization. Although results are 

presented for a cutoff of 5 Å, other cutoffs ranging from 3 Å-15 Å were investigated and 

similar trends were recorded.  

 

4.3) Results 

 

Following molecular dynamics simulation of each active or inactive monomeric kinase 

system for at least 10 ns, the time evolution of the RMSD was used to monitor 

equilibration and to track any reorganization of the A-loop and C-helix conformations; 

no conformational switching towards active or inactive states was observed (Figure 4A.1, 

chapter 4A).  Whereas the majority of the protein backbone, including the C-loop and the 

P-loop, aligns closely between the inactive and active states, the A-loop and C-helix 

conformations differ considerably. In transitioning from the inactive to the active 

conformation, the C-helix rotates toward the C-lobe, with the rotating end shifting by 

~9 Å toward the base of the cleft between the N- and C-lobes (Figure 4.1B).  This helix is 

also extended by 2 turns (involving residues 728-732 in EGFR) in the active 

conformation compared with the inactive conformation.  In the inactive kinase, the A-

loop maintains a ‘closed’ conformation (mainly through inter-region hydrogen bonds) 

and partially blocks the catalytic site.  By contrast, the A-loop appears ‘unfurled’ in the 

active kinase, and lies against the C-lobe (blue in Figure 4.1B). 
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4.3.1) PCA reveals a tightly coordinated motion in all active ErbB members  

 

Figure 4.2: Visualization of the first principal component for the four key 
subdomains in the inactive and active conformation of the ErbB kinases. The 
motions are overlaid sequentially where the large-amplitude motion in each 
frame is highlighted in red and the low-amplitude motion is highlighted in 
blue. For the two dimer systems, the activating dimer is shown in orange and 
green.  The inactive conformations exhibit large, localized motion while the 
active conformations demonstrate smaller, coordinated motions.  

 

Principal component analysis (PCA) revealed that motions occurring within the active 

sites of the inactive and active EGFR monomers differ significantly, particularly in the A-

loop (see Figure 4.2).  The inactive EGFR monomer exhibits large-amplitude motion in 

both the αC-helix and the A-loop (4.95 and 7.34 Å, respectively), with smaller 

fluctuations in the P-loop and C-loop (4.17 and 3.65 Å, respectively).  We attribute the 

larger amplitudes to a more flexible protein segment; this is consistent with the 

observation that part of the activation loop is unresolved in almost all the crystal 

structures of ErbB kinases to date. Our previous work with the loop modeling program 

MODELLER [172] discusses the sensitivity of the modeled region (which is absent in the 



67 
 

crystallographic structures). In particular, several candidate structures do not show 

significant differences in dynamics [312]. Moreover, alternate structures of ErbB4 also 

using MODELLER are remarkably close to initial simulation structures (data not shown). 

In contrast, the active EGFR monomer demonstrates a uniform level of motion across all 

four subdomains of the active site with only low-amplitude fluctuations (2-3Å), and 

shows no significant local deformations.  This implies that the motions are more tightly 

coordinated across the active site in the active conformation than in the inactive 

conformation. The kinase monomers of the other ErbB family members (modeled ErbB2 

and the ErbB4 structure) demonstrate similar motions, as shown in Figure 4.2.  The 

inactive ErbB4 kinase exhibits a dominant motion in the A-loop (6.46 Å), while the P-

loop, C-loop, and the αC-helix undergo smaller lateral motions (4.45 Å, 2.64 Å, and 2.30 

Å, respectively).  In the active conformation, the ErbB4 kinase presents a fluctuation 

profile similar to EGFR: the subdomains all have similar small-amplitude motions (2-3 

Å) with no large local deformations.  Thus, for the three homologous members of the 

ErbB family, which have a high-degree of sequence similarity, not only are the principal 

motions conserved across the systems, but the characteristic differences between the 

inactive and active kinase conformations are maintained in character. This finding 

suggests large (and possibly similar) differences in the internal network of bonds between 

the two activity states of each kinase. Indeed, the identified bonding network (Table 4.1, 

Table 4A.1) shows clear conservation across the members of the ErbB family, and also 

reflects the differences in principal motions between the inactive and active 

conformations.  In general, the inactive conformations have significantly fewer persistent 
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bonds in this network when compared to the active conformations, consistent with the 

larger amplitude motion. 

 

 

Table 4.1: Persistent H-bonds and salt bridges in the three homologous ErbB 
kinase monomer systems.  The salt bridges are in bold and homologous 
bonds are aligned.  The table presents the subdomains with key conserved 
bonds across the ErbB family, see Table 4A.1 for an exhaustive list. 

 

Activating bond-network: We find several bonds are conserved across all members of the 

ErbB family in the active state (EGFR numbering is used in this discussion: see Table 

4.1): two salt bridges: E734-K851 and E738-K721, three H-bonds: L834-R812, K836-

V810, and L838-R808, as well as the bond D813-R817 which is a salt bridge in EGFR 

and ErbB4, but an H-bond in ErbB2.  The E738-K721 salt bridge is highly conserved 

across all active kinases and helps coordinate the α and β phosphates of ATP bound in the 
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active site.  The E734-K851 salt bridge connects the A-loop and the αC-helix, 

coordinating the movements of these two sub-domains and dampening larger 

fluctuations.  Similarly, three conserved H-bonds link the A-loop and the C-loop, 

coupling the motions of these two loops.  These can be regarded as “fastening” H-bonds 

that maintain the N-terminal side of the A-loop open in its active state – the alternative 

(in the inactive state) being steric hindrance to the binding of ATP and peptide substrates. 

A fourth H-bond is seen only in ErbB2: E876-R898 fastens the C-terminal side of the A-

loop open [312].  Although there is no analogous bond in EGFR and ErbB4, the Y845-

Y867 bond in EGFR and the homologous Y850-F872 bond in ErbB4 serve a similar role.  

The conserved D813-R817 bond positions the sidechain of the catalytic aspartate D813 in 

the active site and thus likely facilitates the preorganization of the catalytic site in the 

active kinase system.  

 

Inactivating bond-network: In contrast with the case for the active configurations, few 

intramolecular bonds in the inactive kinase conformation are conserved across the ErbB 

family (Table 4.1 and Table 4A.1). In fact, only one such bond is conserved across 

EGFR, ErbB2 and ErbB4: a hydrogen bond between M742-L753 that pins the C-terminal 

end of the αC-helix in its location away from the active conformation.  The inactive 

kinases do share an autoinhibitory pattern in which key residues required for kinase 

activation are sequestered. Similar to the situation described for Lck [308, 309], E738 of 

EGFR is salt bridged to K836 in a manner that ‘sequesters’ this glutamate and prevents it 

from forming the highly conserved E738-K721 salt bridge [312] required for full 
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activation.  For ErbB2 and ErbB4, the homologous residue K836 is replaced with an 

arginine.  In ErbB4, this arginine contacts additional residues (as well as the E738 

equivalent), apparently dampening the fluctuations of the αC-helix.  In ErbB2 the 

arginine that replaces the K836 equivalent has flipped away from the αC-helix, so cannot 

sequester the E738 residue equivalent.  In ErbB2 and ErbB4, the other half of the highly 

conserved salt bridge is sequestered; namely, the homologous K721 interacts with the 

D831 side chain, and this interaction in turn prevents K721 from forming the 

coordinating salt bridge. 

 

4.3.2) Activation in the asymmetric dimer occurs through disruption of the 

inactivating bond-network 

 

We also analyzed fluctuations in the EGFR kinase within the context of the asymmetric 

dimer described by Kuriyan and colleagues [40]. The fluctuations recorded for active 

EGFR in this context are very similar to those seen in the active EGFR monomer (Figure 

4.2), with the conserved bonds described above being mostly preserved (Table 4A.2). 

Slight variations in bond patterns in the active configuration include a shift from E734-

K851 and L838-R808 in the monomer to E734-K836 and A840-R808 in the dimer, but 

dimerization has little overall effect on the activating bond network.  In contrast, in the 

inactive dimer the first principal component reveals substantial motion of the αC-helix 

that is much greater than seen in the inactive monomer system (7.49Å shift in dimer 

compared to 4.14 Å in the monomer, see Figure 4.2).  Simulations of the symmetric 
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dimer interface of the inactive kinase in the unphosphorylated and phosphorylated states 

does not result in any conformational switching (see Figure 4A.2), each system is stable 

in the inactive state.  Furthermore, in previous simulations of ErbB2 [312] we used loop 

modeling to reduce the effect of steric clashes with no significant differences in 

dynamical motions.  Therefore we attribute the motion of the αC-helix uniquely to the 

introduction of the asymmetric dimer interface.  Even in the short timescale of 30 ns of 

the EGFR dimer trajectory, we observe a rearrangement of the αC-helix position towards 

the active conformation.  Consistent with the allosteric activation mechanism proposed 

by Zhang et al. [40], several interactions in the inactivating bond network surrounding the 

A-loop and the αC-helix are indeed disrupted in the dimer trajectory, including Y740-

S744, L834-D813, H846-R865, and K851-R812 interactions (Table 4A.2a&b). Some 

bonds (e.g. E738-K836) are still present, although the population statistics indicate that 

their survival percentage (fraction present in the trajectory) has decreased from >90% in 

the inactive monomer trajectory to ~60% in the inactive dimer trajectory over 30ns. 

 

When compared with their monomeric counterparts, the ErbB2 and ErbB4 inactive 

dimers demonstrate a similar loss of bonds surrounding the αC-helix and the A-loop (see 

Figure 4A.3, Table 4A.2a&b chapter 4A and [312]).  For ErbB4, a list of bonds disrupted 

upon dimerization includes: E739-R841, D742-R841, E743-R817, G838-R817, G855-

E730, and K856-E844.  Similar to the E738-K836 salt bridge in EGFR, the E743-R841 

salt bridge in ErbB4 shows a marked decrease in survival time from >90% in the 

monomer trajectory to ~70% in the dimer trajectory. Moreover, two of the bonds broken 
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(E739-R841 and D742-R841) involve the R841 residue, resulting in a significant 

weakening of the bonds in the inactivating bond-network discussed above that sequester 

key side-chains in the inactive state. 

 

Figure 4.3: (Top) Comparison of the first principal component for the EGFR 
inactive mutant dimer systems: del 723-729 ins S and L834R. (Bottom) 
Mapping of the RMSD of the inactive EGFR dimers as a scatter plot with 
RMSD from inactive on one axis and RMSD from active on the other.  The 
end structures are visualized with an active reference (orange) and an inactive 
reference (purple).  The conformational switching between active and 
inactive for EGFR of the A-loop and αC-helix are separable. 
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4.3.3) EGFR mutations activate the kinase by disrupting the inactivating bond 

network 

 

In light of the allosteric activation mechanism described in the context of the EGFR 

dimer system, we examined the effect of EGFR-activating mutations clinically identified 

in non-small cell lung cancer (NSCLC).  The two mutants we examined are those most 

commonly found in NSCLC: a small in-frame deletion in the αC-helix (del 723-729 ins 

S) and a point mutation in the A-loop (L834R), see Figure 4.3.  The deletion mutant 

physically shifts the αC-helix, removing residues 723-729 and leading to the shortening 

of a disordered segment that adjoins the αC-helix. This shifts the αC-helix toward the 

active state. The shortening of the αC-helix also alters the overall movement of the αC-

helix, with a distinctly different motion from all other systems (Figure 4.3).  The bond 

patterns we recorded in the dimer of the deletion mutant are similar to those of the 

wildtype (WT) inactive EGFR dimer (see Table 4A.2a&b).  The majority of the 

differences between the two systems are seen in the αC-helix: the deletion mutant loses 

two bonds seen in the WT inactive dimer between the αC-helix and the A-loop: E738-

F832 & E738-G833.  The L834R mutation alters the conformation of the A-loop slightly; 

however, our trajectory shows the mutant kinase is still in a distinctly inactive 

conformation.  The L834R mutant dimer system shares a similar bond pattern (Table 

4A.2a&b) with the WT inactive EGFR dimer system with some exceptions: namely, 

G833 has H-bonded with H811, similar to the N-terminal fastening bonds that couple the 
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A-loop and C-loop in the active state. Moreover, R834 has H-bonded to R865, 

representing a fastening bond to the C-lobe. 

 

4.3.4) Hydrophobic interactions help differentiate active and inactive conformations 

 

Figure 4.4: Normalized water density fluctuations and the Mean surface 
accessible (exposed) surface area (SASA) values for functionally important 
sub-regions, specifically: C-spine (panel A & B), and R-spine.  For the 
normalized water density fluctuations (panels A, C, E) a higher value is 
correlated with a higher hydrophobicity, which would be expected to bury 
more SASA.  See also Figure 4.5.  
 

 

To investigate the effect of hydrophobic interactions on the ErbB kinase conformations, 

we analyzed the hydrophobicity as well as the solvent accessible surface area (SASA) of 

relevant hydrophobic sub-regions, namely, the C-spine, R-spine, hydrophobic core, and 
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the αC-β4 region (Figure 4.1).  The four regions have a high percentage of hydrophobic 

side chains; however, some minor differences between members of the ErbB family exist 

(Figure 4.1), particularly in the αC-β4 region.  The hydrophobicity of the sub-region is a 

non-additive quantity, dependent not only upon the primary structure but also on the 

surrounding environment.  Garde et al. [320, 321] have recently proposed an approach for 

quantifying the hydrophobicity of heterogeneous surfaces using normalized water density 

fluctuations (see Methods), according to which increased normalized water density 

fluctuations are used as a signature of a more hydrophobic surface.  For an alternate 

presentation of the hydrophobic interactions, see Appendix A. 

 

The active conformations in the C-spine are noted by the elevated normalized water 

density fluctuations with the exception of EGFR monomer (where the difference is 

minor), see Figure 4.4A. The active conformations also consistently expose a mean 

surface area of around 500 Å2 across the members of the ErbB family (represented as a 

horizontal line), which is consistently less than the exposed surface area in the inactive 

conformations (mean value of over 700Å2), see Figure 4.4B. Together, these trends 

reflect a more hydrophobic C-spine region in the active compared to the inactive 

conformations. The hydrophobicity of the R-spine is not significantly different between 

the active and inactive conformations (Figure 4.4C). However, the R-spine analysis does 

reveal that the active conformations have a lower mean SASA value than the inactive 

conformations (Figure 4.4D); for some systems, the difference is not so clearly delineated 

in part because it consists of just four residues, so SASA is subject to larger fluctuations. 
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With similar levels of water density fluctuations between active and inactive 

conformations, the decreased mean SASA values for the R-spines in the active 

conformations imply a more stable hydrophobic context, consistent with the finding that 

the well-formed spines are characteristic of the active kinase conformations. 

Interestingly, all ErbB2 systems present a higher fluctuation in water density, which is 

consistent with the notion that hydrophobicity is particularly important in the context of 

ErbB2 owing to its interaction with Hsp90 known to be mediated by hydrophobic 

contacts; see also the analysis surrounding the C-4 region, below. We also record a 

decrease of the R-spine SASA for inactive EGFR in the dimeric form compared to the 

monomeric form, with similar hydrophobicity (Figure 4.4C,D).  The addition of the 

dimer interface in inactive EGFR reduces the mean SASA for the R-spine from 140Å2 to 

80Å2, implying that dimerization can provide additional stabilization due to hydrophobic 

interactions in EGFR. 

 
With respect to the water density fluctuations in the hydrophobic core, the inactive 

conformation is more hydrophobic than the active conformation (with the exception of 

ErbB2), see Figure 4.5A. This difference is consistent with the hydrophobic stabilization 

of the inactive conformation, especially for EGFR and ErbB4 but not for ErbB2. Notably, 

mutations of hydrophobic residues in the hydrophobic core are reported for EGFR and 

ErbB4 in clinical studies, (see Discussion, section 4.4), whereas, for ErbB2, such 

mutations are found surrounding the αC-β4 region. The analysis in Figure 4.5A also 

implies that the difference in hydrophobicity between the inactive and active 
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conformations is reduced in the dimer EGFR compared to monomer. This is consistent 

with the allosteric activation mechanism, namely that dimerization significantly reduces 

the hydrophobic advantage and provides a stimulus for activation. As for the SASA 

results, the hydrophobic core does not show a clear separation between the active and 

inactive conformations (Figure 4.5B). However, to describe the highly irregular nature of 

the surface of the hydrophobic core, the water density analysis may be more suitable that 

the SASA. 

 
Figure 4.5: Normalized water density fluctuations and the Mean surface 
accessible (exposed) surface area (SASA) values for functionally important 
sub-regions, specifically: hydrophobic core (panel A & B), αC-β4 region 
(panel C & D) and dimer interface (panel E & F).  For the normalized water 
density fluctuations (panels A, C, E) a higher value is correlated with a higher 
hydrophobicity, which would be expected to bury more SASA. 

 
The αC-β4 region is an unstructured span between the αC-helix and the β4 sheet in 

RTKs. From a sequence perspective, only in ErbB2 is the αC-β4 region predominantly 

hydrophobic (Figure 4.1, see primary sequence; G776 in ErbB2 corresponds to S744 and 

S749 in EGFR and ErbB4, respectively; G778 in ErbB2 corresponds to D746 and D751 
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in EGFR and ErbB4, respectively).  The water density analysis clearly reflects this trend 

by singling out the ErbB2 monomer systems are particularly hydrophobic (Figure 4.5C); 

the mean SASA for the αC-β4 region in ErbB2 systems is also consistently lower than in 

other members of the ErbB family (Figure 4.5D).  As discussed in [312], this unique 

feature of ErbB2 is thought to be responsible for its preferential association with the 

molecular chaperone Hsp90. 

 

The asymmetric dimer interface consists largely of hydrophobic side-chains in the N-lobe 

of the receiver kinase (L680, I682, L736, L758, and V762) and the C-lobe of the 

activator kinase (I917, Y920, M921, V924, and M928) [40].  With respect to water 

density analysis, the dimer interface presents a similar hydrophobicity across all 

members, with the ErbB2 monomers a little more hydrophobic, particularly in the active 

conformation (Figure 4.5E). The monomeric systems record a mean SASA value of 

approximately 350 Å2 for the dimer interface residues in the active conformations versus 

200 Å2 in the inactive conformations (Figure 4.5F). This decrease for the inactive 

monomers may imply a preference for the inactive state in the monomer context. 

Notably, the dimeric systems record much lower SASA values of about 75 Å2, implying 

that hydrophobic stabilization provides a dominant driving force for dimerization; 

interestingly, for EGFR dimer, the SASA for the inactive state is greater than that for the 

active case and hence the preference for the inactive conformation is not implied in the 

context of the dimer. Thus, dimerization also provides a stimulus for activation. 
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4.4) Discussion 

 

The analysis described here identifies conserved intramolecular non-covalent bond 

networks across the ErbB family kinases that emerge from sequence homology and lead 

to conserved dynamic characteristics as well as function. The hydrophilic and 

hydrophobic networks are cooperative interactions which help differentiate the active and 

inactive conformations while modulating key loop fluctuations and bonds.  Investigation 

of the networks allows identification of network fragilities which can be exploited 

through mutation to alter the basal kinase activity. 

 

The bond-networks highlight key conserved residues and bonds that are characteristic to 

each conformational state. Some of the bonds of been highlighted previously, the highly 

conserved salt bridge E738-K721 [25] and the fastening bonds L834-R812, K836-V810 

and L838-R808 [312]. We add to this another salt bridge coordinating the αC-helix and 

the A-loop, E734-K851 salt bridge and the H-bond D813-R817 which facilitates the 

placement of the D813 aspartate side-chain in a catalytically competent orientation.  

Overall, the six conserved interactions tightly coordinate the N-lobe to the αC-helix, the 

αC-helix to the A-loop, and the A-loop to the C-loop.  The nature of this bond network 

suggests that interactions among the nearest key subdomains in the ErbB family helps in 

maintaining the proximity of important catalytic residues, and positioning them so they 

can contribute directly to kinase activity.  The conserved bond network in the inactive 

conformations of the ErbB family kinases is less extensive (in EGFR, E738-K836 and 
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D831-K721), but appears to serve a crucial role in sequestering key catalytic residues and 

thus preventing activity. 

 

Hydrophobic interactions appear to provide context-specific contributions to stability to 

the active and inactive conformations of ErbB kinases (see Appendix A for an alternate 

presentation of the hydrophobic interactions). Since a single amino acid change can alter 

the hydrophobicity of a region, we considered the water fluctuation analysis in 

conjunction with SASA to present the contributions from hydrophobicity for irregular 

surfaces characteristic of sub-regions in the kinase. Both SASA and fluctuation analyses 

of local water densities imply that the inactive monomer conformations of ErbB kinases 

are preferentially stabilized through hydrophobic interactions associated with the dimer 

interface. Moreover, consistent across the ErbB family, kinase domain dimerization 

further reduces the SASA of the dimer interface residues, implying that hydrophobic 

interactions provide a dominant impetus for dimerization.  

 

The hydrophobic interactions with respect to the C-spine and R-spine regions are found 

to benefit the active conformations, overall; in particular, the SASA analysis suggests the 

active conformations benefit from a larger buried surface area).  Interestingly, we found 

ErbB2 to possess a greater hydrophobicity in the spine regions. Thus, the αC-β4 region as 

well as the C-spine and R-spine are found to display uniquely hydrophobic character in 

ErbB2 consistent with its association with Hsp90. Also, in the case of the ErbB2 dimer 

interface, the active conformation is more hydrophobic than the inactive conformation, 
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but also exposes more surface area, implying a destabilizing hydrophobic force in the 

active conformation; considering that ErbB2 does not have a known ligand, this could 

serve as an auto-inhibitory mechanism against activation. It is also intriguing to note that 

in the hydrophobic core, there is a large differential between the inactive and active 

conformations in the water fluctuations, consistent with preferential benefit for the 

inactive conformation in EGFR and ErbB4, but not for ErbB2. Thus, the analyses for the 

spine regions and the hydrophobic core collectively lead to the remarkable prediction that 

while the αC-β4 region and the R-spine confer hydrophobic benefit to the inactive 

conformation of ErbB2, the hydrophobic core has the same effect for EGFR and ErbB4. 

Indeed, this correlates well with clinical studies, where activating point mutations in the 

hydrophobic core have been found in EGFR and ErbB4 but those in the αC-β4 region are 

found in ErbB2, suggesting that the hydrophobic analysis enables the context-specific 

identification of fragile sub-regions. 

 

The active kinase conformations have a greater number of conserved intramolecular 

persistent bonds (hydrophilic specific interactions) than the inactive systems, whereas the 

inactive kinase conformations appear to have a distinct hydrophobic advantage in the 

dimer interface region. This observation is fully consistent with the view that, for ErbB 

kinases, the dominant stimuli that activate them operate by modulating the dimer 

interface (activation mechanism in the wildtype) and the hydrophobic core regions (mode 

of activation in clinically identified mutation) to destabilize the inactive conformation, 

which we discuss below. 
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For the wildtype systems, this finding provides strong support for the allosteric 

mechanism associated with formation of the asymmetric dimer interface reported by 

Zhang et al. [40] and Qiu et al. [42], and the recent studies of juxtamembrane domain 

associations [43-45]. In this respect, the emerging view on allosteric EGFR regulation 

posits that, rather than forcing the protein to a new conformation, the allosteric interface 

guides the kinase domain to the active state through pre-existing conformational 

ensembles [322].  Our results for the EGFR dimer simulations (Figures 4.2, 4.3) are 

consistent with this view; namely, the allosteric dimer interface causes the αC-helix to 

alter the conformational space it samples and thus biases it towards a more active 

conformation.  This leads to a metastable intermediate characterized by the αC-helix 

adopting an active-like conformation, albeit still remaining partially molten.  We 

therefore hypothesize a sequence of events that characterize the EGFR kinase activation 

pathway (see section 4A.4): (1) Formation of the dimer interface triggers a shift of the 

αC-helix conformation toward the active state. (2) Formation of the additional helical 

turns in the αC-helix and the initiation of the A-loop movement, either happen 

concurrently or sequentially, but the A-loop does not complete its conformational 

switching until the αC-helix is fully formed. This sequence differs from the mapped 

pathway of the Src kinase Hck [323-325]; in Hck, following A-loop tyrosine 

phosphorylation the A-loop can adopt an open (active) conformation while the αC-helix 

is still in the inactive conformation. In the EGFR the opposite is true, namely, upon 
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dimerization the αC-helix moves towards the active conformation with the A-loop in the 

closed (inactive) conformation (see section 4A.4). 

 

Intriguingly, kinase activation in the two clinically identified EGFR activating mutants 

studied here (L834R and del 723-729 ins S) also appears to be governed by the same 

principles. The L834R mutation, apart from directly disrupting the hydrophobic core in-

lieu of the hydrophilic Arg, leads to additional coupling of the A-loop to the C-loop 

(through the G833-H811 H-bond) and the A-loop to the C-lobe (through the R834-R865 

interaction) not seen in other systems.  The deletion mutation directly alters the αC-helix 

to cause a shift toward its active conformation, although it also disrupts the normal 

dynamics and potential extension of the αC-helix.  In the functional studies of Choi et al. 

[26], the deletion mutant showed an increase in basal phosphorylation, but a decrease in 

the overall phosphorylation under EGF stimulation. By interfering with the key 

interactions surrounding the helix, it can potentially stabilize the active conformation of 

the monomer kinase. However, upon dimerization the active conformation is destabilized 

because the deformation disrupts both the dimer interface due to its proximity and 

because the αC-helix cannot fully form.  This justifies the dual response of the deletion 

mutant on kinase phosphorylation activity in the presence/absence of EGF stimulation.  

 

The hydrophilic and hydrophobic bond networks we have identified also enable us to 

propose a set of mechanisms that increase the basal level of kinase activity for the other 

EGFR mutations in NSCLC [26, 27, 48]: E685S, G695S, S744I and L837Q, as well as a 
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set of mutations in ErbB4 found in melanoma [60], namely, E836K, E872K and G936R.  

Similar to L834R, in the L837Q mutation, replacing the hydrophobic leucine side-chain 

with the hydrophilic glutamine side-chain is likely to cause it to rotate away from the 

small hydrophobic core between the αC-helix and the A-loop, thereby disrupting the 

hydrophobic core and inducing a local steric effect. This reconfiguration may also disrupt 

the interaction of K836 with E738.  The S744I mutation in NSCLC most likely disrupts 

the M742-L753 bond, allowing transition of the αC-helix into its active position. E685G 

and G695S are in the N-lobe, close to the asymmetric dimer interface, so mutations here 

are likely to alter kinase activity either by increasing the dimerization affinity or by 

reconfiguring the EGFR RTK monomer by partially mimicking the formation of the 

asymmetric dimer interface.  Two of the ErbB4 mutations seen in melanoma, E836K and 

E872K, are situated around the small hydrophobic core and the change from a negatively 

charged side chain to a positively charged chain is poised to disrupt the core’s stability, 

thereby providing an activating stimulus.  The G936R mutant in ErbB4 is located close to 

the asymmetric dimer interface in the C-lobe and potentially alters the dimerization 

affinity. Analogous mutations in ErbB2 have not been reported. Instead, the activating 

clinical mutations in ErbB2 are in αC-β4 region [55, 326], shown here to be uniquely 

hydrophobic in the ErbB family.  Disruption of the hydrophobicity of the αC-β4 region 

would alter the binding to Hsp90 [124] and increase heterodimerization [123] and thus, 

activity of ErbB2. Characterization of another set of mutations in ErbB4 found in 

NSCLC, show two inactivating mutations G802dup and D861Y [125].  D861 is the start 

of the highly conserved DFG motif in RTKs and mutation of it would reduce activity, 
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while the G802dup is spatially located near the P-loop and likely affects ATP binding 

affinity.  Similarly in ErbB4, two of the point mutations are located near the active site: 

E836 is located next to the C-loop, whereas E872 is situated in the A-loop and hence 

owing to their proximity to the active site, the mutations are also poised to alter substrate 

binding and phosphorylation; such mechanisms are discussed in a recent computational 

study in the context of EGFR [327].   

 

As mentioned in the Introduction, A-loop phosphorylation is thought not to be required 

for ErbB family kinase activation [306]. Consistent with this notion, although we record 

some context-specific structural changes between systems in which the A-loop is 

phosphorylated versus unphosphorylated (see section 4A.1-3), our results indicate that 

this phosphorylation does not provide a dominant activating effect.  We reached a similar 

conclusion in recent studies of ErbB2 using a free energy perturbation approach [312].  

 

In conclusion, our results help to establish the molecular context governing the stability 

and activation stimuli of ErbB kinases. Given that receptor tyrosine kinases are important 

signaling elements in cells, and mutations within these kinases cause subtle changes in 

molecular behavior that result in substantial alterations of downstream signaling [152], 

this work helps establish the crucial link between molecular mechanisms of kinase 

activation and the ensuing signaling response. 
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Chapter 4A.) Appendix for 4: Molecular Dynamics Analysis of Conserved 

Hydrophobic and Hydrophilic Bond Interaction Networks in ErbB Family Kinases 

EGFR 
active 

ErbB2 
active 

ErbB4 
active 

EGFR 
inactive 

ErbB2 
inactive 

ErbB4 
inactive 

aC-helix aC-helix bonds 

– – P761,K765 – – – – – – – – 
K730,E734 K762,E766 – – – – K762,E766 – – 
A731,I735 A763,I767 A736,F740 – – A763,I767 – – 
N732,S728 N764,S760 N737,G733 – – N764,S760 – – 
N732,L736 N764,L768 N737,M741 – – – – N737,M741 
– – – – – – – – K765,L768 – – 
K733,D737 K765,D769 V738,D742 K733,D737 – – – – 
E734,E738 E766,E770 E739,E743 E734,E738 – – – – 
I735,A739 I767,A771 F740,A744 I735,A739 I767,A771 F740,A744 
L736,Y740 L768,Y772 – – L736,Y740 – – – – 

D769,V773 D742,I746 – – – – – – 
E738,M742 E770,M774 E743,M747 E738,M742 E770,M774 – – 
– – A771,A775 – – – – – – – – 
Y740,S744 – – L745,S749 Y740,S744 Y772,G776 L745,S749 
V741,V745 V773,V777 I746,M750 – – – – – – 
C-loop bonds 

H811,D872 – – H816,D877 H811,D872 – – H816,D877 
R812,E848 – – – – – – – – – – 
– – – – – – R812,K851 – – – – 
R812,D872 – – R817,D877 R812,D872 – – – – 
R812,S875 – – – – – – – – – – 
– – – – – – – – A848,L807 – – 
A816,E882 – – A821,E887 A816,E882 – – A821,E887 
N818,T830 N850,T862 N823,T835 N818,T830 – – N823,T835 
A-loop A-loop bonds 
– – – – F837,A840 – – – – – – 
– – – – – – G833,K836 – – – – 
– – – – – – – – G865,L869 – – 
– – – – – – – – L866,L870 – – 
– – – – R841,E847 – – – – – – 
– – D871,I872 – – – – – – – – 
– – D871,E874 – – – – – – – – 
– – – – – – – – – – E844,K856 
– – – – – – E841,K843 – – – – 
– – – – – – E841,E842 – – – – 
– – – – – – – – – – E847,K848 
– – – – – – E844,Y845 – – – – 
Y845,E848 – – – – – – – – – – 
– – D880,G881 – – E848,G849 – – – – 
– – – – – – – – E874,K883 – – 

 
Table 4A.1: Persistent H-bonds and salt bridges in the three homologous 
ErbB kinase monomer systems.  The salt bridges are in bold and homologous 
bonds are aligned.  
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EGFR WT 
Active-U 
Dimer 

EGFR 
L834R 
Inactive-U 
Dimer  

EGFR 
deletion 
Inactive-U 
Dimer 

EGFR WT 
Inactive-U  
Dimer 

ErbB4 WT 
Inactive-P 
Dimer 

aC-helix interdimer bond 

– – – – – – – – K689,E912 
– – – – – – – – E690,K910 
– – – – – – P729,K925 – – 
– – K730,E939 – – K730,E939 – – 
– – K733,D918 K733,D918 K733,D918 – – 
Y740,D918 – – – – – – – – 
aC-helix A-loop bond 

E734,K836 – – – – – – – – 
D737,K836 – – – – – – – – 
– – E738,F832 – – E738,F832 – – 
– – – – – – E738,G833 – – 

– – E738,K836 E738,K836 E738,K836 
E743, 
R841 

aC-helix bonds 

– – – – K730,F699 – – – – 
N732,V762 – – – – – – – – 
E738,K721 – – – – – – – – 
– – M742,L753 M742,L753 M742,L753 M747,L758 
– – A743,R752 – – – – A748,R757 

A-loop C-loop bonds 

– – – – D831,N818 D831,N818 – – 
– – G833,H811 – – – – G838,H816 
L834,R812 – – – – – – – – 
– – – – L834,D813 – – – – 
K836,V810 – – – – – – – – 
– – – – – – – – E847,R817 

A-loop bonds 

D831,K721 D831,K721 D831,K721 D831,K721 D836,K726 
– – L834,R865 – – – – – – 
A840,R808 – – – – – – – – 
E841,R808 – – – – – – – – 
Y845,Y867 – – – – – – – – 
A847,R865 – – – – – – – – 
– – E848,R865 E848,R865 E848,R865 – – 
– – – – – – – – D853,R902 
– – – – – – K851,E725 – – 

 

Table 4A.2A: Persistent H-bonds and salt bridges in the five ErbB kinase 
dimer systems.  The salt bridges are in bold and homologous bonds are 
aligned. See also Table 4A.2B 
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EGFR WT 
Active-U 
Dimer 

EGFR 
L834R 
Inactive-U 
Dimer  

EGFR 
deletion 
Inactive-U 
Dimer 

EGFR WT 
Inactive-U  
Dimer 

ErbB4 WT 
Inactive-P 
Dimer 

aC-helix aC-helix bond 

N732,S728 – – – – – – – – 
A731,I735 – – – – – – – – 
N732,L736 – – – – N732,L736 N737,M741 
K733,D737 K733,D737 K733,D737 K733,D737 V738,D742 
– – – – E734,E734 E734,E734 – – 
– – E734,E738 E734,E738 – – E739,E743 
I735,A739 I735,A739 I735,A739 I735,A739 F740,A744 
L736,Y740 L736,Y740 L736,Y740 – – M741,L745 
– – D737,V741 – – – – – – 
E738,M742 E738,M742 E738,M742 E738,M742 – – 
A739,A743 A739,A743 – – A739,A743 – – 
Y740,S744 Y740,S744 Y740,S744 – – L745,S749 
V741,V745 V741,V745 – – – – – – 
A-loop A-loop bonds 

– – D831,K836 – – D831,K836 – – 
– – F832,K836  – – – – – – 
– – – – – – G833,K836 – – 
– – – – – – – – L839,L843 
– – – – A835,L837 – – – – 
– – – – – – G839,Y845 – – 
– – – – – – – – E844,K848 
– – E841,K843 E841,K843 – – – – 
– – – – – – E848,G849 – – 

C-loop bonds 

H811,D872 H811,D872 H811,D872 H811,D872 H816,D877 
R812,D872 R812,D872 R812,D872 R812,D872 R817,D877 
R812,S875 – – – – – – – – 
A816,E882 A816,E882 A816,E882 A816,E882 A821,E887 
N818,T830 N818,T830 N818,T830 – – N823,T835 
– – – – – – N818,D831 – – 

C-loop C-loop bonds 

– – – – – – – – H816,R817 
– – R812,D813 – – R812,D813 – – 
D813,R817 – – – – – – D818,R822 
– – A815,N818 A815,N818 A815,N818 A820,N823 

 

Table 4A.2B: Persistent H-bonds and salt bridges in the five ErbB kinase 
dimer systems.  The salt bridges are in bold and homologous bonds are 
aligned. 
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Figure 4A.1: The RMSD plots for the monomeric systems showing RMSD 
from the active (red) and inactive (black) conformations.  

 

 

Figure 4A.2: The RMSD plots for the EGFR symmetric dimer systems 
showing RMSD from the active (red) and inactive (black) conformations.  
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4A.1) A-loop phosphorylation in monomers promotes coordination of the catalytic 

sub-domains   

 

To simulate the phosphorylated systems, we used the phosphotyrosine patch from the 

CHARMM27 forcefield on the A-loop tyrosines [328]. The systems were minimized, 

equilibrated and simulated as described in the methods. There are two phosphorylated 

systems created for the EGFR monomers: one in the active conformation and the other in 

the inactive conformation.  Two similar monomer systems for ErbB2 have been 

previously simulated [312]. 

 

Figure 4A.3: Visualization of the first principal component for the four key 
sub-domains in the inactive and active phosphorylated ErbB systems. The 
motions are overlaid sequentially, where the large-amplitude motion in each 
frame is highlighted in red, and the low-amplitude motion is highlighted in 
blue.   
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The added charge from the phosphate tail to the A-loop tyrosine (Y845 in EGFR, Y877 

in ErbB2) causes a minor reorganization of the residues in the A-loop (~2 Å), but does 

not greatly alter the rest of the protein.  Phosphorylation in the active systems keeps the 

active site subdomains (A-loop, P-loop, αC-helix and C-loop) coordinated with 

equivalent levels of fluctuations as the unphosphorylated systems (~3 Å). However, A-

loop phosphorylation does not have a uniform effect upon the dominant modes of motion 

in EGFR and ErbB2 (see Figure 4A.3).  Compared to the unphosphorylated EGFR 

system, the inactive has the same motions in the A-loop (~7.5 Å), but dampened 

fluctuations in the other three loops (from ~4 Å to ~2 Å).  In contrast, phosphorylation of 

the ErbB2 systems does not greatly alter the magnitude of the fluctuations.   

 

Activating Bond Network: The A-loop phosphorylated active systems mostly preserve the 

conserved bonds seen in the unphosphorylated active systems (E738-K721, E734-K851 

salt bridge; L834-R812, K836-V810, L838-R808, D813-R817 H-bonds), see Table 4A.3.  

The ErbB2-P system loses the E734-K851 salt bridge, because the added charge from 

phosphorylation causes the K851 residue to bind to the phosphate group (Y877-K883).  

Both EGFR-P systems gain the D831-K721 bond, as a salt bridge in the active state and 

as an H-bond in the inactive state.  Since K721 is also salt bridged to E738, the D831-

K721 bond is a consequence of having all the catalytic residues close together.  The 

active phosphorylated systems also gain several more fastening bonds that maintain the  

C-terminal side of the A-loop in the open conformation: the ErbB2 systems gain Y877- 
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EGFR-P 
active 
 

ErbB2-P 
active 

EGFR-P 
inactive 

ErbB2-P 
inactive 

EGFR-P 
active 

ErbB2-P 
active 

EGFR-P 
inactive 

ErbB2-P 
inactive 

αC-helix bonds C-loop C-loop bonds 

– – – – N732,A726 – – – – – – – – H843,N850 
– – A763,S760 – – – – – – – – R812,D813 R844,D845 
N732,V762 – – – – – – D813,R817 D845,R849 – – – – 
– – E766,R756 – – – – – – D845,N850 – – – – 
E738,K721 E770,K753 – – – – A815,N818 A847,N850 A815,N818 – – 
– – M774,L785 – – – – – – A847,V851 – – – – 
– – – – A743,R752 – – – – – – A816,V819 A848,V851 

αC-helix A-loop bonds – – – – – – R849,N850 

– – – – – – T759,E874 αC-helix αC-helix bonds 

K730,E848 – – – – – – – – P761,K765 – – – – 
E734,K836 – – – – – – – – K762,E766 K730,E734 – – 
E734,K851 – – – – – – A731,I735 A763,I767 – – – – 
– – E770,F864 E738,F832  – – – – N764,S760 – – – – 
– – – – E738,K836 – – N732,L736 N764,L768 – – N764,L768 

A-loop bonds K733,D737 K765,D769 – – K765,D769 

D831,K721 – – D831,K721 D863,K753 E734,E738 E766,E770 – – E766,E770 
– – – – – – G865,H843 I735,A739 I767,A771 – – I767,A771 
– – – – – – R868,R840 L736,Y740 L768,Y772 – – – – 
L838,R808 L870,R840 – – – – D737,V741 D769,V773 – – – – 
– – E876,R898 – – – – E738,M742 E770,M774 E738,M742 – – 
– – – – Y845,R865 Y877,R897 A739,A743 A771,A775 A739,A743 A771,A775 
Y845,Y867 Y877,F899 – – – – – – – – Y740,S744 Y772,G776 
A847,R865 A879,R897 – – – – – – V773,V777 V741,V745 – – 

– – – – E848,R865 – – A-loop A-loop bonds 

A-loop C-loop bonds – – D863,G865 – – – – 

– – – – D831,N818 – – – – – – D831,K836 – – 
L834,R812 L866,R844 – – – – – – – – – – G865,L869 
– – – – L834,D813  – – – – – – G833,K836 – – 
 K836, 
V810 R868,V842 – – – – – – – – – – L866,L870 
Y845,R812  Y877,R844 Y845,R812 Y877,R844 – – R868,Y877 – – – – 

C-loop bonds – – D871,E874 – – – – 

H811,D872 – – H811,D872 – – K843,E844 – – – – – – 
R812,D872 – – R812,D872 – – – – Y877,K883 – – Y877,K883 
A816,E882 – – A816,D882 – – – – D880,G881 – – – – 
N818,T830 – – N818,T830 – – – – D880,K883 E848,K851 – – 

 

Table 4A.3: Persistent H-bonds and salt bridges in the phosphorylated ErbB 
kinase monomer systems.  The salt bridges are in bold and homologous 
bonds are aligned.  
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F899, A879-R897 as seen in [312]; the EGFR phosphorylated systems have the 

homologous fastening bonds in Y845-Y867 as well as A879-R865.  All of the 

phosphorylated systems share a common bond in Y845-R812, which strengthens the 

coordination between the A-loop and C-loop.  The other fastening bonds in the active 

conformation have an increased survival time and shorter bond length, further increasing 

the coupling between the A-loop and C-loop. 

 

Inactivating Bond Network: The inactivating bond network for the phosphorylated 

systems does not present as many conserved bonds.  However, similar to the 

unphosphorylated systems, there are bonds sequestering key catalytic residues.  Half of 

the highly conserved salt bridge E738-K721 [312] is salt bridged to K836 in EGFR while 

the other half, residue K721, is salt bridged to D831 in ErbB2.  The inactive 

phosphorylated systems have only one common bond not shared by any of the other 

systems, Y845-R865, which maintains the closed A-loop conformation and thus serves a 

role opposite of a fastening bond (see Table 4A.3).  However, the conserved H-bond in 

the unphosphorylated inactive systems M745-L753 is not present.   

 

Phosphorylation of the A-loop tyrosine in the ErbB systems provides some alteration to 

the bond patterns, strengthening the coordination between the loops.  However, the shift 

is not sufficient to cause a conformational change in the short time scales that we employ 

here.  The effects of phosphorylation are more subtle and likely involve more complex 

protein-protein interactions to promote the full conformational change.  To this effect we 
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have also simulated several phosphorylated systems in the asymmetric dimer 

configuration to examine whether dimerization and phosphorylation have a synergistic 

effect as described below. 

 

4A.2) Phosphorylation of the A-loop does not perturb the dimer-mediated allosteric 

activation mechanism   

 

Two A-loop phosphorylated dimer systems were examined to explore how 

phosphorylation could affect the dimer-mediated allosteric activation mechanism.  An 

ErbB4 homodimer with the activator kinase in the active conformation and the receiver 

kinase in the inactive conformation was created and simulated using the same 

methodology as the monomers.  A similar ErbB2 heterodimer has previously been 

simulated [312]. 

 

Addition of the asymmetric dimer interface causes a shift of the αC-helix toward the 

active conformation, similar to the shift observed in the unphosphorylated systems.  The 

ErbB4 dimer exhibits a comparable motion and directionality in the A-loop and the αC-

helix to the EGFR dimer systems.  The A-loop-phosphorylated ErbB2 dimer 

demonstrates slightly more motion than the unphosphorylated dimer, predominantly in 

the αC-helix (2.56 Å vs. 1.14 Å).  Phosphorylation of the A-loop tyrosine binds the A-

loop and the αC-helix tightly, increasing the motions between the two subdomains.  The 

increased fluctuations are located near the N-terminal region of the helix (see Figure 
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4A.3).  This region aligns with the molten region of the EGFR and ErbB4 dimer, 

implying a larger motion allowed if the αC-helix of the ErbB2 dimer were also partially 

molten.   

 

4A.3) Hydrophobic interactions are not significantly affected by A-loop 

phosphorylation 

 

Phosphorylation of the A-loop tyrosine in the ErbB family does not significantly alter the 

hydrophobic interactions of the five hydrophobic sub-regions: the asymmetric dimer 

interface, the αC-β4 region, the C-spine, the R-spine and the hydrophobic core, 

particularly in comparison to the unphosphorylated states.  In the dimer interfaces, the 

water fluctuation analysis shows a similar hydrophobicity in the phosphorylated systems 

as the unphosphorylated systems (Figure 4A.4A). For the dimer interface residues, the 

active conformations have the highest mean SASA value of ~360 Å2 with the inactive 

conformations having a significantly lower value of ~220 Å2 (Figure 4A.4B).  The dimer 

system is the lowest of all the systems with a mean SASA value of ~75 Å2.  Considering 

that the αC-β4 region is predominantly hydrophobic only in ErbB2, it has the highest 

overall hydrophobicity of all systems (Figure 4A.4C). Correlated with that, the SASA 

values for the phosphorylated systems reveals that the ErbB2 systems have a lower mean 

SASA value of ~220 Å2 with the non-ErbB2 systems having a higher mean SASA value 

of ~315 Å2 (Figure 4A.4D).   
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Figure 4A.4: Comparison of the normalized water density fluctuations with 
the mean solvent accessible surface area for two functionally important sub-
regions for the ErbB family in the A-loop phosphorylated systems: the dimer 
interface (panels A & B) and the αC-β4 region (panels C & D). A higher 
normalized density water fluctuation implies a greater hydrophobicity, which 
would have less exposed surface area.  

 
The C-spine in the active conformation presents a smaller mean SASA value than the 

inactive kinase systems.  The active conformations have a mean SASA value of 500 Å2 

with the inactive conformations having greater variability, but a higher mean value of 680 

Å2 (Figure 4A.5B).  In the ErbB2 phosphorylated systems, the hydrophobicity shows a 

similar trend implying a well formed spine (Figure 4A.5A). However, in the EGFR 

systems the inactive has a higher exposed surface area with a higher water density 

fluctuations and therefore higher hydrophobicity, implying a better formed spine in the 

active conformation. The R-spine has a similar trend of a better formed spine in the active 

conformation in all systems.  The active conformations have a lower SASA value than 
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the inactive conformations (Figure 4A.5D) with the inactive conformations having an 

increase water density fluctuation (Figure 4A.5C).  For the hydrophobic core (Figure 

4A.5F), the active conformations have a higher mean SASA value (~500 Å2) than the 

inactive conformations (~350 Å2).  However, the inactive and active EGFR monomer 

kinases have approximately equal SASA values, while the ErbB2 active kinase has a 

higher mean SASA value than the inactive system.  While the water density analysis 

shows the inactive having a higher hydrophobicity than the active conformation in the 

EGFR monomers, the gap has shrunk in comparison to the unphosphorylated systems 

implying less of a network fragility in the phosphorylated systems (Figure 4A.5E).    

 

Figure 4A.5: Comparison of the normalized water density fluctuations with 
the solvent accessible surface area for three functionally important sub-
regions for the ErbB family in the A-loop phosphorylated systems: the C-
spine (panels A & B), the R-spine (panels C & D) and the hydrophobic core 
(panels E & F). A higher normalized density water fluctuation implies a 
greater hydrophobicity, which would have less exposed surface area.  
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Overall the effect of A-loop phosphorylation in the ErbB family is not clear.  Although 

the phosphorylation of the A-loop tyrosine strengthens specific linkages between the A-

loop and C-loop in the active state and promotes a subtle reorganization of the bond 

network in the inactive state, the stimulus of the added charge is insufficient to cause a 

conformational shift through hydrophilic bonds.  The phosphorylated systems present a 

similar profile to the unphosphorylated systems with regard to hydrophobic interactions.  

We have previously performed an analysis on the ErbB2 monomer system with a F of 

-1.1 ± 1.4 kcal/mol difference as a result of phosphorylation of the A-loop tyrosine, and a 

F of 1.2 ± 1.5 kcal/mol difference for dephosphorylation [312].   

 

4A.4) Targeted molecular dynamics studies reveal specific interactions associated 

with the transition pathway 

 

Targeted molecular dynamics (TMD) simulations were performed in CHARMM [329] 

using the RMSD of the backbone atoms of the αC-helix and the A-loop as the reaction 

coordinate (χi).  The activation pathway is divided into 20 smaller windows and each 

segment of the window is simulated individually to ensure adequate sampling.  To 

enhance the sampling of low probability events, a harmonic restraint of constant k=20 

kcal/mol/(Å2) is applied along the reaction coordinate, χi. 
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Figure 4A.6: Comparison of the first principal component of the EGFR 
TMD monomer simulation (panel A) and the EGFR TMD dimer simulation 
(panel C) vs. the active (Panel B) and inactive EGFR (Panel D) monomer 
systems, with an active reference (orange) and inactive reference structure 
(green).  The activator kinase is shown in yellow in panel B.  The motions are 
overlaid sequentially, where the large-amplitude motion in each frame is 
highlighted in red, and the low-amplitude motion is highlighted in blue.  
TMD pathway for the EGFR monomer (panel E) and EGFR dimer (panel F).  
 

 

The TMD study of EGFR captured the transition of the kinase from the inactive to the 

active conformation.  The PCA of the TMD trajectory is depicted in Figure 4A.6A.  

Comparison of the PCA of the active and inactive EGFR unphosphorylated systems to 

the TMD PCA reveals how each set of fluctuations progresses along the activation 

pathway.  The active unphosphorylated PCA fluctuates closely to the active state without 

much motion, showing it is stable in the current energy well (see Figure 4A.6B).  
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However, the inactive state shows some motion toward the active conformation, with 

both the αC-helix and A-loop moving toward the active state in an indirect fashion (see 

Figure 4A.6D).  The inactive EGFR unphosphorylated system exhibits comparable 

motion to the TMD EGFR study (7.34 vs. 8.03 Å in the A-loop, 4.95 vs. 5.23 Å in the 

αC-helix, respectively), though the motions are not sufficiently directed toward the active 

state.  The TMD study did not completely sample the activation pathway; similar to the 

work of Athanasios et al. [311], we observed several significant molecular events: the 

breaking of the E738-K836 salt bridge, the formation of the E738-K721 salt bridge and 

the extension of the αC-helix (Figure 4A.6E).  This is similar to what we observed in the 

EGFR dimer TMD simulations (see Figure 4A.6C). However, the αC-helix extension 

progresses through a different pathway than that of the monomer (see Figure 4A.6F).  

The complete pathway has not been mapped, but the data we have collected strongly 

suggests the αC-helix shifts before the A-loop contrary to the pathway mapped out for the 

Src kinase Hck [324, 325]. 
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Chapter 5.) A multiscale modeling approach to investigate molecular mechanisms of 

pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine 

kinase signaling network 

 

5.1) Introduction 

 

This chapter is modified from work that has been submitted to Molecular Biosystems and 

is currently under review [330]. Approximately 10%, or 48 of the 518 protein kinases 

encoded by the human genome, lack at least one of three catalytic amino acid motifs in 

the kinase domain, including  the Val-Ala-Ile-Lys (VAIK) motif in subdomain II, in 

which the lysine residue facilitates the positioning of the ATP molecule, the His-Arg-Asp 

(HRD) motif in subdomain VIb, which contains the catalytic aspartic acid residue 

responsible for deprotonating the substrate hydroxyl group, and the Asp-Phe-Gly (DFG) 

motif in the A-loop, which contains the Mg2+-coordinating aspartic acid residue that 

orients the β and γ phosphates of ATP [4, 331]. These kinases, termed ‘pseudokinases,’ 

are therefore commonly regarded as catalytically inactive. However, not all kinase 

domains that lack one or more of the conserved catalytic motifs are inactive. The kinase 

WNK1 is catalytically active despite lacking the crucial lysine in its VAIK motif, as a 

lysine residue in subdomain I performs the function of the missing amino acid [332]. In a 

recent structural and biochemical study, Mukherjee et al. [333] resolved the crystal 

structure of the pseudokinase domain of Ca2+/calmodulin-activated serine threonine 

kinase (CASK), which lacks both of the canonical Mg2+-coordinating residues, and 
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determined that CASK employs an unusual phosphorylation mechanism in which the 

kinase preferentially binds unchelated nucleotides, and is hence capable of catalyzing 

phosphotransfer despite lacking the conserved DFG motif. It is therefore plausible that 

other pseudokinases are not truly inactive, but may employ alternative modes of ATP 

binding and phosphoryl transfer. 

 

In the ErbB family of receptor tyrosine kinases (RTKs), which includes epidermal growth 

factor receptor (EGFR/ErbB1), ErbB2 (HER2), ErbB3 (HER3) and ErbB4 (HER4), 

ligand binding followed by receptor homo- or heterodimerization performs a crucial role 

in regulating critical cellular processes including migration, differentiation, and 

proliferation [3, 334, 335]. EGFR, ErbB2, and ErbB4 all observe the canonical 

mechanism of phosphate transfer. ErbB3, however, is the only member of the ErbB 

family that has long been regarded as an inactive pseudokinase due to amino acid 

substitutions in the conserved kinase domain. Until recently, ErbB3 activity has been 

largely undermined, as it contains an asparagine residue (N815) in place of the catalytic 

aspartic acid residue that is responsible for deprotonating the substrate hydroxyl group 

[336]. In addition, a crucial glutamate residue in the αC helix, which indirectly 

participates in ATP-binding, is replaced by a histidine (H740) in ErbB3. Hence it has 

been widely believed that ErbB3 is dependent on interactions with the other active ErbB 

receptors for its biological activity.  
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However, it was recently demonstrated that ErbB3 does, in fact, exhibit robust residual 

kinase activity that may be crucial for ErbB signaling. Two recent studies by Jura et al. 

[43] and Shi et al. [337] resolved the crystal structure of the ErbB3 kinase domain, 

revealing an inactive-like conformation. In addition, Shi et al. [337] demonstrated that, 

when clustered at a membrane surface, the purified ErbB3 intracellular domain is capable 

of robust autophosphorylation, albeit at a level 1000-fold weaker than the active EGFR 

kinase, and that the kinase domain binds ATP with an affinity similar to that of other 

active kinases. In the same study [337], our quantum mechanics/molecular mechanics 

(QM/MM) simulations suggested that ErbB3 may catalyze phosphoryl transfer from its 

inactive-like kinase conformation via an alternative pathway, which explains the 1000-

fold slower rate of phosphoryl transfer in ErbB3 compared to EGFR: the alternative 

pathway involves the migration of the substrate tyrosyl –OH proton directly to the O1γ 

oxygen of ATP, hence obviating the requirement for the catalytic aspartate residue. Our 

study suggests the intriguing possibility that therapeutic targeting of the robust activity of 

ErbB3, rather than the routinely-targeted EGFR and ErbB2 kinases, may provide a more 

effective treatment strategy for certain ErbB-driven cancers. However, a major question 

arising from our work is: what is the physiological relevance, if any, of weak ErbB3 

activity to ErbB signaling in the cell?   

 

This question is clinically pertinent as over-expression and activating mutations of the 

ErbB kinases are implicated in cellular transformation and clinical malignancies 

including lung and breast cancers [49, 338-342]. Recent studies have demonstrated that 
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mechanisms of resistance to tyrosine kinase inhibition (TKI) of EGFR and possibly 

ErbB2 in the treatment of certain human malignancies are mediated by ErbB3 [343-346]. 

In this scenario, it is hypothesized that incomplete inhibition of ErbB2 catalytic activity 

restores phosphorylation of ErbB3 in the context of ErbB2/3 heterodimers. As ErbB3 

contains six PI3K-binding sites in its C-tail, leaky ErbB3 phosphorylation induces 

proliferative signaling through the PI3K-AKT pathway [343]. However, the detailed 

molecular mechanism of this process remains an open question. Indeed, it is possible that 

ErbB3 catalytic activity is involved in the TKI resistance mechanism. 

 

To explore the implications of ErbB3 activity for ErbB signaling and TKI resistance, a 

multiscale modeling approach is advantageous. Multiscale computational modeling has 

been applied to a variety of biological systems [347-351] to help quantify the complexity 

inherent in intracellular signaling networks. As the biochemical processes within a cell 

occur on multiple spatial and temporal scales, a multiscale modeling approach is 

necessary to represent a hierarchy of interactions ranging from the molecular (nm, ns) to 

cellular signaling (μm, ms) length and time scales. Multiscale modeling provides a 

powerful and quantitative methodology for studying the effect of molecular 

perturbations, in our case, ErbB3 catalytic activity, on downstream signaling events, i.e., 

the ErbB signaling network and development of TKI resistance. 

 

In light of the implication of ErbB3 in TKI resistance mechanisms, the recent interest in 

catalytic mechanisms of pseudokinases and particularly in the potential for ErbB3 
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activity demonstrated by Shi et al. [337], we pursue a multiscale modeling study of the 

ErbB3 kinase system at the molecular and cellular levels. A variety of modeling 

techniques, ranging from atomic-level molecular dynamics (MD) simulations to systems-

level modeling, are applied to investigate the non-canonical catalytic mechanism 

employed by the ErbB3 kinase and the physiological relevance of this activity to 

mechanisms of drug resistance in an ErbB-driven tumor cell in silico. Here we discuss 

the results of our MD simulations which suggest that the assembly of the catalytic site in 

ErbB3 is achieved through a unique network of hydrophobic interactions, in contrast to 

the extensive set of hydrogen bonds present in the active sites of the other ErbB kinases, 

and thus the ErbB kinases may have evolved two different modes of achieving the shared 

goal of prearranging the catalytic machinery for phosphoryl transfer.  For how the 

homology modeling techniques feed into MD simulations as well as the investigation of 

the molecular level simulation affecting the cell signaling networks, see sections 7.1 and 

7.3, respectively. 

 

5.2) Results 

 

5.2.1) PCA reveals that the sub-domain motions of ErbB3 diverge from those of an 

inactive ErbB kinase 

 

To determine whether the ErbB3 kinase behaves similarly to its ErbB family members at 

the atomic level, we performed 10 ns molecular dynamics (MD) simulations of the ErbB3 
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crystal structure (PDB code 3LMG) [337]. The ErbB3 structure was stable for the 

duration of the simulation, as indicated by the time-course plots of the RMSD of the 

backbone atoms (Fig. 5.1). Principal component analysis (PCA) was applied to the 10 ns 

trajectory to characterize the most significant global motions of the ErbB3 kinase. The 

PCA calculation is based on the diagonalization of the variance-covariance matrix of the 

atomic fluctuations along the MD trajectory to yield the set of eigenvectors (PCs) and 

associated eigenvalues. The eigenvectors represent the independent modes of atomic 

motion, and the eigenvalues reflect the contribution of the corresponding eigenvectors to 

the global fluctuation of the protein.  

 
Figure 5.1. Molecular dynamics time course plots of the RMSD for (A) the 
backbone atoms of the ErbB3 kinase, (B) the backbone atoms of the A-loop 
and (C) the backbone atoms of the αC helix. The RMSD is plotted in 
reference to the initial (unsimulated) structure (red) as well as the active 
EGFR structure (black), for reference.  
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Figure 5.2: Motion along the first principal component of the MD trajectory 
is illustrated for the complete ErbB3 kinase and compared to the active and 
inactive conformations of EGFR, ErbB2 and ErbB4. The structures are color-
coded according to the RMSD, where red regions indicate large-amplitude 
fluctuations and blue regions indicate small-amplitude fluctuations. The A-
loop and αC helix are highlighted in green for structural reference. Overall, 
the global motions are conserved across the ErbB family members.  

 
 
Motion along the first eigenmode for the complete ErbB3 kinase was compared to PCA 

trajectories for the inactive and active conformations of EGFR, ErbB2 and ErbB4 that 

had been previously simulated by us [348, 352] (Fig. 5.2); overall the global motions of 

the kinases were conserved across the ErbB family members. To determine whether the 

PCA pattern was also conserved in ErbB3’s unique active site region, we applied PCA to 

an active site region which included the A-, C-, and N-loops and the αC helix. Figure 5.3 

illustrates that motion along the first eigenmode in the inactive EGFR, ErbB2 and ErbB4 

systems is dominated by A-loop movement, with smaller fluctuations in the other 
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catalytic sub-domains, whereas the active ErbB systems exhibit a uniform level of motion 

across the sub-domains, with lower-amplitude fluctuations. Despite the crystallization of 

the ErbB3 kinase in an inactive-like conformation, the PCA pattern in ErbB3 appears to 

diverge from that of the other inactive ErbB kinases and instead resembles that of the 

active ErbB kinases, in terms of its concerted and low-amplitude sub-domain 

fluctuations. We reason that the interactions among the A-, C-, and N-loops and the αC 

helix in the active ErbB systems (i.e., active EGFR, ErbB2 and ErbB4, and weakly-active 

ErbB3) are crucial for alignment of the key sub-domains for catalysis. Consistent with 

this view, our PCA demonstrates that at the atomic level, the sub-domain motions of the 

ErbB3 system deviate from those of an inactive ErbB kinase.  

 

Figure 5.3. Motion along the first principal component of the MD trajectory 
is illustrated for ErbB3 and compared to the active and inactive 
conformations of EGFR, ErbB2 and ErbB4 focused on the active site. The 
structures are color-coded according to the RMSD, where red regions 
indicate large-amplitude fluctuations and blue regions indicate small-
amplitude fluctuations. Despite the crystallization of the ErbB3 kinase in an 
inactive-like conformation, the ErbB3 PCA pattern resembles that of the 
active ErbB kinases, in terms of the concerted and low-amplitude fluctuations 
of its catalytic sub-domains.  
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5.2.2) Hydrogen bonding analysis indicates a lack of conserved hydrophilic 

interactions in the ErbB3 catalytic site 

 

To identify specific interactions that could be contributing to the distinct pattern of global 

motion in the ErbB3 kinase in the inactive-like conformation, individual salt bridges and 

hydrogen bonds were tabulated for the ErbB3 system through a hydrogen-bonding 

analysis of the 10 ns MD trajectory (Table 5.1a&b) and compared to the bonds present in 

the other ErbB systems [348, 352]. The major difference that we observed between the 

inactive and active ErbB systems is a significantly greater number of bonds that couple 

the catalytic sub-domains of the kinases in the active systems compared to the inactive 

systems. Table 5.1a&b highlights several of these bonds (EGFR numbering will be used 

here): E734-K851 is a key salt bridge which couples the A-loop and αC helix and is 

conserved across the active conformations of EGFR, ErbB2 and ErbB4, and the L834-

R812 and K836-V810 bonds bridge the A-loop and C-loop to maintain the A-loop in its 

extended, active conformation. We hypothesize that the tight coupling of the sub-

domains in the active ErbB systems may help to correctly position the catalytic residues 

during assembly of the active site for phosphoryl transfer [352].  

 

By contrast, the bonding pattern in ErbB3 is distinct from the active and inactive states of 

its ErbB family members in its scarcity of hydrogen bonds (Table 5.1a&b). ErbB3 lacks 

many of the bonds present in the other ErbB kinases due to substitutions in its amino acid  
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EGFR 
active 

ErbB2 
active 

ErbB4 
active 

EGFR 
inactive 

ErbB2 
inactive 

ErbB3 
Inactive 

ErbB4 
inactive 

aC-helix A-loop bonds 

– – – – – – – – – – – – E739,R841

E734,K851 E766,K883 E739,K856 – – – – – – – – 

D737,K836 D769,R868 – – – – – – – – D742,R841

E738,F832 – – E743,F837 – – – – – – – – 

– – – – – – E738,K836 – – – – E743,R841

aC-helix C-loop bonds 

– – – – – – – – – – – – E743,R817 

A-loop C-loop bonds 

– – – – – – – – G865,V842 – – – – 

– – – – – – – – – – – – G838,R817 

L834,R812 L866,R844 L839,R817 – – – – – – – – 

– – – – – – L834,D813 – – – – – – 

K836,V810 R868,V842 R841,V815 – – – – – – – – 

– – – – – – – – – – D838,R814 – – 

E848,R812 – – – – – – – – – – – – 

– – – – – – K851,R812 – – – – – – 
C-loop C-loop bonds 

– – H843,D845 – – – – – – H813,N815 – – 

– – – – – – R812,D813 R844,D845 – – – – 

D813,R817 D845,R849 D818,R822 – – – – – – – – 

D813,N818 – – – – – – – – N815,N820 – – 

A815,N818 A847,N850 A820,N823 A815,N818 A847,N850 A817,N820 – – 

– – A848,V851 – – – – – – – – – – 
Table 5.1a: Hydrogen bonding analysis of the ErbB3 MD trajectory and 
comparison to the active and inactive conformations of EGFR, ErbB2 and 
ErbB4. ErbB3 lacks many of the conserved bonds present in the active 
EGFR, ErbB2 and ErbB4 structures. The characteristic active bonds are 
highlighted in green and the sequestering bonds are highlighted in yellow. 
See also Table 5.1b 
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EGFR 
active 

ErbB2 
active 

ErbB4 
active 

EGFR 
inactive 

ErbB2 
inactive 

ErbB3 
Inactive 

ErbB4 
inactive 

A-loop bonds 

– – – – D836,K726 – – D863,K753 D833,K723 D836,K726

– – – – D836,T835 – – – – – – – – 

L838,R808 L870,R840 L843,R813 – – – – – – – – 

– – D871,R840 – – – – – – – – – – 

A840,G672 – – – – – – – – – – – – 

– – – – – – – – D873,R897 – – – – 

– – – – – – – – – – D844,K853 – – 

– – – – K848,T873 – – – – – – – – 

K843,D932 – – K848,D937 – – – – – – – – 

– – E876,R898 – – – – – – – – – – 

– – – – E849,K871 – – – – – – – – 

Y845,Y867 – – Y850,F872 – – – – – – – – 

– – – – – – H846,R865 – – – – – – 

– – – – – – – – – – K845,E851 – – 

– – – – A852,R870 – – – – – – – – 

– – D880,R897 D853,R870 E848,R865 D880,R897 – – D853,R870 

– – – – – – – – – – – – G855,E730 

– – – – – – – – K883,E757 – – – – 

– – – – – – – – – – – – K856,E844 

aC-helix bonds 

– – A763,S760 – – – – – – – – – – 

– – E766,R756 – – – – – – – – – – 

E738,K721 E770,K753 E743,K726 – – – – – – – – 

– – – – – – M742,L753 M774,L785 – – M747,L758

A743,L679 – – A748,Q684 – – – – – – – – 

– – – – – – – – – – – – A748,R757 
Table 5.1b: Hydrogen bonding analysis of the ErbB3 MD trajectory and 
comparison to the active and inactive conformations of EGFR, ErbB2 and 
ErbB4. ErbB3 lacks many of the conserved bonds present in the active 
EGFR, ErbB2 and ErbB4 structures. The characteristic active bonds are 
highlighted in green and the sequestering bonds are highlighted in yellow. 
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sequence: E738 (EGFR numbering), which coordinates the α and β phosphates of ATP 

by forming a salt bridge with K721 in the αC helix, is mutated to a His in ErbB3. In 

addition, E734, which couples the A-loop and αC helix by bonding to K851, is an Ala in 

ErbB3. The few bonds that are present in ErbB3 help to maintain its distinctive active 

site: the D838-R814 bond, which bridges the 310 helix and the C-loop in ErbB3, does not 

appear in the other ErbB kinases. ErbB3’s unique hydrogen bonding network (or lack 

thereof) suggests that the molecular mechanism of catalysis in ErbB3 is distinct from that 

operating in EGFR, ErbB2 and ErbB4. 

 

5.2.3) Hydrophobic analysis of the ErbB kinases identifies a perturbation-sensitive 

region in ErbB3 

 

In the active conformation, EGFR, ErbB2 and ErbB4 rely on an extensive network of 

hydrophilic interactions to maintain their active sites in a catalytically competent state, 

whereas the inactive conformations exhibit characteristic hydrophobic interactions, a 

feature that helps to differentiate the inactive and active states. In ErbB-mediated 

signaling, the introduction of the ErbB dimer interface alters the hydrophobicity of the 

region and, in conjunction with allosteric effects, perturbs the conformational sampling 

space of the protein to induce a shift toward the active conformation [297, 353, 354].   

 

To quantify these hydrophobic interactions, we computed the solvent accessible surface 

area (SASA) and water density fluctuations (see Methods, section 5.4) for the ErbB3 MD 



113 
 

trajectory and compared the results to the EGFR, ErbB2 and ErbB4 trajectories 

previously simulated by us [354]. In particular, we focused on several highly conserved 

hydrophobic regions which are considered to be important for defining the catalytic state 

of the ErbB kinases [30, 31]: the catalytic spine (C-spine), regulatory spine (R-spine), 

hydrophobic core, and β3-αC loop. Figure 5.4 displays the correlation between the mean 

SASA and the normalized water density fluctuations for each hydrophobic region in the 

inactive and active conformations of each ErbB kinase. The SASA analysis is a reliable 

measure of hydrophobicity for smooth hydrophobic interfaces but does not always 

correlate perfectly with free energies of solvation of hydrophobic groups near irregular 

hydrophobic surfaces, which are often found in proteins. The normalized water density 

fluctuation calculation, which quantifies the hydrophobicity of heterogeneous surfaces, 

provides an alternative to the SASA analysis and proposes that increased normalized 

water density fluctuations signify a more hydrophobic region, where a normalized value 

of 1 indicates a neutral surface [320, 321]. Thus the correlation between the SASA and 

water density fluctuations produces additional insights into region hydrophobicity that are 

not revealed by either analysis independently. Specifically, we have designated four 

‘quadrants’ in each correlation subplot (Fig. 5.4A): quadrant II represents a 

hydrophilically favorable region, quadrant IV defines a hydrophobically favorable region, 

and quadrant I, which is characterized by high SASA (more hydrophilic) and large water 

density fluctuations, represents a fragile or perturbation-sensitive region. The quadrants 

facilitate the identification of key patterns that may emerge from a comparison of the 

hydrophobic interactions in the ErbB systems.  
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Figure 5.4: Correlation between the solvent accessible surface area (SASA) 
and water density fluctuations in the key hydrophobic regions of the ErbB 
kinases:  (A) hydrophobic core, (B) β3-αC loop, (C) C-spine and (D) R-spine. 
Dark and light markers represent the active and inactive ErbB systems, 
respectively. The ErbB kinase systems are represented as follows:  EGFR 
(square), ErbB2 (circle), ErbB3 (diamond), and ErbB4 (triangle).  Quadrant I 
represents a perturbation-sensitive region, quadrant II defines a 
hydrophilically favorable region, and quadrant IV represents a 
hydrophobically favorable region.  

 

The ErbB2 system, in general, lies within the hydrophobically favorable region (quadrant 

IV), which may be rationalized in terms of ErbB2’s unique ability to bind the molecular 
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chaperone Hsp90 through a hydrophobic interface, a point that is elaborated in our 

previous studies [352, 354]. In the hydrophobic core, which includes segments of the αC 

helix and the A-loop and helps to maintain the ErbB kinases in the inactive conformation 

[30, 31], ErbB3 demonstrates characteristic hydrophobic interactions that are similar to 

the inactive EGFR and ErbB4 systems. Fig. 5.4A illustrates that ErbB3, as well as the 

inactive EGFR and ErbB4 systems, lies within the ‘perturbation-sensitive’ quadrant, 

indicating that the hydrophobic core is a potential fragile point of the protein, in which 

single point mutants would be expected to disrupt the local interactions. Indeed, it has 

been reported that mutations in the hydrophobic core of EGFR and ErbB4 result in 

activation of the kinase, due to destabilization of the inactive state [337]. By contrast, an 

analogous mutation in ErbB3 abolishes ATP-binding and phosphorylation activity [337], 

indicating that hydrophobic interactions in the core promote ErbB3 activity, rather than 

maintain an autoinhibited state as they do in EGFR and ErbB4. Furthermore, the β3-αC 

loop, which is uniquely extended in ErbB3 and lies proximal to the hydrophobic core, 

represents a perturbation-sensitive node in ErbB3 (Fig. 5.4B). Thus mutations in this 

region would also be expected to inactivate the ErbB3 kinase. Our results support the 

conclusion that ErbB3 critically depends on a coordinated set of hydrophobic interactions 

for its weak yet robust activity from the inactive-like conformation, whereas EGFR and 

ErbB4 employ similar interactions to maintain their autoinhibited status from the 

inactive-like conformation. We propose that these hydrophobic contacts, including the 

interactions in the β3-αC loop, account for the tightly coordinated sub-domain motions 

observed in our PCA analysis of the ErbB3 system, in contrast to the hydrogen bond-
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mediated mechanism underlying the coordinated sub-domain motion in the active ErbB 

systems. 

 

The hydrophobicity of the C-spine and R-spine, whose function is to coordinate the 

motions of the N- and C-lobes of the EGFR and ErbB4 kinases in the active 

conformation [30, 31], was also quantified (Fig. 5.4C, D). In the C-spine and R-spine 

hydrophobicity plots, the inactive and active conformations of EGFR and ErbB4 are 

clearly delineated with respect to the SASA, with the active systems exhibiting a 

preferential hydrophobic stabilization (low SASA). The SASA of the ErbB3 C-spine falls 

within range of the inactive EGFR and ErbB4 systems, reflecting that, despite its weak 

activity, there is no corresponding ‘fully-active’ state for ErbB3 as for the other ErbB 

kinases. This inability to ‘fully’ activate can be attributed to the lack of the crucial 

hydrogen bonding network identified earlier, which is required to stabilize the active-like 

kinase conformation. The SASA of the ErbB3 R-spine deviates from the values for the 

inactive EGFR and ErbB4 systems, and instead demonstrates low SASA (high 

hydrophobicity). This result can be rationalized by the increased hydrophobicity of the R-

spine, which includes segments of the truncated αC helix in ErbB3, hence positioning the 

ErbB3 system in the hydrophobically-favorable quadrant of the R-spine hydrophobicity 

plot (Fig. 5.4D).  

 

5.3) Discussion 
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In this work we applied a molecular modeling approach to investigate the non-canonical 

catalytic mechanism employed by the ErbB kinase ErbB3, a RTK formerly categorized 

as an inactive pseudokinase, and the physiological relevance of this activity to 

mechanisms of drug resistance in an ErbB-driven tumor cell in silico. At the molecular 

level, our results suggest that the prearrangement of the catalytic site in ErbB3 is 

achieved through a unique network of hydrophobic interactions, in contrast to the 

extensive set of hydrogen bonds present in the active sites of the other ErbB kinases. For 

the implications of a weakly active ErbB3 kinase at the cellular level, please see section 

7.3. 

 

At the atomic level, our molecular dynamics simulations and PCA analysis of the ErbB3 

kinase crystal structure revealed that the ErbB3 system exhibits tightly coordinated 

fluctuations of its catalytic sub-domains, which may facilitate the alignment of key 

catalytic residues involved in phosphoryl transfer. Despite sharing a pattern of concerted 

sub-domain motion with its fully-active ErbB family members, the ErbB3 system 

appeared to achieve this state through a unique mechanism, namely, a tightly coordinated 

set of hydrophobic contacts. By contrast, an extensive network of hydrophilic interactions 

is employed by EGFR, ErbB2 and ErbB4. The hydrogen bonding analysis and 

hydrophobicity calculations demonstrated that the conserved hydrophilic contacts present 

in the active sites of EGFR, ErbB2 and ErbB4 are replaced in ErbB3 by a unique 

hydrophobic interface formed by the extended β3-αC loop, the molten αC helix and the 

310 helix in the A-loop [355]. Thus our atomic-level simulations suggest that the ErbB 
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kinases may have evolved two different modes of achieving the shared goal of 

prearranging the catalytic machinery for phosphoryl transfer.  For the implications of the 

weakly active ErbB3 kinase domains upon the cell signaling networks, especially the Akt 

pathway, and its potential role as a TKI resistance mechanism, see section 7.3. 

 

5.4) Methods 

 

Molecular dynamics (MD) simulations: The HER3 kinase crystal structure solved in our 

previous study (PDB code 3LMG) [356] was prepared for molecular dynamics 

simulation according to the procedure outlined in [348, 352]. Briefly, the structure was 

explicitly solvated using the TIP3P model for water [357] and with the buffering distance 

set to 15 Å. Sodium (Na+) and chloride (Cl-) ions were added to achieve net 

electroneutrality of the system and an ionic strength of 75 mM. The ions were positioned 

at points of electrostatic extrema using a Debye-Huckel potential calculated within the 

program Solvate 1.0 [358]. All simulations were performed with NAMD [359] using 

CHARMM27 force-field parameters. To prepare the system for MD simulation, the 

solvated structure was energy-minimized using a conjugate gradient algorithm to remove 

unfavorable contacts. The system was then heated to 300 K using the temperature 

reassignment method in NAMD. Constant pressure and temperature (NPT) simulations 

were performed at 300 K and 1 atm to equilibrate the volume of the solvation box. 

Temperature and pressure were maintained using a Langevin piston coupling algorithm 

[360]. Following the NPT simulations, constant volume and temperature (NVT) 
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simulations were performed in NAMD. Finally, a 10 ns production run was completed 

using the same parameters as in the NVT simulations.  

 

Hydrogen bonding analysis: CHARMM was used to analyze the hydrogen bonds present 

in the 10 ns trajectory for each system according to the procedure outlined in our 

previous studies [348, 352]. Hydrogen bonds were defined by a bond length cutoff of 3.4 

Å and an angle cutoff of 150º. Bonds that fulfilled these criteria and were present in at 

least 60% of the trajectory were tabulated in CHARMM. Salt bridges were defined as 

hydrogen bonds occurring between an acidic and a basic residue and satisfying a bond 

length cutoff of 1.6 Å. All hydrogen bonds and salt bridges were also visualized in VMD 

[361] for the duration of the 10 ns simulation. 

 

Principal component analysis: A principal component analysis (PCA) was applied to the 

10 ns trajectory to identify the main eigenvectors (3N directions) along which the 

majority of the complex motion is defined. The calculation is based on the 

diagonalization of the variance-covariance matrix of the atomic fluctuations along each 

MD trajectory to yield the set of eigenvectors (PCs) and associated eigenvalues. The 

eigenvectors represent the independent modes of atomic motion, and the eigenvalues 

reflect the contribution of the corresponding eigenvectors to the global fluctuation of the 

protein. PCA computes the covariance matrix as  

 

 ))((  jjiiij xxxx  
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where (i,j=1,…,3N), and N is the total number of atoms with positions given by Cartesian 

coordinates x. The resulting matrix is diagonalized to compute the 3N independent 

(uncorrelated) eigenvectors, {ξi}, and the eigenvalues, {λi}, sorted in descending order. 

The angle brackets denote the time average over the entire trajectory. PCA was 

performed on the entire protein backbone (i.e. all C atoms), and also an active site 

region that comprises all catalytic sub-domains, including the A-, C-, and N-loops and the 

αC helix. The program CARMA [362] was used to project the atomic fluctuations along 

the MD trajectory.  

 

Solvent accessible surface area (SASA) and water density fluctuation analysis: SASA 

values were calculated in VMD [361] using the measure SASA module with a probe 

radius 1.4 Å larger than the van der Waals radius. The SASA was calculated for each step 

in the trajectory, from which the mean and standard deviation were computed. As an 

alternative measure of hydrophobicity in heterogeneous environments, following the 

procedure established in [320, 321], normalized water density fluctuations were 

computed by recording the ratio of σN/N, where σN and N are the standard deviation 

and mean associated with the number of water molecules within 5 Å of a specified 

hydrophobic sub-region in the HER3 kinase. Although results are presented for a cutoff 

of 5 Å, other cutoffs ranging from 3-15 Å were investigated and similar trends in σN/N 

were recorded. 
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Chapter 6.) Future Work  

 

RTKs are pieces of molecular machinery important in normal cell function and the 

disregulation of which leads to disease states, particularly cancer.  Understanding the 

activation mechanisms allows a better regulation of the RTKs and in turn offers better 

therapeutic options.  Computational methods provide a unique perspective in 

understanding activation at the atomic level by allowing us to construct, visualize and 

analyze multiple proteins as they move in a physiologically relevant environment.  Also 

by constructing the proteins in different conformations as well as using directed 

simulation techniques it is possible to observe the proteins as they function, offering a 

wealth of information into their molecular mechanisms.  In this thesis we have examined 

how hydrophilic and hydrophobic interaction networks help the activation mechanisms of 

the ErbB family kinases using molecular dynamics simulation techniques.  Still, there is 

much to learn about the ErbB kinases, not to mention the rest of the RTKs.  Future work 

presented here is either wide-spread application of the techniques used here across the 

entire kinase domain and full-length RTK, improving the techniques used here to allow 

easier translation of the results to different scales or methodological improvements to 

capture rare events. 

 

We have presented a method to examine hydrophilic/hydrophobic interaction networks 

and shown their importance in kinase activation by comparing the results across 

homologous proteins.  To reduce the computational burden and ensure validated results, 
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we focused on subregions shown previously to be biologically relevant.  The active 

kinase domains are highly conserved structurally, so by expanding the scope of the 

analysis to the entire intracellular kinase domain, it would be possible to highlight 

hydrophilically and hydrophobically important residues and regions not explicitly 

observed through experiments.  The hydrophobic interaction analysis can be automated 

especially with the normalized water density fluctuations in conjunction with the Solvent 

Accessible Surface Area to provide regions that are hydrophobically sensitive, giving 

potential mutational hotspots.  Similarly, the hydrophilic interaction analysis with a wider 

focus would provide a larger list of bonds and by comparing the lists across the ErbB 

family a characteristic network of bonds through the entire kinase can be highlighted. 

 

Refinement of the interaction network analysis gives a better picture of the atomic level 

characteristics of each protein.  The hydrophilic interaction analysis can be refined 

beyond mean survival time and mean bond length to observe the bond characteristics 

fitted to a statistical distribution.  The hypothesis here is the characteristic bonds defining 

a conformation would be stronger and therefore have a shifted distribution in comparison 

to those that are transient.  Since we have already identified sets of bonds important in 

each conformation they would serve as a control for the refinement.  Characterizing the 

hydrophobic stability of a system is difficult and is its own field of research within 

computational chemistry.  The normalized water density fluctuation analysis is one 

current technique that correlates with hydration free energy.  To provide a better analysis 

using standard molecular dynamics forcefields, collaborations with groups like the Garde 
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group [320, 321] would be necessary so as to not reinvent the wheel.  However, once the 

method is refined, it would facilitate identifying important subregions significantly easier. 

 

Even though we have employed modern molecular dynamics simulation techniques, there 

are still time and length scale limitations in the microseconds and micrometers regime 

respectively.  Since most of the biological processes exist on milliseconds to minutes to 

even longer, simulating for hundreds of years using the same technology would not 

breach even the millisecond threshold.  However the techniques are constantly improving 

and there are two techniques that would offer enormous improvement into both length 

and timescales: coarse graining and specialized hardware.  Coarse graining groups atoms 

together into a functional group and simulates them as one single “atom”.  By grouping 

atoms, the length scale is enhanced and the smallest vibrational frequency (hydrogen 

vibration) is removed so the minimum time step is increased by orders of magnitude.  

The currently accepted coarse grain force-field is MARTINI [363] offering simulation 

times into microseconds as the norm, with improvements to come.  There are also sets of 

specialized computer hardware that is designed and tuned to provide a similar speed up 

for molecular dynamics simulation while maintaining the same accuracy, particularly 

MDGRAPE-3 [158, 159] and ANTON [160, 161].  Extending the simulations would give 

access to a wider range of conformational space mapped out and give better ensemble 

data as well as allowing us to explicitly capture and analyze rarer events.   
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An alternate technique to sample rare events is biased or directed sampling simulations, 

which apply a potential to the protein in simulation to transition it to the desired 

conformation, usually down the activation pathway (see section 2.2.5).  Some of the 

techniques reviewed are more complex to explore pathways if the final structure is not 

known.  However, since there are beginning and ending crystal structures for the EGFR 

kinase domain, free energy simulations are a better option (see section 2.2.3).  Umbrella 

sampling simulations not only transition the protein but also measure the free energy 

change necessary for the conformation change.  Here we present preliminary results on 

Targeted Molecular Dynamics (TMD) simulations performed on monomer and dimer 

trajectories of the EGFR kinase domain mapping out the activation pathway in 

preparation for umbrella sampling simulations. 

 

6.1) The Asymmetric Dimer Interface achieves Activation through Allosteric Means, 

Hydrophilic Interactions and Hydrophobic Shielding 

 

The EGFR kinase is a member of the EGFR/ErbB/HER family of kinases which contain 

four homologous Receptor Tyrosine Kinases (RTKs) that are important regulatory 

elements in key signaling pathways.  RTKs are transmembrane proteins important in 

translating extracellular signals (ligands) into intracellular nuclear responses leading to 

cell proliferation, differentiation, migration and the cell cycle (reviewed in [1, 2, 18]).  

They consist of a large ligand-binding extracellular domain, a single transmembrane α-

helix, a juxtamembrane domain, an intracellular tyrosine kinase domain and a C-terminal 
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tail that contains several phosphorylatable tyrosines [1, 2]. Considering the cell signaling 

pathways it regulates, understanding how the EGFR kinase domain activates is crucial.  

Clinically identified activating mutations in the EGFR kinase domain found in Non-

Small Cell Lung Cancer (NSCLC) patients have been shown increase the basal activity of 

the EGFR kinase domain [26, 27, 48] and respond to the EGFR RTK inhibitor gefitinib 

with efficacy rivaling that of chemotherapy [130, 131]. 

 

The intracellular kinase domain of RTKs transfers the -phosphate of ATP to tyrosines on 

both the RTK itself as well as other target substrates [1].  The active conformations of 

kinases are all remarkably similar, with two separate lobes, the  strand-rich N-lobe plus 

the α-helix rich C-lobe and the active site situated in the cleft between N-lobe and C-lobe.  

There are also several conserved subregions in the RTK kinase domain thought to be 

important in regulation of kinase activity: the catalytic loop (C-loop), the activation loop 

(A-loop), the glycine-rich nucleotide binding loop (P-loop), and the C-helix.  The 

catalytic loop contains the conserved HRD motif, with the aspartate directly participating 

in the phosphoryl transfer. The A-loop defined at the start by the DFG motif and the C-

helix modulate the activity of the kinase domain by regulating accessibility of the active 

site to binding and coordinating both ATP and the substrate tyrosine. The A-loop consists 

of approximately 20 amino acids and in the EGFR kinase contains one phosphorylatable 

tyrosine (Y845 in EGFR, note: there are two numbering schemes for the EGFR where 

Y845 is equivalent to Y869).  The C-helix and P-loop must be positioned correctly to 

coordinate the ATP and the substrate tyrosine for effective phosphoryl transfer. 
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Beyond the structural similarities, recent studies upon the spatial location of non-

sequential residues in the kinases have revealed highly conserved hydrophobic “spines” 

that are thought to help coordinate the motions of key domains during activity [30, 31].  

The regulatory spine (R-spine: M742, L753, H811, F832 in EGFR) helps maintain the 

motion of the N- and C-lobes of the kinase [30]. The catalytic spine (C-spine: V702, 

A719, L774, V819, L820, V821, T879, L883 in EGFR) helps coordinate the adenine ring 

of ATP [31].  In the inactive state there is a small hydrophobic ‘core’ formed between the 

αC-helix and the A-loop, which when disrupted by single point mutations have been 

shown to activate EGFR [25-29]. 

 

There have been activation pathway studies done upon the Abl kinase [161] and Src 

family kinase Hck [323, 325], but our previous studies on the ErbB family show a 

fundamentally different pathway of activation [364].  The Abl kinase inactive 

conformation compares well to the active conformation, with a well formed active site 

and many of the conserved kinase bonds in place [365].  However the sidechain of the 

coordinating aspartate (D381, the D in the conserved DFG motif) is in an “out” position 

pointing away from the active site.  In the active conformation D381 has flipped into an 

“in” position pointing towards the N-lobe, and forms a salt bridge.  In the transition 

between the two states the αC-helix rotates away from the active site, creating a 

hydrophobic pocket at the base of the N-lobe and F382 slips into this pocket causing the 

flip of D381.  The final step is for the αC-helix to rotate back into its original position.  
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The Src family kinase Hck is inactivated by autoinhibitory interactions in the 

unphosphorylated A-loop causing steric hindrances to the active site.  In addition, there 

are SH3 and SH2 domain interactions in the Hck kinase fairly distal to the active site that 

result in outwards rotation of the αC-helix and disrupt some conserved active kinase 

bonds (reviewed in [366]). Phosphorylation of these regions release their autoinhibitory 

interactions allowing full activation of the kinase [233], where the A-loop moves towards 

the active state before the αC-helix rotates into its active state [323]. 

 

In terms of inactive states, the EGFR kinase domain is more similar to Hck kinase or to 

the intermediate state of the Abl kinase, where the αC-helix is rotated out in comparison 

to the active state, preventing key bonds from forming.  The activation mechanism 

though, is not from phosphorylation; the ErbB family is not dependent on 

phosphorylation on the A-loop or any part of the intracellular kinase domain for 

activation.  Instead, an asymmetric dimer interface similar to that seen in cyclin 

dependent kinases serves as the allosteric activation mechanism [41].  In the ErbB family, 

the dimer interface is asymmetric; the C-lobe of one kinase, the “activator”, contacts the 

N-lobe of the other kinase, the “receiver,” with the asymmetric dimer contacts causing a 

conformational change towards the active state through allosteric methods.  Our previous 

simulations of the asymmetric dimer have shown that introduction of the interface causes 

a rearrangement of the αC-helix towards the active state before any motion of the A-loop 

[364].  Here we present an analysis of the hydrophilic and hydrophobic interaction 

networks of catalytically important subdomains as the EGFR kinase progresses through 
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the activation pathway in both the monomer and dimer states to elucidate the precise 

mechanisms of the allosteric, activating asymmetric dimer interface. 

 

6.2) Preliminary Results 

 

6.2.1) RMSD Analysis Reveals the Activation Pathway of the Dimer is Distinct from 

the Monomer 

 

 

Figure 6.1: RMSD plots tracking the progression of the targeted molecular 
dynamics of the dimer (green squares) and the monomer (blue circles) 
simulation down the activation pathway for the (A) combined A-loop and 
αC-helix as well as the (B) A-loop alone and (C) the αC-helix alone. 

 

The RMSD calculation of the TMD trajectory in both the monomer and dimer shows a 

complete capture of the pathway between the inactive and active conformations (Figure 

6.1).  The predominant motions involved in the reorganization of the active site involved 

the αC-helix and A-loop without much motion in the P-loop of C-loop, so we focused 

upon the motions of the αC-helix and A-loop as the reaction coordinates.  In the 



129 
 

monomer TMD dynamics, the simulations run through a fairly linear pathway from the 

inactive to the active states in the A-loop and αC-helix, with the A-loop transitioning 

from a closed conformation over the C-loop to laying open within the N-lobe and C-lobe 

as well as the αC-helix rotating in and extending the helical conformation.  There is a 

small section at the end of the simulation for the αC-helix (Figure 6.1C), starting at 6Å 

from the inactive and 2Å from the active, that deviates from this path, which is associated 

with the extension of the αC-helix. The dimer TMD simulations also follow a fairly linear 

path mapping from inactive to active and seem to align remarkably well with monomer 

simulations, but without the small non-linearity at the end of the simulation seen in the 

monomer for the αC-helix.  However the reference structures for the dimer TMD are the 

equilibrated dimer conformations.  Marked on Figure 6.1 are black X’s as the starting 

point of the dimer simulations using the equilibrated monomer structures and red X’s as 

the end point of the dimer simulations using the same structures.  Although the pathways 

in the monomer and dimer are very similar, there is shift in the pathway because of the 

introduction of the asymmetric dimer interface, particularly in the αC-helix (Figure 

6.1C). 

 

6.2.2) Interkinase Salt Bridges Alter the Conformation of the αC-helix and Promote 

Partial Extension 

 

We have previously identified several bonds that are conserved across the canonical 

kinase members of the ErbB family in the active state: two salt bridges: E734-K851 
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(E734-K836 in the dimer) and E738-K721, three H-bonds: L834-R812, K836-V810, and 

L838-R808 and the bond D813-R817 [298, 364].  The D813-R817 bond helps position 

the aspartate side chain in proper orientation for phosphotransfer.  The E738-K721 salt 

bridge is highly conserved across all active kinases and helps coordinate the phosphates 

in ATP.  The E734-K851 salt bridge connects the A-loop and the αC-helix, coordinating 

the movements of these two sub-domains and dampening larger fluctuations.  Similarly, 

the three conserved H-bonds link the A-loop and the C-loop, coupling the motions of 

these two loops.  These can be regarded as “fastening” H-bonds that maintain the N-

terminal side of the A-loop open in its active state.  The inactive bond network is less 

extensive and not well conserved, but in EGFR the E738-K836 salt bridge sequesters 

residues in the key E738-K721 salt bridge thereby preventing activation by keeping the 

salt bridge from forming. 

 

The transition between the E738-K836 salt bridge and the formation of the E738-K721 

salt bridge is a crucial one for activity of the kinase.  However previous TMD studies of 

EGFR have seen the two events happen almost simultaneously [311, 364].  To better 

resolve the pathway and the interaction networks of the monomer and dimer simulations, 

we broke up each TMD pathway simulation into smaller windows of 10 ns a piece (5 

windows for the monomer and 6 windows for the dimer) and performed the interaction 

network analysis on each window independently.  The hydrophilic bond networks 

between the monomer and the dimer simulations are fairly similar (Table 6.1a&b and 

Appendix B).  
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EGFR 
Dimer 
Inactive Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 

EGFR 
Dimer 
Active 

aC-helix A-loop bond 

– – – – – – – – – – – – E734,K836 E734,K836 

– – – – – – – – – – – – – – D737,K836 

E738,F832 E738,F832 E738,F832 E738,F832 E738,F832 E738,F832 E738,F832 – – 

E738,G833 E738,G833 E738,G833 E738,G833 – – E738,G833 – – – – 

E738,K836  E738,K836 E738,K836 E738,K836 E738,K836 E738,K836 – – – – 

aC-helix bonds 

– – – – – – – – – – – – – – N732,V762 

– – – – – – – – – – – – E738,K721 E738,K721 

M742,L753 M742,L753 M742,L753 M742,L753 – – – – – – – – 

– – A743,R752 A743,R752 – – – – – – – – – – 

A-loop C-loop bonds 

– – T830,N818 T830,N818 T830,N818 T830,N818 T830,N818 – – T830,N818 

D831,N818 D831,N818 D831,N818 D831,N818 D831,N818 D831,N818 – – – – 

– – – – – – – – – – – – – – L834,R812 

– – L834,D813 L834,D813 – – L834,D813 L834,D813 L834,D813 – – 

– – – – – – – – – – – – K836,V810 K836,V810 

– – – – – – – – – – – – – – – – 

– – – – – – – – – – – – – – – – 

A-loop bonds 

D831,K721 D831,K721 D831,K721 D831,K721 – – – – – – D831,K721 

– – – – – – – – – – – – – – L838,R808 

Table 6.1a: Persistent H-bonds and salt bridges in the EGFR kinase dimer 
system as it progresses from inactive to active with the salt bridges in bold, 
and bonds consistently present but not considered persistent in grey.  
Characteristic inactive bonds are boxed in orange while characteristic active 
bonds are boxed in green.  The common bonds between the monomer and 
dimer break and form in a similar timeframe; see Table 6.1b.  

 

In the monomer and dimer the sequestering salt bridge E738-K836 breaks in a similar 

position in the pathway, the E738-K836 is weakened severely in window 4 in the 

monomer and broken between window 4 and window 5, while in the dimer the salt bridge 

is broken between window 5 and window 6.  After the E738-K836 salt bridge is broken 

we see the beginning of formation of the characteristic active kinase salt bridge E738-
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K721 weakly in the penultimate window in both the monomer and the dimer which 

finalizes once the kinase completes its transition to active.  All of the fastening bonds 

seen in the ErbB active kinases do not appear in the monomer or the dimer simulations 

until the active conformation is fully achieved, except for K836-V810 that appears in 

window 6 in the dimer. 

 

EGFR 
Monomer 
Inactive Window 1 Window 2 Window 3 Window 4 Window 5 

EGFR 
Monomer 
Active 

aC-helix A-loop bonds 

– – – – – – – – – – E734,K851 E734,K851 

– – – – – – – – – – D737,K836 D737,K836 

– – – – – – – – – – E738,F832 E738,F832 

– – – – – – – – – – E738,G833 – – 

E738,K836  E738,K836 E738,K836 E738,K836 E738,K836 – – – – 

aC-helix bonds 

– – – – – – – – – – – – – – 

– – – – – – – – – – E738,K721 E738,K721 

M742,L753 M742,L753 M742,L753 M742,L753 M742,L753 M742,L753 – – 

– – A743,R752 A743,R752 A743,R752 A743,R752 – – A743,L679 

A-loop C-loop bonds 

T830,N818 T830,N818 T830,N818 T830,N818 T830,N818 – – T830,N818 

– – – – – – D831,N818 D831,N818 D831,N818 – – 

– – – – – – – – – – – – L834,R812 

L834,D813 L834,D813 L834,D813 L834,D813 – – – – – – 

– – – – – – – – – – – – K836,V810 

– – – – – – – – – – – – E848,R812 

K851,R812 – – – – K851,R812 K851,R812 – – – – 

A-loop bonds 

– – D831,K721 D831,K721 – – – – – – – – 

– – – – – – – – – – – – L838,R808 

Table 6.1b: Persistent H-bonds and salt bridges in the EGFR kinase 
monomer system as it progresses from inactive to active with the salt bridges 
in bold and bonds consistently present but not considered persistent in grey.  
Characteristic inactive bonds are boxed in blue while characteristic active 
bonds are boxed in red.  The common bonds between the monomer and 
dimer break and form in a similar timeframe.  
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EGFR 
Dimer 
Inactive Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 

EGFR 
Dimer 
Active 

A-loop Interdimer bonds 

– – – – – – – – E841,R949 E841,R949 – – – – 

aC-helix interdimer bond 

P729,K925 P729,K925 – – – – – – – – – – – – 

K730,E939 K730,E939 K730,E939 K730,E939 K730,E939 – – – – – – 

K733,D918 K733,D918 – – K733,D918 K733,D918 – – – – – – 

– – – – – – – – – – K733,E943 – – – – 

– – – – – – – – – – – – – – Y740,D918 

Table 6.2: Persistent H-bonds and salt bridges between kinase domains in the 
EGFR kinase dimer systems as it progresses from inactive to active. The salt 
bridges are in bold and bonds consistently present but not considered 
persistent in grey.  Important salt bridges are boxed in purple.  

 

The main differences in the hydrophilic bond networks between the monomer and dimer 

simulations are those formed between the two kinase molecules which can only be 

present in the dimer simulations and not in the monomer simulations (Table 6.2).  In the 

inactive dimer, we see the formation of three inter dimer bonds, the P729-K925 H-bond 

plus the K730-E939 and the K733-D918 salt bridges.  All of these residues are at the tip 

of the αC-helix and help alter the conformation of the helix in the dimer into a partial 

extension as the simulation progresses (Figure 6.2C).  These bonds are all broken by the 

fifth window and only one H-bond Y740-D918 is present in the active conformation, 

which is near the end of the αC-helix.  Between the inactive and active conformations 

(window 4 and window 5) we see the formation of two transient bonds which are not 

present in either the inactive and active conformations: the salt bridge E841-R949 and the 

H-bond K733-E943.  The E841 residue is in the middle of the A-loop and forms a salt 

bridge E841-K843 which makes a small curl within the A-loop in the inactive kinase 

simulations (Appendix B) of both the monomer and the dimer systems and the K733 
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bond is at the tip of the αC-helix.  There is overlap in the salt bridges in the αC-helix and 

the A-loop opening salt bridge in window 4, which may indicate a potential intermediate 

state. 

 

 

Figure 6.2: Order of events as they occur for the dimer simulations with 
enhanced views of the active site; the αC-helix is in green, A-loop is in 
orange, and the C-loop is in red. (A) The inactive monomer alone (B) 
introduction of the asymmetric dimer and formation of the K730-E939 and 
K733-E939 salt bridges (C) partial extension of the αC-helix in dimer (green) 
not present in monomer (blue) (D) formation of the E841-R949 salt bridge 
keeping the A-loop partially open and presents a potential “active” 
intermediate state (E) full extension of the αC-helix.  

 

6.2.3) The Dimer Interface Shields the “Receiver” Kinase from Hydrophobic Effects 

during the Transition to Active 
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To investigate the effect of hydrophobic interactions as the EGFR kinase transitions 

between the monomer and dimer, we analyzed the water density fluctuations as well as 

the solvent accessible surface area (SASA).  The hydrophobicity of a sub-region is a non-

additive quantity, where the primary structure and the surrounding environment both 

affect the overall hydrophobicity.  Recent studies by Garde et al. [320, 321] have shown 

quantifying the hydrophobicity of heterogeneous surfaces using water density 

fluctuations correlates with hydration free energy: increased water density fluctuations 

are signature of a more hydrophobic surface.  We have normalized the water density 

fluctuations so that a neutral surface is at a value of one.  Plotting the normalized water 

density fluctuations versus SASA allows us to divide the plot into four quadrants labeled 

on Figure 6.3A.  Quadrant I represents a hydrophilically favorable region with low 

hydrophobicity and high SASA, quadrant IV represents a hydrophobically favorable 

region with high hydrophobicity and low SASA and quadrant II represents a fragile or 

perturbation sensitive region with high hydrophobicity but also with a high SASA. 

 

We analyzed the effects of hydrophobic interactions of relevant hydrophobic sub-regions, 

namely the dimer interface (Figure 6.3A) the hydrophobic core (Figure 6.3B) the R-spine 

(Figure 6.3C) and the C-spine (Figure 6.3D) for each simulation: dimer (green border) 

and monomer (black border) progress from the inactive (white filled squares) to active 

(black filled squares); each window is connected sequentially with dotted lines on Figure 

6.3.  The asymmetric dimer helps shields the effects of hydrophobicity by minimizing the 

SASA in comparison to the monomer in particular to the dimer interface (mean 96.4 Å2  
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Figure 6.3: Hydrophobic plots of the solvent accessible surface area (SASA) 
versus normalized water density fluctuations in the key hydrophobic regions 
of the ErbB kinases: (A) Dimer Interface (B) Hydrophobic Core (C) R-spine 
and (D) C-spine. The edge colors represent monomer (black) and dimer 
(green) systems.  The shape internal color represents active (black) and 
inactive (white), with the gradient between the two a progressive step. 

 

in the dimer vs. mean 277.8 Å2 in the monomer), but also the hydrophobic core (mean 

481.6 Å2 in the dimer vs. mean 540.7 Å2 in the monomer) and the R-spine (mean 108.3 

Å2 in the dimer vs. mean 155.7 Å2 in the monomer).  The C-spine is more exposed (722.4 

Å2 in the dimer vs. 611.9 Å2 in the monomer) in the dimer during the transition, but the 

C-spine is thought to help coordinate ATP by providing a hydrophobic environment for 

the adenine ring that is not present in the simulation.  The monomer simulations’ 

hydrophobic path progresses through the perturbation sensitive regions whereas the dimer 

path tends to sit in the hydrophobically stable regions, excepting the C-spine, indicating 
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the dimer helps shield from any negative hydrophobic interactions, to ease the transition 

to active.  We present the idea of the path length of the normalized water density with 

SASA as a measure of the rearrangement (protein and environmental) necessary for the 

change in hydrophobicity, with a lower path length representing an easier transition.  The 

SASA was normalized so that the SASA and normalized water density each had equal 

contribution to the path lengths.  The dimer simulations had a lower mean path length for 

the hydrophobic core (0.5703 in the dimer vs. 1.2954 in the monomer) dimer interface 

(0.2773 in the dimer vs. 0.3842 in the monomer) and the R-spine (0.2773 in the dimer vs. 

0.3842 in the monomer).  The C-spine had roughly equal mean path length in the dimer 

(0.5051) and the monomer (0.4873).  The dimer interface then not only reduces the 

amount of SASA and time spend in perturbation sensitive regions, but also reduces the 

amount of reorganization necessary for the change in hydrophobic interactions. 

 

6.3) Discussion 

 

The fastening bonds do not appear until the active conformation is fully formed and well 

defined.  This is indicative of the hypothesis that they help maintain a well formed active 

site, keeping key loops close together while dampening large fluctuations, and are 

necessary for activity but they themselves are not an activating stimulus.  The hydrophilic 

bond network also helps keep the kinase inactive by sequestering key residues from 

forming bonds necessary for kinase activity, the key one being E738-K836 in EGFR.   
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The allosteric activation mechanism shown by Zhang et al. [41] moves the αC-helix into 

a more active like conformation, and also causing the αC-helix of the dimer to move 

down a different pathway in comparison to the monomer in our simulations.  The dimer 

interface helps promote the active conformations not only allosterically, but also through 

hydrophilic and hydrophobic interaction networks.  Introduction of the dimer interface 

hydrophobically shields the “receiver” kinase in its transition to active while reducing the 

amount of reorganization during the transition and promotes several bonds not seen in the 

monomer. 

 

As the EGFR kinase transitions between inactive and active because of the dimer 

interface, we propose several events occur in a specific order (Figure 6.2): (1) the 

introduction of the dimer interface shifts the αC-helix and causes the formation of the 

K730-E939 and the K733-D918 salt bridges that help maintain the αC-helix in a partially 

“in” conformation (2) the flexible A-loop moves freely until it forms the E841-R949 salt 

bridge reducing its motions and keeping the A-loop partially open; which we hypothesize 

is an “active” intermediate (3) the E738-K836 salt bridge is broken thereby freeing E738 

from sequestration (4) the formation of the conserved active E738-K721 salt bridge (5) 

extension of the αC-helix places the αC-helix in the active conformation and allows the 

fastening bonds to form, making a well formed and coordinated active site.  

 

We hypothesize the combined effect of the allosteric mechanism as well as the added 

hydrophilic bonds from the dimer interface promotes a partially active state, while the 
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active kinase needs the formation of the fastening bonds for full activity.  These two 

states in the pathway fits well into the “three phases” of autophosphorylation in kinase 

proposed by Lemmon and Schlessinger [18].  The partially active conformation of the 

EGFR dimer represents the “first phase” steps of autophosphorylation in kinase activity 

enhancement following a ligand-binding event, where it creates the local increase in 

kinase activity.  The “first phase” of autophosphorylation in FGFR correlates with a 10-

50 times increase in kinase activity [367].  A study by Shi et al. showed the ErbB3 

kinase, which is missing crucial residues, previously thought to be a dead kinase is still 

competent to bind ATP and phosphorylate tyrosines, though at a greatly reduced kinase 

activity [337].  Since EGFR is a fully competent kinase, the opening of the active site and 

partial alignment of αC-helix potentially increases the kinase activity 10-50 times. 

 

The “second phase” is trans-phosphorylation of its kinase partner’s tyrosines, in the C-

terminal tail as well as in the A-loop to create phosphotyrosine binding sites to recruit 

downstream signaling molecular containing Src homology-2 SH2 domains and 

phosphotyrosine binding domain PTB containing proteins.  Considering the arrangement 

of the EGFR asymmetric dimer, the “activator” kinase is in position for phosphorylation 

of its C-terminal tail.  Recent studies have shown that the FGFR kinase domains also 

arrange into an asymmetric dimer, not as an activating stimulus but to phosphorylate 

specific tyrosine residues [368].  The “third phase” of autophosphorylation follows the 

phosphorylation of the C-terminal tail and increases the kinase activity to 500-1000 times 

the basal activity of the kinase.  There is evidence that the C-terminal tail in EGFR forms 



140 
 

autoinhibitory interactions keeping the kinase domain in the inactive conformation [43, 

369] with two residues in the start of the C-terminal tail, D960 and E961, forming an 

auto-inhibitory interaction with the S787 in the kinase domain [370].  Since the D960 and 

E961 are both negatively charged, the added negative charge from phosphorylation of C-

terminal tail tyrosines could break the inhibitory interaction in the “activator” kinase and 

allowing another increase in kinase activity.  The transition into the active conformation 

of both kinase domains in the dimer pair, including the formation of the well coordinated 

active site through the set of fastening bonds (L834-R812, K836-V810, and L838-R808) 

and coordinating bonds (E734-K851/K836, E738-K721 and D813-R817) could represent 

the “third phase” activation into a fully active kinase. 

 

In conclusion, our results presented here have helped establish the molecular context the 

asymmetric dimer interface has upon the EGFR kinase.  Furthermore, through the 

timeline of specific events of activation we have evidence of the formation of a partially 

active intermediate that fits in well with the current thoughts of kinase activation via 

autophosphorylation.  Since ErbB4 and ALK kinase domains have a similar inactive 

crystal structures to EGFR, expansion of this methodology to the ErbB4 kinase as well as 

the ALK kinase domain and contrasting the results from the EGFR TMD studies would 

be interesting to elucidate differences in primary structure and crystal structures affecting 

the activation mechanism of each kinase. 
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6.4) Methods 

 

Simulation techniques:  Models for EGFR kinase monomer and dimer systems in the 

inactive conformation were constructed, minimized and equilibrated [364].  Targeted 

molecular dynamics (TMD) simulations were performed in NAMD using the RMSD of 

the heavy atoms of the αC-helix and the A-loop as the reaction coordinate (χi).  The 

activation pathway is divided into 5 smaller windows for the monomer and 6 windows 

for the dimer.  Each window is simulated individually for 10 ns to ensure adequate 

sampling.  To enhance the sampling of low probability events, a harmonic restraint of 

constant k=20 kcal/mol/(Å2) is applied along the reaction coordinate, χi. 

 

Analyses of MD Simulations: Root-mean-squared deviation (RMSD) calculations were 

performed using the RMSD tool plugin in VMD by first removing global translation and 

rotation, and then computing the RMSD of the selected reaction coordinate (A-loop and 

C-helix) relative to a reference structure (the respective active or inactive crystal 

structure). An analysis of hydrogen bond (H-bond) patterns in the TMD simulations was 

performed using CHARMM in conjunction with VMD similar to previous studies [152, 

298, 312, 330]. Solvent accessible surface area (SASA) values and normalized water 

density fluctuations were used to measure the hydrophobicity as performed previously 

[298, 330] 
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Chapter 7.) Perspectives  

 

The molecular dynamics strategies we have presented in this thesis so far have been 

exceptionally useful in examining atomic level protein characteristics.  The results we 

show have a striking correlation in highlighting perturbation sensitive regions with the 

regions mutated in clinically identified oncogenic kinase mutations: the hydrophobic core 

in the EGFR and ErbB4 kinase domains as well as the αC-β4 region in ErbB2 kinase 

domain.  We also have preliminary results resolving the sequence of events in the 

activation of the EGFR kinase domain.  However, the start of molecular dynamics 

simulations is a high resolution crystal structure.  When a crystal structure is not 

available, then homology modeling techniques can create a crystal structure with which 

to allow simulation as well as providing insights into similarities in primary structure 

affecting the crystal structure.  Furthermore, by linking together the atomic level protein 

fluctuation data we can see the effects of the kinase activity upon the cell signaling 

networks.  Such a multi-scale model then can not only link kinase domain fluctuations 

with signaling effects to help contextualize mutations found in oncogenic cell lines, but 

refine therapeutic strategies to target key perturbation sensitive regions of kinase 

signaling, at the molecular level as well as the cellular level.  Here in this chapter we 

review methods and results performed by others in the Radhakrishnan lab that helps link 

the MD simulations with the multi-scale model (for an example see Figure 3.1).  The 

ErbB3 homology (section 7.1) and signaling models (section 7.3) were done by Shannon 

Telesco which was submitted to Molecular Biosystems and is under review [330], while 
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the EGFR signaling models (section 7.2) were performed by Jeremy Purvis and the work 

is published in Molecular Biosystems [282].  

 

7.1) Homology modeling of the ErbB3 kinase domain 

 

Given the recently-resolved crystal structure of the ErbB3 kinase domain [337] (as well 

as the structure by Jura et al. [43]), we chose to use this structure in our MD simulations. 

However, as the ErbB3 kinase domain shares a relatively high level of sequence identity 

with its family members (54%, 55% and 63% identity with EGFR, ErbB2, and ErbB4, 

respectively) (Fig. 7.1), we first constructed several homology models of the ErbB3 

kinase based on the other ErbB kinase structures and validated them with respect to the 

ErbB3 crystal structure, as a verification of our homology modeling method and also as a 

means of deriving insights into a structural comparison of the ErbB kinase active sites. 

As the crystal structures of the EGFR and ErbB4 kinase domains have been determined 

[25, 297, 353], we selected EGFR (PDB code 2GS7) [353] and ErbB4 (PDB code 3BBT) 

[297] as templates for homology modeling of the ErbB3 kinase in the inactive-like 

conformation. In addition, we applied the multiple templates (MT) algorithm in 

MODELLER to generate a ErbB3 kinase model based on a combination of the EGFR and 

ErbB4 crystal structures. To verify that EGFR and ErbB4 were the most suitable 

templates available for modeling ErbB3, a search was performed in MODELLER’s 

internal database for other proteins that might have high sequence identity with ErbB3. 

The ErbB receptor kinases were confirmed to be the most homologous structures for 
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modeling of the ErbB3 kinase domain. 

 

The protein sequence selected for alignment of the kinase domains included residues 678-

957 (EGFR) and 683-962 (ErbB4); we opted to exclude the flexible C-tail from the 

alignment, as its sequence is highly variable among the ErbB kinases. A total of 50 

 

Figure 7.1: Multiple sequence alignment of the kinase domains of the ErbB 
RTK family members. Residues highlighted in gray are conserved among all 
four ErbB kinases, whereas residues highlighted in yellow are unique to 
ErbB3. The ErbB3 kinase shares a relatively high level of sequence identity 
with its family members (54%, 55% and 63% identity with EGFR, ErbB2, 
and ErbB4, respectively). The key catalytic sub-domains (A-loop, C-loop, N-
loop, αC-helix, and β3-αC loop) are labeled.  
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Figure 7.2. The top 10 refined A-loops for the best ErbB3 models 
constructed from each ErbB template. The top structures are shown for the 
ErbB3 models based on (A) the EGFR template, (B) the ErbB4 template, (C) 
Multiple templates and (D) the loop-modeled ErbB3 crystal structure. The 
structures are colored-coded according to the RMSD, where red regions 
indicate large RMSD values and blue regions represent small RMSD values. 
The original unrefined model for each ErbB3 structure is shown in yellow. 
The top structures form a dominant cluster of conformations in each ErbB3 
model, indicating a pronounced energy minimum and a higher level of 
accuracy in the best structural prediction.  

 

models were generated from each of the templates (EGFR, ErbB4, and multiple 

templates) by satisfying a set of static and dynamic spatial restraints in MODELLER. The 

stereochemical quality of each model was evaluated using the Discrete Optimized Protein 

Energy (DOPE) method [371], which is an atomic distance-dependent statistical potential 

optimized for model assessment in MODELLER. A combination of stereochemical 

parameters and DOPE energies were considered in order to determine the most 
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energetically favorable ErbB3 models derived from each template. Furthermore, the 

RMSD among the top model A-loops was computed, as minimal variation among the low 

energy conformations correlates with a more pronounced free energy minimum and a 

higher level of accuracy in the best structural prediction [179]. The superposition of the 

top 10 models from each template resulted in a dominant cluster of conformations, 

increasing our confidence in the reliability of the top structures (Fig. 7.2). The top 10 MT 

models exhibited the smallest RMSD, or minimal variation. 

 

A comparison of the most energetically favorable models derived from each template 

revealed several similarities in structure and in DOPE energies: overall, the C-lobes of 

the kinase models are similar, as are the DOPE profiles, although the DOPE scores in the 

A-loop region are lowest for the ErbB4- and MT-based models (Fig. 7.3b). However, in 

comparing the top homology-modeled structures to our ErbB3 crystal structure, we 

observed several conformational differences, which can be better understood by first 

describing the major structural features that distinguish the ErbB3 crystal structure from 

the EGFR and ErbB4 structures. A unique feature of the catalytic site in the ErbB3 

crystal structure is the truncated N-terminus of the αC helix (Fig. 7.3a); in the EGFR and 

ErbB4 kinase crystal structures, the helix is fully formed. The molten terminus of the 

ErbB3 αC helix forms a loop, referred to as the β3-αC loop, which interacts with specific 

sub-regions of the catalytic site, including the short 310 helix in the A-loop, to form a 

hydrophobic interface that maintains the weakly-active conformation of ErbB3 and is not 

observed in EGFR or ErbB4 [355]. F734, which is located in the β3-αC loop and 
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corresponds to an Asn in EGFR and ErbB4, appears to nucleate the hydrophobic interface 

(Fig. 7.3a) [355], and V836, L839 and L840, which are located in the 310 helix, form 

hydrophobic contacts with the truncated αC helix. The extensive set of residues 

stabilizing the hydrophobic interface and the 310 helix are unique to ErbB3 and function 

to maintain the distinctive catalytic site conformation resolved in the ErbB3 crystal 

structure.  

 

Figure 7.3. (A) Superposition of the top ErbB3 models constructed from the 
ErbB templates: EGFR (blue), ErbB4 (yellow) and multiple templates 
(brown) as well as the ErbB3 crystal structure (red) (PDB code 3LMG). Key 
residues contributing to the hydrophobic interface in ErbB3 are highlighted. 
(B) DOPE energy plots for the top ErbB3 models based on each ErbB 
template after A-loop refinement. The ErbB4- and MT-based models exhibit 
lower DOPE energies in certain regions, including the sequence spanning 
residues 775-800. The DOPE energy plot for the ErbB3 crystal structure 
(PDB code 3LMG) is illustrated for reference.  
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In comparing our top homology-modeled structures to the ErbB3 crystal structure, we 

focused on the unique set of interactions in the β3-αC loop, αC helix and 310 helix (Fig. 

7.3a). The side-chain conformations of the aliphatic residues in the 310 helix, including 

V836, L839, and L840, were correctly predicted in the models derived from EGFR, 

ErbB4, and MT. This result is not entirely surprising, as the inactive EGFR and ErbB4 

templates also contain the 310 helix in the A-loop. However, F734, which serves to 

nucleate the hydrophobic interface in the ErbB3 crystal structure, points away from the 

hydrophobic pocket in the homology models. The reason for the altered F734 

conformation is depicted in Fig. 3a, which illustrates that the homology models contain a 

fully formed αC helix in place of the truncated helix and extended β3-αC loop (which 

contains F734) in the ErbB3 crystal structure. In  addition, the H740 ring in the αC helix, 

which stabilizes homology models. The D838-R814 bond, which bridges the 310 helix 

and the C-loop in the ErbB3 crystal structure, is conserved in the ErbB4- and MT-based 

models, whereas the residues are unbonded in the EGFR-based model. Furthermore, the 

ErbB4-based model more closely mimics the extended β3-αC loop in the ErbB3 crystal 

structure, as the apex of the loop projects away from the catalytic site.  

 

Although none of the homology models correctly predict the molten αC helix, several 

features of the ErbB4- and MT-based models, including the D838-R814 bond, 

approximate the ErbB3 crystal structure more closely than does the model derived from 

the EGFR template. Additionally, the DOPE plots for the top structures (Fig. 7.3b) reveal 
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smaller (more favorable) DOPE energies for the ErbB4- and MT-based models, 

especially for residues 775-800, which exhibit an energy peak in the EGFR-based model, 

and residues 840-860 in the A-loop. These results may be attributed to the closer 

evolutionary ties between ErbB3 and ErbB4, as ErbB3 and ErbB4 are thought to have 

emerged from a gene duplication event separate from the one that led to EGFR and 

ErbB2 [372]. Indeed, Jura et al. [43] postulate that the N-lobe dimer observed in their 

resolved ErbB3 and ErbB4 crystal structures but not in their EGFR structure may be a 

consequence of the evolutionary homology between ErbB3 and ErbB4. Our results 

emphasize the importance of selecting the best available template for homology modeling 

of even highly related proteins, and indicate that the application of multiple templates in 

the sequence alignment may improve the quality of homology models in certain cases 

[373]. Furthermore, the homology modeling analysis provides a framework for 

comparing the ErbB kinase active sites and identifying the molecular features that 

contribute to ErbB3’s unique catalytic conformation.  

 

7.2) Clinical Implications of Oncogenic EGFR mutations from a Multiscale Model of 

ErbB Receptor Signaling  

 

Previously in this thesis, we have extensively explored atomic level characterization of 

the ErbB family kinase domains.  Here in this section as well as section 7.3 we link those 

molecular results to cell signaling models into a multiscale model.  For cellular 

homeostasis, pro-survival signals are balanced by pro-apoptotic signals, with both being 
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triggered and balanced by a variety of interacting intracellular pathways. Using a 

simplified model (Figure 7.4) for the effect of AKT activation on cell response, we 

showed that preferential AKT activation is conducive for the cell to rely on and be 

addicted to [126, 374]) for generation of pro-survival signals [282]. Our simplified model 

illustrates a mechanism by which inhibition of the dominant source of pro-survival 

signals shifts the cellular state to one devoid of pro-survival signals, representing a 

perturbation sensitive point in the cellular signaling network which can account for a 

remarkable inhibitor sensitivity [375].  

 

  
Figure 7.4: Schematic diagram of the EGFR signaling model used as well as 
the ErbB3 signaling model used.  The differential ligands (EGF and NRG-1β) 
causes differential heterodimerization between members of the ErbB family 
triggering their respective cell signaling pathways.  

 

We hypothesized the mechanisms that lead to inhibitor hypersensitivity (Gefitinib for 

EGFR) attack these perturbation sensitive points of network hypersensitivity and 

fragility. Since preferential AKT activation is a hall mark of the hyper-sensitive mutants 
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as well as the efficacy of the inhibitors, we determined, through a global sensitivity 

analysis [375, 376], the combinations of model parameter perturbations that drive 

enhanced production of pAKT and pERK (Table 7.1B).  The top components that 

produce maximum sensitivity in terms of changes to the pAKT and pERK levels were 

PI3K, Ras, Gab-1, MEK, Raf which have all been observed in several human cancers 

[377-381]. Moreover, it has been established in screened breast and colorectal cancer 

patients that the GAB-1, MEK, and Ras mutations are non-random and likely arise from 

selective evolutionary pressures that give the cancer cells a survival advantage [381].  

 

 

Table 7.1: (A, left) Comparison of signaling and inhibition characteristics 
predicted by our network simulations for wildtype and mutant systems under 
different conditions; Del stands for the deletion mutant del L723-P729 ins S. 
(B, right) Parameter variations constituting the top three principal 
components for network hyper-sensitivity calculated through global 
sensitivity analysis: kf, turnover for phosphorylation; (●) denotes bound 
complex; the square brackets represent concentrations.  

 

[inhibitor]

[ErbB1●Shc●Grb2●SOS●RasGTP]

[MEK●Raf active]

[PI3K inactive]

[MEK-(p)]

[Pase4] phosphatase for Akt-(p)

[Pase3] phosphatase for ERK-(p) 

[Raf●Ras●GTP]

Initial Concentrations

KM : GAB-1●ErbB1-(p)

Ki: Inhibitor; KM: ATP●RTK

kf :Y1068; kf : Y1173

Rate & Binding Constants 

[inhibitor]

[ErbB1●Shc●Grb2●SOS●RasGTP]

[MEK●Raf active]

[PI3K inactive]

[MEK-(p)]

[Pase4] phosphatase for Akt-(p)

[Pase3] phosphatase for ERK-(p) 

[Raf●Ras●GTP]

Initial Concentrations

KM : GAB-1●ErbB1-(p)

Ki: Inhibitor; KM: ATP●RTK

kf :Y1068; kf : Y1173

Rate & Binding Constants 

-/-

-/-

100/1000

300/50000

700/4000

1200/500000

ERK-(p)

Akt-(p)

Cellular EC50 in nM for inhibition of ERK-(p) and Akt-(p) 
for normal ErbB1 expression/ErbB1 over-expression

19.0/19.022.0/22.020.0/20.0-EGF/+EGF

Akt-(p) in nM for ErbB1 over-expression

1.0/1.05.0/5.03.0/3.0-EGF/+EGF

ERK-(p) in nM for ErbB1 over-expression

20.0/20.013.0/13.01.0/15.0-EGF/+EGF

Akt-(p) in nM for normal ErbB1 expression

8.0/8.01.0/1.00.2/5.0-EGF/+EGF

ERK-(p) in nM for normal ErbB1 expression

DelL834RWildtype

-/-

-/-

100/1000

300/50000

700/4000

1200/500000

ERK-(p)

Akt-(p)

Cellular EC50 in nM for inhibition of ERK-(p) and Akt-(p) 
for normal ErbB1 expression/ErbB1 over-expression

19.0/19.022.0/22.020.0/20.0-EGF/+EGF

Akt-(p) in nM for ErbB1 over-expression

1.0/1.05.0/5.03.0/3.0-EGF/+EGF

ERK-(p) in nM for ErbB1 over-expression

20.0/20.013.0/13.01.0/15.0-EGF/+EGF

Akt-(p) in nM for normal ErbB1 expression

8.0/8.01.0/1.00.2/5.0-EGF/+EGF

ERK-(p) in nM for normal ErbB1 expression

DelL834RWildtype
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With reference to the clinically identified EGFR mutants found in non-small cell lung 

cancer patients, mainly L834R and del L723-P729 ins S, we found the mutations had 

altered affinities for phosphorylation of specific tyrosines in the C-terminal tail: Y1068 

and Y1173.  The preferential binding characteristics of different cytosolic substrates to 

different phospho-tyrosine locations of the ErbB family kinases has been reported [382]. 

Thus, differences in the phosphorylation kinetics associated the different tyrosine sites of 

the cytoplasmic C-terminal tail of the EGFR kinase can induce differential patterns of 

downstream signaling leading to differences in the activation of cell signaling networks.  

The effect of altered affinities of the Y1068 and Y1173 sites to the catalytic domain of 

the EGFR is that the L834R under normal EGFR expression sees a ~5-fold decrease in 

ERK activation and a smaller ~15% decrease in AKT activation (Table 7.1A). The del 

L723-P729 ins S mutant however, shows sustained ERK as well as AKT activation 

relative to wildtype. For EGFR over-expressed cells, both ERK and AKT activation 

characteristics show relative insensitivity to EGFR as a result of signal saturation. 

Furthermore, the mutants can continue to signal even in the absence of the growth factor. 

In addition, the mutant signaling can be different due to changes in the ATP affinity. 

However, both these factors do not introduce any differential characteristics (in terms of 

preferring Y1068 to Y1173) and cause a differential in overall activation levels of ERK 

and AKT. 

 

The perturbation of the phosphotyrosine kinetics of Y1068 and Y1173 through mutations 

(L834R and del L723-P729 ins S) is directly responsible for the differential signaling 
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leading to preferential AKT activation [282].  The restoration of signaling has also been 

reported through a double mutation of L834R/T766M [133, 383]. This double mutant 

increases receptor phosphorylation (Y1068 and Y1173) kinetics 100-fold [384] while 

simultaneously decreasing inhibitor affinity [383].  Another drug resistance mechanism 

related to Y1068 kinetics that circumvents Y1068 has been identified.  In the presence of 

ErbB3, a branch of signaling analogous to that through Y1068 becomes available through 

ErbB hetero-dimerization, directly resulting in PI3K recruitment on ErbB3 and 

subsequent AKT activation, which is discussed below. 

 

7.3) Systems model of ErbB signaling defines a mechanism for ErbB3-mediated TKI 

resistance 

 

Previous experimental studies have demonstrated that ErbB3 is a key mediator of 

resistance to various tyrosine kinase inhibitors (TKIs) currently in use [343, 344, 385-

387].  Some postulated mechanisms include leaky ErbB2-catalyzed phosphorylation of 

ErbB3, e.g., incomplete inhibition of ErbB2 catalytic activity by the TKI [343, 386, 388].  

Indeed, previous experimental studies have demonstrated that leaky ErbB2 

phosphorylation of ErbB3 in TKI-bound ErbB2/3 heterodimers is amplified by additional 

resistance mechanisms, such as inhibition of cellular phosphatases by TKI-mediated 

production of reactive oxygen species (ROS), and increased expression of ErbB3 at the 

plasma membrane [343, 345, 389].  However, Shi et al. [337] have recently shown the 

assumed inactive ErbB3 pseudokinase is, in fact, a weakly active kinase with ~1000 fold 
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weaker phosphorylation than the canonical kinase members of the ErbB family [337].  

Therefore, though the ErbB2 kinase is a viable route of resistance, here we consider 

ErbB3 catalytic activity in the ErbB signaling network as a potential TKI resistance 

mechanism [330]. 

 

To translate our observations of the weak, yet robust, activity of the ErbB3 kinase into a 

physiologically relevant context and investigate the implications of ErbB3 activation for 

ErbB signaling dynamics, we constructed a systems-level model for ErbB3 based on that 

of Schoeberl et al. [390], with added ErbB3 phosphorylation rate constants derived from 

experiments [337] (Figure 7.4).  We simulated stimulation of the ErbB signaling network 

through NRG-1β, which signals through the ErbB2/ErbB3/ErbB4 kinases (though ErbB4 

kinase is omitted from the model since ErbB4 signaling is weak or absent in many cancer 

cell lines). 

 

A parameter sensitivity analysis identified the key proteins that direct signaling in our 

model of the ErbB network with respect to AKT activation via stimulation of NRG-1β.  

ErbB3 and NRG-1β represent the most sensitive species in the signaling network, 

followed by ErbB2 concentration (Figure 7.5A). EGFR is not a strong determinant of the 

extent of AKT phosphorylation, as expected from the weak ability of NRG-1β to elicit 

EGFR dimers. PTEN (the PIP3 phosphatase) and the ErbB phosphatase exhibited a 

negative sensitivity in the analysis, as these phosphatases negatively regulate the 

signaling network through dephosphorylation of key molecular species. 
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Figure 7.5 Parameter sensitivity analysis of the ErbB3 signaling model. The 
normalized, time-integrated sensitivity of pAKT to key molecular species 
was computed in response to NRG1-β=25 nM by making a 0.1% change in 
each species concentration for (A) the model representing weak ErbB3 
activity, and (B) the model representing weak ErbB3 activity in the presence 
of the EGFR/ErbB2 inhibitor lapatinib. Sensitivity to certain species, 
including ErbB3, ErbB2 and the ErbB phosphatase, changed upon addition of 
lapatinib. 

 

Upon incorporation of the TKI lapatinib, which inhibits EGFR and ErbB2 catalytic 

activity, into our model of ErbB3, the ErbB signaling network relies more heavily upon 

ErbB3 activity for AKT induction (Figure 7.5B).  With completely inhibited EGFR and 

ErbB2 signaling via introduction of lapatinib into the model, ErbB3 and AKT signals still 

persist at maximal inhibition by lapatinib.  The results of pAKT sensitivity analysis of the 
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lapatinib-treated model to those of the inhibitor-free model show that sensitivity to ErbB3 

and NRG-1β increases, whereas sensitivity to EGFR and ErbB2 decreases, as lapatinib 

sequesters EGFR and ErbB2 molecules. The negative normalized sensitivity to the ErbB 

phosphatase also increases, as the pool of ErbB dimers has diminished due to 

sequestration of EGFR and ErbB2 by lapatinib. Thus a single alteration to the signaling 

model (in this case, addition of lapatinib) significantly redefines the most perturbation-

sensitive nodes in the network. 

 

Although the pAKT signal induced by ErbB3 phosphorylation in our in silico lapatinib-

treated cell is relatively weak, in an actual physiological context, a tumor cell may 

employ several resistance mechanisms at once [343, 386, 391, 392].  One of the sensitive 

nodes of NRG-1β-driven ErbB signaling is ErbB phosphatase levels, and simulations 

showed decreased activity of phosphatases resulted in an amplification of the level of 

AKT signaling induced by ErbB3.  It has been demonstrated that in certain cases of TKI 

resistance, the tumor cell responds to the reduction in pAKT levels by upregulating 

vesicular transport of ErbB3 from the cytoplasm to the plasma membrane [343, 389].  

Our results show for a 2-fold increase in surface ErbB3 level, AKT signaling is similarly 

amplified.  For 25 nM NRG-1β, the pAKT signal is restored to nearly 60% of its no-

inhibitor control level, and pAKT levels are nearly 100% regained for 100 nM NRG-1β, 

effectively recreating drug resistance in silico.  
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Our data parallels the experimental studies performed by Sergina and colleagues [343], 

which describe ErbB3-mediated resistance and pAKT signaling in various TKI-treated 

tumor cell lines. Thus our model demonstrates that even a weak level of ErbB3 signaling, 

as suggested by our previous results [337], are physiologically relevant in the context of 

an ErbB-driven tumor cell, and illustrates several routes through which ErbB3 signaling 

may be compounded by other previously postulated resistance mechanisms to generate 

TKI resistance. 

 

7.4) Conclusions 

 

As multi-scale modeling techniques become more sophisticated, the application of 

simulations will become more widespread necessitating a stronger link between 

experiments and simulations.  This thesis has aimed to present a thorough exploration of 

the ErbB kinase activation at the atomic level, highlighting hydrophilic and hydrophobic 

interaction networks that help differentiate the active and inactive state.  We have also 

highlighted perturbation sensitive regions which correlate well with clinically identified 

activating mutations in cancer as well as hypothesized the mechanism and the sequence 

of events that occur from the activating asymmetric dimer interface.  Furthermore, by 

linking the atomic level data with cell signaling networks we can also highlight 

perturbation sensitive regions at the network level from altered signaling characteristics 

of the mutants and thereby predict potential therapeutic targets.  Therefore, use of a 

multiscale model can investigate biological systems at multiple timescales and length 
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scales, providing detailed and predictive information purely in silico.  Hopefully this 

work has shown the interesting and complex biological problems that can be addressed 

through computational methods.  
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Appendix A: Hydrophobic interactions help identify perturbation sensitive regions 

for the ErbB kinases 

 

Figure A1: Hydrophobic plots of the solvent accessible surface area (SASA) 
versus normalized water density fluctuations in the key hydrophobic regions 
of the ErbB kinases: (A) C-spine (B) R-spine (C) Hydrophobic Core (D) 
Dimer Interface and (E) αC-β4 loop. The edge colors represent monomer 
(black) and dimer (green) systems.  The shape internal color represents active 
(black) and inactive (white).  The shape itself represents a different member 
of the ErbB family EGFR (square), ErbB2 (circle) and ErbB4 (triangle).  The 
quadrants represent different hydrophobic interaction regions (I) 
hydrophilically favorable region, (II) perturbation-sensitive region and (IV) 
hydrophobically favorable region. 
 

Hydrophobic interactions appear to provide context-specific contributions to stability to 

the active and inactive conformations of ErbB kinases. To investigate the effect of 

hydrophobic interactions on the ErbB kinase conformations, we analyzed the 

hydrophobicity as well as the solvent accessible surface area (SASA) of relevant 

hydrophobic sub-regions, namely, the C-spine, R-spine, hydrophobic core, and the αC-β4 
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region.  The four regions have a high percentage of hydrophobic side chains; however, 

some minor differences between members of the ErbB family exist, particularly in the 

αC-β4 region.  Garde et al. [320, 321] have recently proposed an approach for 

quantifying the hydrophobicity of heterogeneous surfaces using water density 

fluctuations, according to which increased normalized water density fluctuations are used 

as a signature of a more hydrophobic surface.  We have normalized the water density 

fluctuations so that 1 is indicative of a neutral region and plotted it against the SASA.  By 

splitting the graph into four quadrants (Figure A1.A) we can see quadrant I represents a 

hydrophilically favorable region with low hydrophobicity and high SASA, while 

quadrant IV represents a hydrophobically favorable region with high hydrophobicity and 

low SASA.  Quadrant II represents a fragile or perturbation sensitive region with high 

hydrophobicity but also with a high SASA. 

 

The active conformations in the C-spine show a clear delineation between the active and 

inactive conformations regardless of dimer or mutational state (Figure A1.A).  The active 

conformations minimize the SASA (mean of 500Å2) in comparison to the inactive (mean 

value of 700Å2).  In addition, in the transition between the inactive to active, the active 

conformations increase in hydrophobicity and settle into the hydrophobically favorable 

region, implying the active conformations have a better formed C-spine correlating with 

the observation that the C-spine helps in coordinating the loops in the active 

conformation.  The SASA of the ErbB3 C-spine falls within range of the inactive EGFR 

and HER4 systems, reflecting that, despite its weak activity, there is no corresponding 
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‘fully-active’ state for HER3 as for the other ErbB kinases. This inability to ‘fully’ 

activate can be attributed to the lack of the crucial hydrogen bonding network identified 

earlier, which is required to stabilize the active-like kinase conformation.  The 

hydrophobicity plots of the R-spine show a similar difference between the active and 

inactive conformations but not as drastically as the C-spine (Figure A1.B).  For each 

system the active systems expose less surface area than the inactive systems, but only for 

each system locally (dotted lines on Figure A1).  The SASA of the ErbB3 R-spine 

deviates from the values for the inactive EGFR and ErbB4 systems, and instead 

demonstrates low SASA (high hydrophobicity). This result can be rationalized by the 

increased hydrophobicity of the R-spine, which includes segments of the truncated αC 

helix in ErbB3. 

 

With respect to the hydrophobicity plots of the hydrophobic core, the monomer EGFR 

and ErbB4 inactive systems are situated within the perturbation sensitive region with 

their respective active conformations out of the perturbation sensitive region (Figure 

A1.C).  For ErbB2 the reverse is true which is consistent with sensitivity of the inactive 

conformation to hydrophobic perturbation, especially for EGFR and ErbB4 but not for 

ErbB2. Therefore single point mutations would be expected to disrupt local 

conformations contributing to hydrophobicity.  Notably, mutations of hydrophobic 

residues in the hydrophobic core are reported for EGFR and ErbB4 in clinical studies 

[27-29], whereas, for ErbB2, such mutations are found surrounding the αC-β4 region [56, 

57].  By contrast, an analogous mutation in ErbB3 abolishes ATP-binding and 
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phosphorylation activity [337], indicating that hydrophobic interactions in the core 

promote ErbB3 activity, rather than maintain an autoinhibited state as they do in EGFR 

and ErbB4. 

 

So far all the hydrophobic plots have shown preferential hydrophobic interactions in the 

active systems versus the inactive systems.  However, examination of the asymmetric 

dimer interface reveals a clear delineation in hydrophobicity in preference for the inactive 

systems as well as dimerization reducing this hydrophobic benefit implying an activating 

stimulus (Figure A1.D).  The asymmetric dimer interface consists largely of hydrophobic 

side-chains in the N-lobe of the receiver kinase (L680, I682, L736, L758, and V762) and 

the C-lobe of the activator kinase (I917, Y920, M921, V924, and M928) [40].  The active 

monomer systems trend to the perturbation sensitive quadrant, while the inactive 

monomer systems show a reduced SASA in comparison to the active removing them 

from the perturbation sensitive quadrant.  This decrease for the inactive monomers may 

imply a preference for the inactive state in the monomer context.  Notably, the dimeric 

systems record much lower SASA, pushing all the dimer systems into the 

hydrophobically favorable quadrant, implying that hydrophobic interactions provides a 

dominant driving force for dimerization; interestingly, for EGFR dimer, the inactive state 

is very similar to the active and hence the preference for the inactive conformation is not 

implied in the context of the dimer. Thus, dimerization also provides a stimulus for 

activation. 
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Interestingly, all ErbB2 monomer systems present a very high hydrophobicity (black 

bordered circles on Figure A1) across all of the hydrophobic subregions while the ErbB2 

dimer as a reduced hydrophobicity in comparison to the monomers (green circles on 

Figure A1).  This is consistent with the notion that hydrophobicity is particularly 

important in the context of ErbB2 owing to its interaction with Hsp90 known to be 

mediated by hydrophobic contacts, particularly the αC-β4 region which is an unstructured 

span between the αC-helix and the β4 sheet in RTKs. From a sequence perspective, only 

in ErbB2 is the αC-β4 region predominantly hydrophobic and exceptionally so.  Both the 

inactive and active conformations of the ErbB2 monomer systems reflect the trend by 

singling out the ErbB2 monomer systems are particularly hydrophobic for the αC-β4 

region (Figure A1.E).  The mean SASA for the αC-β4 region in ErbB2 systems is also 

consistently lower than in other members of the ErbB family.  As discussed in [312], this 

unique feature of ErbB2 is thought to be responsible for its preferential association with 

the molecular chaperone Hsp90. 

 

Thus, the analyses for the spine regions and the hydrophobic core collectively lead to the 

remarkable prediction that while the αC-β4 region is perturbation sensitive for the 

inactive conformation of ErbB2, the hydrophobic core has the same effect for EGFR and 

ErbB4. Indeed, this correlates well with clinical studies, where activating point mutations 

in the hydrophobic core have been found in EGFR and ErbB4 but those in the αC-β4 

region are found in ErbB2, suggesting that the hydrophobic analysis enables the context-

specific identification of fragile sub-regions.  



164 
 

Appendix B: Exhaustive Persistent Bond Tables for EGFR TMD simulations 

EGFR 
Dimer 
Inactive Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 

EGFR 
Dimer 
Active 

aC-helix aC-helix bond 
– – – – – – – – – – K730,E734 K730,E734 – – 
– – – – – – – – – – – – – – A731,I735 
– – – – – – – – – – – – – – N732,S728 

N732,L736 N732,L736 N732,L736 N732,L736 – – – – N732,L736 N732,L736 
K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 

– – – – E734,E738 E734,E738 E734,E738 E734,E738 E734,E738 – – 
I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 

– – L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 
E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 
A739,A743 A739,A743 A739,A743 A739,A743 A739,A743 A739,A743 A739,A743 A739,A743 

– – – – Y740,S744 Y740,S744 Y740,S744 Y740,S744 Y740,S744 Y740,S744 
– – – – – – – – V741,V745 V741,V745 V741,S744 V741,V745 

A-loop bonds 
– – – – – – – – – – – – – – E841,R808 
– – – – – – – – – – – – – – Y845,Y867 
– – – – – – – – – – – – – – A847,R865 

E848,R865 E848,R865 E848,R865 E848,R865 E848,R865 E848,R865 E848,R865 – – 
– – – – – – – – E848,Y867 E848,Y867 – – – – 

K851,E725 – – – – – – – – – – – – – – 
C-loop bonds 
H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 
R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 

– – – – – – – – – – – – – – R812,S875 
A816,E882 A816,E882 A816,E882 A816,E882 A816,E882 A816,E882 – – A816,E882 
C-loop C-loop bonds 
R812,D813 R812,D813 R812,D813 R812,D813 R812,D813 R812,D813 R812,D813 – – 

– – – – R812,L814 R812,L814 R812,L814 – – R812,L814 – – 
– – – – – – – – – – – – – – D813,R817 
– – – – – – – – – – D813,N818 D813,N818 – – 

A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 – – 
– – – – A816,V819 A816,V819 A816,V819 A816,V819 – – – – 

A-loop A-loop bonds 

D831,K836  D831,K836 D831,K836 D831,K836 D831,K836 D831,K836 – – – – 
G833,K836 G833,K836 G833,K836 G833,K836 G833,K836 G833,K836 G833,K836 – – 
G839,Y845 – – – – – – – – – – – – – – 

– – E841,K843 E841,K843 E841,K843 – – – – – – – – 
– – – – – – – – K843,E844 – – – – – – 
– – – – – – – – – – H846,E848 – – – – 

E848,G849 E848,G849 E848,G849 E848,G849 E848,G849 – – E848,G849 – – 
– – – – E848,K851 E848,K851 – – – – – – – – 
– – – – – – – – – – – – G850,V852 – – 

Table B1: Exhaustive list of persistent H-bonds and salt bridges in EGFR 
kinases in an asymmetric dimer formation as it progresses from inactive to 
active.  The salt bridges are in bold and identical bonds are aligned. Weaker 
bonds are in grey, to track the progression of bonds.   
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EGFR 
Monomer 
Inactive Window 1 Window 2 Window 3 Window 4 Window 5 

EGFR 
Monomer 
Active 

aC-helix aC-helix bonds 

– – – – – – – – – – – – K730,E734 
– – – – – – – – – – A731,I735 A731,I735 
– – N732,S728 N732,S728 N732,S728 N732,S728 – – N732,S728 
– – N732,L736 N732,L736 N732,L736 N732,L736 N732,L736 N732,L736 

K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 K733,D737 
E734,E738 E734,E738 E734,E738 E734,E738 E734,E738 E734,E738 E734,E738 
I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 I735,A739 
L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 L736,Y740 

– – D737,V741 – – – – D737,V741 D737,V741 – – 
E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 E738,M742 

– – A739,A743 A739,A743 A739,A743 A739,A743 A739,A743 – – 
Y740,S744 Y740,S744 – – – – Y740,S744 Y740,S744 Y740,S744 

– – – – V741,V745 V741,V745 – – – – V741,V745 
A-loop bonds 

– – – – – – – – – – – – A840,G672 
– – – – – – – – E841,R808 – – – – 
– – – – – – – – – – – – K843,D932 
– – – – – – – – – – Y845,Y867 Y845,Y867 
– – – – – – – – – – H846,R865 – – 

E848,R865 E848,R865 E848,R865 E848,R865 E848,R865 E848,R865 – – 
– – – – – – – – – – E848,Y867 – – 

C-loop bonds 
H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 H811,D872 

– – – – – – – – – – – – R812,E848 
R812,K851 – – – – R812,K851 R812,K851 – – – – 
R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 R812,D872 

– – – – – – – – – – – – R812,S875 
– – – – – – – – A816,V819 – – – – 
– – A816,L775 A816,L775 A816,L775 – – A816,L775 – – 

A816,E882 – – – – – – A816,E882 A816,E882 A816,E882 
– – R817,D776 R817,D776 R817,D776 R817,D776 – – – – 

C-loop C-loop bonds 

R812,D813 R812,D813 R812,D813 R812,D813 R812,D813 R812,D813 – – 
– – – – – – – – – – – – D813,R817 
– – – – – – – – – – – – D813,N818 

A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 A815,N818 
A-loop A-loop bonds 
G833,K836 G833,K836 G833,K836 G833,K836 – – – – – – 
E841,E842 E841,E842 – – – – – – – – – – 
E841,K843  E841,K843 – – – – – – – – – – 

– – – – E841,Y845 – – – – – – – – 
E844,Y845 – – – – – – – – – – – – 

– – – – – – – – – – – – Y845,E848 
E848,G849 E848,G849 – – – – – – E848,G849 – – 

– – – – – – – – – – E848,G850 – – 

Table B2: Exhaustive list of persistent H-bonds and salt bridges in the EGFR 
kinase monomer as it progresses from inactive to active.  The salt bridges are 
in bold and identical bonds are aligned. Weaker bonds are in grey, to track 
the progression of bonds.   
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