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‘KMC-TDGL’—a coarse-grained methodology for
simulating interfacial dynamics in complex fluids: application

to protein-mediated membrane processes
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Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall,
210 S. 33rd Street, Philadelphia PA 19104, USA

(Received 31 July 2006; in final form 2 September 2006)

In this article, we describe a new multiscale simulation algorithm (which we term the ‘KMC-
TDGL’ method) applicable for the description of equilibrium and dynamic processes
associated with a particular class of complex fluids with nanoscale inclusions, namely,
biological membranes mediated by membrane-associating and membrane-bound proteins.
We adopt a novel strategy of integrating two different phenomenological approaches, namely,
a field theoretic (continuum) description for the membrane dynamics given by the time-
dependent Ginzburg–Landau equation and a random walk on a discretized lattice description
for protein diffusion dynamics. We illustrate that this integrated approach results in a unified
description of protein-mediated membrane dynamics.

1. Introduction

Quantitative description of the thermodynamic and
kinetic processes associated with membranes [1–5] has
been an important research component in the physics of
amphiphilic systems [6]. Several pioneering theoretical
and modelling treatments have focused on different
length and time-scales in order to probe the physical–
chemical behaviour of membrane processes. Atomic-
level simulations as well as coarse-grained models and
simulations [7–15] have been successful in delineating
the nature of specific interactions between membrane-
bound proteins, molecules such as cholesterol and the
membrane phase [7], in describing the pathways of
micelle formation and vesicle fusion [16, 17], and in
characterizing the elastic properties of membranes based
on molecular interactions [18]. Phenomenological the-
ories based on generalized elasticity (Ginzburg–Landau
type) [4, 16, 19] have been used to describe the long
time (meso and macroscopic) behaviour associated with
membranes [20–22], undulations and curvature
modulations in multi-component amphiphilic systems
[23–25]. Monte Carlo simulations derived from these
phenomenological models have also been successful

in describing phase transitions, phase behaviour,
budding phenomenon associated with multi-
component vesicles [26], and protein mobility
on membranes [27]. Phase separation and global
thermodynamic phase behaviour in multi-component
membranes have also been described by a combination
of mean-field models and experiments involving
vesicles [28–30, 31].

Despite this success in quantifying membrane phase
behaviour, describing several biological processes in
membranes mediated by proteins such as formation of
caveolae (flask shaped vesicular structures formed in the
membrane) [32, 33] or endocytotic vesicles (cell
membrane invagination and vesicle formation regulated
by membrane bound proteins) [34] has remained a
challenge because these processes are cooperative and
manifest at the mesoscale (�mm, sms) even though the
underlying interactions occur at the nanoscale.
Therefore, a quantitative description of these underlying
processes is inherently a multiscale problem. Study of
such processes is of value from fundamental as well as
applied aspects, as the interface between nanotechnol-
ogy and biotechnology is rapidly evolving.

The field of multiscale modelling has a broad aim of
quantitatively describing the interplay between processes
at disparate length and time-scales (from Å to m and
from fs to s) in order to predict molecular, mesoscopic,
as well as macroscopic properties [35, 36]. The basic

*Corresponding author. Email: rradhak@seas.upenn.edu
yCurrent Address: Department of Bioengineering, Stanford
University, USA.

Molecular Physics, Vol. 104, Nos. 22–24, 20 November–20 December 2006, 3653–3666

Molecular Physics
ISSN 0026–8976 print/ISSN 1362–3028 online # 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00268970600997580



D
ow

nloaded By: [U
niversity of Pennsylvania] At: 17:48 17 January 2007 

components of multiscale modelling involve different
modelling methods to describe the processes at different
scales: ab initio methods for the electronic scale,
molecular dynamics for the nanoscale, lattice
Boltzmann for the mesoscale etc., as well as, different
strategies for rationally bridging the scales (e.g. mixed
quantum mechanics molecular mechanics for bridging
electronic and nanoscopic scales). This latter aspect of
multiscale modelling is very much in development;
strategies employed for bridging the scales tend to be
problem and context specific. A widely employed
multiscale bridging strategy is based on coarse graining
of the Hamiltonian or the energy function in order to
reduce the number of degrees of freedom to be
considered and in order to filter high frequency (shorter
time-scale) modes [2, 14, 15, 36, 37]. More recently, a
versatile class of hybrid methods has come into existence
that combines different phenomenological theories or
models. These methods are termed heterogeneous multi-
scale methods [35]. Heterogeneous multiscale methods
are particularly adaptable in many complex scenarios
where traditional multiscale approaches have their
shortcomings and hence provide avenues to rationally
bridge across disparate length and time-scales [36].
Transport of extracellular components into the cell

via an internalization mechanism known as endocytosis
is well appreciated in receptor regulation, neurotrans-
mission and drug delivery. In this process, extracellular
ligands bind and activate specific receptors and trigger
diverse signalling events including plasma membrane
invagination with the aid of several proteins, vesicle
formation, and subsequently receptor internalization.
While the signal transduction regulating endocytosis in
cells is a complex and tightly regulated process [34], cell
biology studies have determined that the receptor-
mediated endocytosis occurs primarily through the
interaction of epsin with the membrane, resulting in
the induction of curvature in the membrane. However
very little insight on how the collective interactions of
epsins with the membrane lead to the origin of vesicle
formation is obtained [39].
Motivated by this question, and inspired by the

success of heterogeneous multiscale methods in different
contexts, we build on this ideology and develop a new
heterogeneous multiscale approach (the KMC-TDGL
method) for studying membrane dynamical processes
by combining two different phenomenological theories.
In our multiscale spatially resolved stochastic model, we
treat the membrane dynamics as a field evolving in time
according to the time-dependent Ginzburg–Landau
(TDGL) equation [4, 40]. We treat the diffusion of
intracellular and membrane-bound proteins using a
random walk process on a lattice using the kinetic
Monte Carlo (KMC) approach [41]. In our integrated

KMC-TDGL method, we combine the two descriptions
using a methodology that is dictated by the competition
between the time-scale of diffusion to that of membrane
dynamics. We illustrate the application of this approach
by studying protein mediated dynamical processes in
membranes.

2. Models and methods

The biological complexity of protein–membrane inter-
action and the coupling to rheological and transport
properties of membranes forbids the formulation of a
theory and modelling strategy that incorporates all of
the known details from structural biology at the atomic
level. Our strategy here is to develop an approach by
including crucial but manageable models of interactions
at the mesoscale. Therefore simplifications and model
approximations are an inevitable part of our computa-
tional strategy. We note that the specfic choice for the
form and parameters of the interactions can be validated
and independently determined by atomistic simulations
and experiments (section 4).

2.1. Protein–protein interaction

Our system consists of proteins of a single kind
(modelled after epsin) diffusing on and off the bilayer
membrane (figure 1(a)). We have employed
pre-validated phenomenological models of interactions,
namely, protein diffusion is treated as a random walk on
a lattice and the membrane is treated as an elastic
continuum. Protein–protein interactions are limited to
size exclusion (repulsive interactions on the scale of size
of the protein, depicted in figure 1(b) as hard-sphere
exclusion), and specific interactions between proteins are
not considered consistent with experimental findings for
epsin [39]. The parameters for exclusion are obtained
from crystallographic data.

2.2. Protein diffusion

Our model includes protein diffusion in a probabilistic
manner, i.e. hopping between discrete ‘lattice’ sites. The
density of proteins adsorbed on the membrane is
denoted by the unitless surface density,

�* ¼
Nadsorbed � a20

A
,

where a0 is lattice length, �* is reduced surface density,
Nadsorbed is the number of adsorbed proteins and A is
the total area. We explicitly allow for the diffusion of
the proteins in the extracellular, intracellular and
membrane-bound phases. The diffusion is treated via a
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kinetic Monte Carlo (KMC) scheme [41] on a discretized
grid (‘lattice’) in which each hop (diffusion) to a
neighbouring lattice site is treated as an elementary
chemical reaction with a rate inversely proportional to
the time-scale of diffusion. Proteins can freely diffuse in
the extracellular or intracellular space and adsorb/
desorb on the membrane (see figure 1(a)). The associa-
tion, dissociation constants and the intracellular/
extracellular and lateral (membrane-bound) diffusion
coefficients are available from the experimental data
published in the literature [19, 43, 44]. For the diffusible
species, the rate of hopping k to a neighbouring

‘lattice site’ is determined as k ¼ D=a20, where D is the
diffusion coefficient and a0 is the lattice spacing.
The KMC simulations are carried out such that the
acceptance rates for the reactions conform to
the Gillespie probability distribution [41], see below.

Every KMC move is considered as a chemical
reaction R� ð� ¼ 1, . . . ,MÞ characterized by its stochas-
tic rate constant c�, such that c� dt gives the average
probability that the particular move R� will take place in
the next infinitesimal time interval dt. For the set of
diffusion moves we consider, there is a one-to-one
correspondence between c� and the rate constant k.
Given a particular state of the system at time t, the
probability that a R� reaction will occur within
the interval ðt, tþ�tÞ is a� dt ¼ h�c� dt, where h� is
the number of distinct combinations for the reaction R�

to occur; the above equality defines a�. With the above
definitions, the reaction probability density function
Pð�,�Þ is given by [41]:

Pð�,�Þ ¼
a� expð�aT�Þ, if 0 � � � 1,

0, otherwise.

�
ð1Þ

Here, aT ¼
P

i ai and Pð�,�Þ d� is the probability that,
given the state at time t, the next reaction will occur
in the infinitesimal time interval ðtþ �, tþ � þ d�Þ and
will be a R� reaction.

In order to generate � and � according to the
distribution specified in equation (1), we generate two
random numbers r1 and r2 between 0 and 1 (end points
excluded) from a unit-interval uniform distribution (0, 1)
and set

� ¼ ð1=aTÞ lnð1=r1Þ, ð2Þ

and � to be that integer for which

X��1

�¼1

a� < r2aT �
X�
�¼1

a�: ð3Þ

2.3. Membrane dynamics

The work of Helfrich in the 1970s permits a clean,
curvilinear-free representation of ‘thin’ membranes,
using the so-called Monge notation, where we use
the Cartesian coordinates x, y, under the presumption
that deformation is small relative to the axis normal to
the surface [1, 5].

Localized membrane deformation and curvature is
coupled with the adsorption of species on the membrane
surface. Epsin induces a change in the intrinsic curvature
of an otherwise planar membrane. The energy cost
associated with membrane deformation is minimized by

Figure 1. Model: (a) depiction of the system; (b) protein–
membrane interaction parameters; (c) form of the potential of
mean force between two adsorbed epsins.

A coarse-grained methodology for simulating interfacial dynamics in complex fluids 3655
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the subsequent relaxation process occurring during
membrane dynamics. This interaction formally estab-
lishes the coupling between membrane motion and
diffusion of species interacting with the membrane. We
describe the dynamics of the membrane via a time-
dependent Ginzburg–Landau (TDGL) model (see
Chakraborty and co-workers [19, 45–49])

@z

@t
¼ �M

�F

�z
þ �, ð4Þ

where z ¼ zðx, y, tÞ is the distance of the deformed
membrane segment from a reference plane (figure 1(a)),
M is a generalized mobility factor associated with the
membrane dynamics, � is the thermal noise term and F is
the Helfrich free energy functional (in Monge or
Cartesian notation) associated with membrane elasticity
[1, 4, 5, 47]. F is given by [25],

F ¼

Z Z
dxdy

1

2
½ð� þ �C2ÞðrzÞ2 þ �ðr2z� CÞ2�: ð5Þ

Here, � is the interfacial tension, � is the bending rigidity
and C(x, y) is the intrinsic curvature. The values of �, �
and M for a phospholipid bilayer membrane are
obtained from experiments [19]: � ¼ 3 mNm�1,
� ¼ 400kBT and M ¼ 10�5 mm4/(kBT � s). In the
equation above, the integrand accounts for elastic
energy associated with membrane bending and inter-
facial tension. The value of intrinsic curvature C is taken
to be zero if no protein (epsin in our case) molecules are
adsorbed and non-zero if the molecules are adsorbed.
The above equation is solved numerically using a finite
difference scheme for a given profile of C(x, y) that is
dictated by the adsorbed species and for a square patch
of the membrane (1 mm in length with periodic boundary
conditions in x and y dimensions), see appendix. The
noise term is generated by drawing a random number
from a Gaussian distribution with zero mean and with
variance depending on T and the viscosity of the
surrounding medium, (in our case this is assumed to
be water). The finite difference equations (see appendix)
are solved using MATLAB. The simulation results in a
constant temperature dynamics for the membrane.

2.4. Protein–membrane interaction

Epsin is an amphiphilic moiety, with both hydrophilic
and hydrophobic regions. The latter is in the form of an
alpha-helix (helix 0), composed of leucine and isoleucine
amino acid functional groups. Epsin’s interaction with
the bilayer membrane is intrinsically linked to the
hydrophobicity of this region. The ability of epsin to
modify the intrinsic curvature of bilayer membranes has

been indirectly inferred from membrane tubulation
studies [42]. The crystal structure of epsin’s ENTH
domain in the presence (i.e. bound to) and absence of
the lipid head group inositol-1,4,5-trisphosphate
(Ins(1,4,5)P3) shows that helix 0 becomes ordered at
the N-terminus, upon binding to the lipid [42, 51]. It is
also established that the protein behaves as a monomer,
and that monomeric interactions cause changes in
membrane curvature. Based on the experimental results
of the tubulation study with wild-type and mutant
proteins, it is hypothesized that helix zero is inserted into
one leaflet of the lipid bilayer, thus inducing curvature.
The current physical picture is that the insertion of
helix 0 into the outer leaflet of the bilayer pushes the
lipid head groups apart, thereby inducing curvature in
the membrane. According to this hypothesis, the lateral
expansion of surface area of lipid membranes upon the
inclusion of epsin given by ðAl � Al,oÞ=Al,o (Al is the area
per lipid molecule in the presence of epsin, and Al,o is
that in the absence of epsin) will drive the curvature
induction on the membrane due to the difference in the
degrees of area expansion in the inner and outer leaflets
of the bilayer membrane. The bilayer membrane,
therefore, assumes a curvature in order to topologically
accommodate this difference.

Localized in the vicinity of an adsorbed epsin, the
membrane is assumed to have an intrinsic curvature
C(x, y) as depicted in figure 1(b). The form of this
localized function is assumed to be Gaussian with a
range R and a magnitude C0; the adsorbed epsins are
charted as smooth Gaussians, with peak (maximum)
values set to be C0 with units m�1. C0 scales as 1=<, <
being the characteristic radius of curvature, see
section 3.1. While a range of R and C0 values are
explored in our simulations, the exact values for a
particular system (i.e. specific protein adsorbing on a
membrane) can be calculated using fully atomistic
simulations as well as measured in the experiments (see
section 4).

2.5. Multiscale model integration (integration
of diffusion and membrane dynamics)

We are concerned with the consequences of proteins
(epsins) inducing membrane curvature and thereby
dictating the dynamics of the system. The proteins
themselves are diffusing; therefore our model explicitly
maps a set of probabilistic events (namely diffusion)
onto the deterministic one, namely that of a membrane
deformation over discrete time-steps. This comprises the
bulk of our present integration of separate time-scales.

Based on a scaling analysis, we have determined that
the choice of integration depends on the competition
between time-scales of diffusion and membrane motion.

3656 J. Weinstein and R. Radhakrishnan
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The relevant time-scales are a20=D (diffusion of the
protein species) and C2

0a
4
0=M (membrane motion).

Depending on the Deborah number, De ¼ ða20=DÞ=
ðC2

0a
4
0=MÞ, two regimes will be of relevance: (1) adiabatic

limit: the diffusion occurs much faster than membrane
deformation (De � 1); (2) nonadiabatic limit: De � 1,
the diffusion happens at similar time-scales to that of
membrane dynamics. In the adiabatic limit, we deter-
mine the steady state profiles C(x, y) (determined via
epsin positions on the membrane in the KMC simula-
tions) at every time-step of integration involving the
membrane dynamics (TDGL) equations. In this limit,
since the behaviour of the membrane largely occurs on a
far longer time-scale than protein diffusion events, we
compute time averages of the protein dynamics from the
diffusion part of our algorithm and feed these time-
averaged quantities to the algorithm which deals with
membrane deformation. Our results described in this
paper outline the system’s dynamic behaviour in the
adiabatic limit. First, we consider the variational
problem and then discuss its numerical implementation
(see appendix) within the finite difference scheme.

2.6. The variational problem

We solve the variational problem posed in equation 4
in order to determine the time-evolution of membrane
height z(x, y) via functional differentiation; the
term z(x, y) is augmented by 	
ðx, yÞ, 	 being a small
scalar increment and 
 being an arbitrary function
with a boundary value and gradient of zero as x
and y approach �1. We compute the derivative
of the integrand with respect to 	 at its infinitesimal
limit:

�F

�z
¼

d

d


�Z Z
A

dxdy
1

2

d

d	

�
�þ�C2
� �

r zþ 	
ð Þð Þ
2

þ� r2 zþ 	
ð Þ�C
� �2�

	¼0

�

¼
d

d


Z Z
A

dxdy

�
�þ�C2
� �

r zþ 	
ð Þ �
d

d	
r zþ 	
ð Þ

þ� r2 zþ 	
ð Þ�C
� � d

d	
r2 zþ 	
ð Þ�C
� ��

	¼0

¼
d

d


Z Z
A

dxdy
h
�þ�C2
� �

rzþ 	r
ð Þ �r


þ� r2zþ 	r2
�C
� �

r2

� �i

	¼0

¼
d

d


Z Z
A

dxdy �þ�C2
� �

rzð Þ �r
þ� r2z�C
� �

r2

� �� �

:

We solve these two parts separately. Letting
fðx, yÞ ¼ � þ �C2,

fðx, yÞrz � r
 ¼ fðx, yÞr � 
rzð Þ � 
fðx, yÞr2z

¼ r � fðx, yÞ
rzð Þ � 
rz � rfðx, yÞÞ

� 
fðx, yÞ � 
fðx, yÞr2z

¼ r � 
 . . .ð Þ � 
 rz � rfðx, yÞ þ fðx, yÞr2z
� �

:

Therefore, ð� þ �C2Þ rzð Þ � r
 ¼ r � 
 . . .ð Þ � 
 2�Crz�ð

rCþ ð� þ �C2Þr2zÞ.
Next, letting gðx, yÞ ¼ r2z� C,

�gðx, yÞr2
 ¼ � r � gðx, yÞr
ð Þ � rgðx, yÞ � r
½ �

¼ �
�
r � gðx, yÞr
ð Þ � r � 
rgðx, yÞð

þ 
r2gðx, yÞ�

¼ � r � gðx, yÞr
� 
rgðx, yÞð Þ þ 
r2gðx, yÞ
� �

:

Therefore, ðr2z� CÞð�r2
Þ ¼ �r � ðr
ðr2z� CÞ �

rðr2z� CÞÞ þ 
�r2ðr2z� CÞ.

In both of the above cases, the volume integration
of the divergence term becomes a surface integral at
infinity of a zero-valued function (due to the properties
of 
), and the latter terms which are multiplied by 

become the solutions to the variational problem.
These yield

�M
�F

�z
¼M� 2Crz � rCþ

�

�
þC2

	 

r2z�r2 r2z�C

� �	 

,

from which we get,

1

M�

@z

@t
¼ 2Crz � rCþ

�

�
þ C2

	 

r2z� r4zþ r2C,

where r4 ¼ r � rðr2Þ ¼ @xxxx þ @yyyy þ 2@xxyy. More
explicitly,

1

M�
zt ¼ 2C zxCx þ zyCy

� �
þ

�

�
þ C2

	 

zxx þ zyy
� �

� zxxxx þ zyyyy þ 2zxxyy
� �

þ ðCxx þ CyyÞ: ð6Þ

We can furthermore derive such an equation for the
intrinsic curvature, which is also straightforward.
Starting with the same free energy integral as before,
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we get

�F

�C
¼

d

d


Z Z
A

dxdy

2

d

d	

�
� þ � Cþ 	
ð Þ

2
� �

rzð Þ
2

þ � r2z� Cþ 	
ð Þ
� �2�

	¼0

¼
d

d


Z Z
A

dxdy 
�C rzð Þ
2
�
� r2z� C

� �� �
¼ C� rzð Þ

2
þ1

� �
� �r2z,

which gives

�F

�C
¼ C� rzð Þ

2
þ1

� �
� �r2z: ð7Þ

From these we may interpret how adsorbed proteins
are conducive to long-range interaction. Since the above
variational derivative is itself a scalar field defined along
the membrane surface, we may define another scalar
field simultaneously, �Cðx, yÞ, governing the change of
intrinsic curvature (or adsorbed protein concentration)
experienced by the the membrane for a given diffusion
decision made by a protein. If we begin to discuss each
protein as carrying along with it some local curvature
field function, we may regard these as the characteristic
basis functions comprising �Cðx, yÞ.

3. Results

3.1. Criticality of intrinsic curvature

An important property of membrane-mediated epsin–
epsin interaction that we would like to capture within
the scope of our model is an effective attraction—
resulting from a convexity in free energy as a function of
radial distance—that would drive spontaneous aggrega-
tion (and hence favouring the tendency for vesicle
formation). To explore its origin, we may regard
equation (7) as defining an effective ‘conservative’
force for membrane mediated epsin–epsin attraction.
This idealizes our multiscale KMC-TDGL scenario,
since it avoids all considerations of thermal (Brownian)
behaviour. To focus on the equilibrium point of a two-
epsin system, we recast our free energy functional in the
format of a ‘central-force’ description, keeping one epsin
fixed and allowing an approaching epsin to interact with
it via the membrane mediated generalized force. Let f(r)
be the radial force. From equation (7) we have

fðrÞ ¼ �
@F

@jrj
¼ �

Z Z
A

�F

�C

dCðx, yÞ

dr
dxdy

¼ �

Z Z
A

Cðx, yÞ� rzð Þ
2
þ1

� �
� �r2z

� �dCðx, yÞ
dr

dx dy:

ð8Þ

We note that C(x, y) is explicitly dependent on the
locations of the two epsins under consideration, and
in-turn depends on their distance, jrj, from one another.
Equation (8) allows us to write,

fðrÞ ¼ �
�

2

d

dr

Z Z
A

C2 rzð Þ
2
þ1

� �
dxdy

þ
d

dr

Z Z
A

C�r2z dxdy: ð9Þ

Then integrating along the radial distance r1 to another,
r2, we get the energy change experienced by an epsin
relocated from some radial position r1 relative to the
stationary epsin to the new position r2, again relative to
the stationary epsin,

�Uðjrj ¼ r1 ! r2Þ ¼

Z r2

r1

fðrÞ � ðdrÞ

¼
�

2

Z Z
A

C2 rzð Þ
2
þ1

� �
dxdy

� �jrj¼r2

jrj¼r1

�

Z Z
A

C�r2z dx dy

� �jrj¼r2

jrj¼r1

: ð10Þ

We extend our analytic treatment further by assuming
that the induced curvature is radially symmetric so that
the standard association of C0 with two characteristic
radii (<1,<2) of deformation given by C0 ¼ ð1=<1 þ

1=<2Þ; instead we write C0 ¼ 2=<. Now assuming that
the functional form of C for the ith epsin is a delta
function, centred about the epsin’s centre (neglecting
steric exclusion for the time being),

Ciðx, yÞ 	
2

<
�ðjr� rijÞ,

Ciðx, yÞ
2
	

4

<2
�ðjr� rijÞ:

Then equation (10) gives us the relation

�Uðjrj ¼ r1 ! r2Þ ¼
2�

<

1

�
rzð Þ

2
�r2z

� �jrj¼r2

jrj¼r1

:

The implied transition between energetically favourable
and energetically unfavourable nucleation landscapes is
intuitive: a smaller induced curvature (< ! 1) allows
for a region of greater convexity in the membrane to
‘pull’ an epsin in. Meanwhile, any increase at all in the
concavity of membrane height will cause epsin–epsin
repulsion.
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3.2. Manifestation of protein–membrane interaction

In extending the above discussion to the model discussed
in section 2, it is first instructive to examine the
relationship between the lattice diffusion of proteins
and the continuum dynamics of the membrane in the
adiabatic limit. Since there is a clear separation of time-
scale in this case, the KMC steps are carried out for
approximately �t=ða20=DiÞ steps, where �t is the time
step of integration for the TDGL equations. The KMC
moves alter the epsin coordinates and in turn the C(x, y)
function. This is how the KMC moves affect the TDGL
dynamics of the membrane. The presence of two
adsorbed proteins on the membrane introduces an
energy landscape for the lateral diffusion of epsins
on the membrane. This has its origin from the �F=�C
term producing a Ginzburg–Landau equation of the
form [37]:

@C

@t
¼ � ~M

�F

�C
þ � )

�C

�t
�

�C

a20=D

�F

�C
:

We derived the second relationship based on a simple
scaling analysis to illustrate the fact that the time-scale
of lateral diffusion on the membrane has two compo-
nents. The bare component is given by the a20=D, and the
generalized force component arising from the above
equation is given by the �F=�C term. Hence, the time-
scale for lateral diffusion is given by ½a20=Di�=½�F=�C�.
This in turn renormalizes the rate constants used in the
KMC moves. Therefore, it is evident that even in the
adiabatic limit, the membrane dynamics affect KMC
moves. In our simulations, we perform this renormaliza-
tion of kinetic constants for each KMC move on-the-fly
as dictated by the membrane conformation.
The physical picture emerging from these interactions

is that the renormalized interaction between two epsin
molecules (the so-called potential of mean force) has the
form as depicted in figure 1(c), where F is the effective
free energy and r is the distance between two adsorbed
epsins. The exact form of this potential depends on the
values of the hard-sphere exclusion, �, �, R and C0. The
form of F(r) implies the following: (1) the system is
dominated by repulsion at two length scales, the
exclusion diameter and the point outside the exclusion
diameter where F(r) is maximized (see section 3.4). These
interactions are likely to conspire in inducing order (or
spatial correlations) in adsorbed epsins analogous to the
ordering in a two-dimensional liquid; (2) that there is a
barrier in localizing the epsin molecules in a region on
the membrane, which depends on the height where F(r)
is maximized, and therefore on R and C0 as well. The
barrier has to be overcome (as in a nucleation event)
before the epsins can collectively act to curve the
membrane.

3.3. Dynamical behaviour of protein-adsorbed
membranes

We are now poised to present the results from the
successful application of the KMC-TDGL multiscale
method for the case of epsin adsorbing on phospholipid
membranes (there are no other proteins present in the
system). In order to obtain the state and dynamical
behaviour associated with the protein-adsorbed mem-
brane phase, we explore a range of values for the
parameters �*, C0 and R, while holding �, �, M and T
fixed. A depiction of our findings from a series of
multiscale simulations for different sets of interaction
parameters is provided in figure 2; in these pictures, the
protein positions are omitted, blue regions correspond
to recessed and red correspond to elevated parts of the
membrane.

For R¼ 40 nm (R* ¼ 2, twice the epsin diameter) and
C0¼ 20 mm�1, the protein–membrane interaction is
weak and the induced curvature is much localized
around the epsin positions (1st and 2nd rows, figure 2).
Increasing �* does not affect this local behaviour. Thus,
for small values of R and C0, vesicle nucleation is likely
absent for any value of �*. For R¼ 60 nm and
C0¼ 10 mm�1, the dynamics is similar to that described
above (3rd row, figure 2), but for values of
C0>40 mm�1, membrane invagination is observed
(contrast 3rd–5th rows of figure 2). This event is non-
cooperative and occurs even at low �*, due to the large
curvature induced by each individual protein. At
R¼ 80 nm, sub-threshold values of C0<30 mm�1, and
small �*, we observe no nucleation (6th row); but, as we
increase �*, we observe membrane invagination arising
from cooperative fluctuations (compare rows 6 and 7 in
figure 2). The cooperativity manifests as a persistence of
spatial and orientational correlations among the epsins
(discussed in section 3.4) and is also marked by epsin
localization. However, in our simulation, the membrane
invagination was not stable (and therefore subsided)
for long times, indicating the formation of a subcritical
nucleus. This nucleus was stabilized for long times
when the range R was increased to 100 nm (row 8,
figure 2) and the nucleation led to long-time membrane
invagination.

3.4. Liquid-like structuring of epsins adsorbed
onto the membrane

In figure 2, we reported protein-mediated membrane
dynamical behaviour for a range of physical parameters.
In order to further characterize the state of the system as
a function of these parameters, we quantify the spatial
organization and temporal responses of the system by
introducing several correlation functions. The spatial
organization of the adsorbed proteins on the membrane
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is recorded by calculating the radial distribution
function gðrÞ ¼ �*ðrÞ=h�*i, where the quantity in the
numerator is the surface density of adsorbed proteins at
a particular location and that in the denominator is its
spatial average. Going by the form of the potential mean
force in figure 1(c), we expect to see correlations between
proteins at two length scales, namely, the hard-sphere
exclusion and the range of interaction, R. Radial
distribution functions for different states of the pro-
tein–membrane system provided in figure 3(a) are

reminiscent of those for a 2-dimensional fluid with the
repulsive interaction (packing) dictated by the value of
R rather than the exclusion distance. At low density, the
radial distribution function for small values of R
resembles that of a dilute hard-sphere system in two
dimensions. For larger values of R and at higher
densities, significant spatial correlations are present.
In particular, the non-zero values of g(r) for r<R
signifies the co-localization of epsin molecules on the
membrane. The free energy landscape associated with
such a co-localization can be inferred from the potential
of mean force fðrÞ ¼ �kBT ln gðrÞ.

A closely associated characteristic spatial quantity is
the orientational correlation function hC6*ð0ÞC6ðrÞi,
where C6ðrÞ is given by

P
j exp ½i6�jðrÞ�. Here, i ¼

ffiffiffiffiffiffiffi
�1

p
,

the index j runs from 1 to the number of nearest
neighbours to any given protein at location r, and �i(r) is
the angle formed by the projection of the line joining the
nearest neighbours to any given protein at location r, and
�i(r) is the angle formed by the projection of the line
joining the nearest neighbours (termed as nearest
neighbour bond) on the xy plane with the x axis.
Nearest neighbour pairs are identified as those pairs of
molecules that are separated by a distance that falls in the
range of the first peak of the g(r) function. The quantity
hC6*ð0ÞC6ðrÞi, therefore, measures the persistence of
bond-orientational correlations (or hexagonal ordering)
among the membrane-adsorbed proteins (figure 3(b)).
Our results show that the persistance of orientational
correlation occurs for R>80nm, C0>20 mm�1 and
�* > 0:016. Taken together with the occurrence of
membrane invagination, we deduce that under these
conditions, the orientational correlations cause coopera-
tive fluctuations among epsins to drive nucleation.

In order to track the dynamical response of the system,
we introduce two temporal correlation functions. The
first is the membrane height autocorrelation function
h�zð0Þ�zðtÞi, where �z(t) is the standard deviation of the
height of the membrane at each spatial location
(if averaged everywhere, the height is always zero) at
time t. This membrane height autocorrelation function is
sensitive to any global rearrangement in membrane
geometry and yields the relaxation time associated with
such reorganization (figure 3(c)). In the figure, the
correlation functions under several conditions show a
diverse relaxation behaviour. The functions’ transition
between two plateau values, the magnitude of the
difference signifies the amplitude associated with
the membrane relaxation, and the time taken for the
transition signifies the corresponding relaxation time.
The relaxation times span several orders of magnitude
indicating the importance of protein mediation in
membrane dynamics. In particular, the long relaxation
time indicated by � is a reflection of a glassy behaviour.

Figure 2. Snapshots depicting the behaviour of the protein-
adsorbed membrane for different sets of model parameters.
For each parameter set, a time course is obtained from the
simulations from which three snapshots are depicted. For
clarity, only the membrane is shown, (the epsin positions are
omitted). Blue regions correspond to recessed, and red regions
to elevated parts of the membrane.
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Regimes where cooperative spatial and orientational
correlations persist also show slower dynamical response.
In addition to the membrane height autocorrelation,

we calculate the frequency spectrum of the membrane
undulations using principal component analysis [49] and
quasiharmonic analysis. We calculate the covariance
matrix of height fluctuations ~H (the tilde representing a
matrix here) in Cartesian space whose elements are given
by: Hij ¼ hðzi � hziiÞðzi � hziiÞ

T
i, where i and j run from

1, . . . ,N, N being the total number of grid points
resolving the membrane, z represents the height in the
Cartesian system of coordinates and the superscript ‘T’
denotes transpose. Diagonalization of ~H yields eigenva-
lues and eigenvectors corresponding to the principal
modes, which represent a set of independent directions
of membrane undulation modes (the principal compo-
nents). The normalized magnitude of the corresponding
eigenvalue is a measure of amplitudes of the undulation
along the eigenvector. The first few eigenvalues
(in decreasing order) describe the largest height fluctua-
tions. Within the quasi-harmonic approximation [50, 51]
(which is based on the equipartition of energy among

different dynamical modes of undulation), the frequency
�i associated with the ith undulating mode is given by
�i ¼ ð1=2pÞðkBT=eviÞ

1=2, where e(viv) is the eigenvalue of
the corresponding mode. The frequency spectra asso-
ciated with membrane dynamics in figure 2 are provided
in figure 3(d). In addition to the dominant membrane
relaxation modes, the frequency response also depicts
the time-scales associated with other membrane undula-
tion modes. Again, a diverse set of temporal responses
are observed for the different conditions.

4. Discussion and conclusions

The development of the KMC-TDGL methodology in
the adiabatic limit (where there is a clear separation
of time-scales) and its application to the case of protein-
mediated membranes is illustrated. Even in the adiabatic
limit, there is coupling between the lattice and
continuum degrees of freedom through the energy
landscape. This coupling is unique to the problem
considered here because the lattice dynamics and the
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Figure 3. Correlation functions: (a) radial distribution functions showing liquid-like order with packing determined by the
range R; (b) orientational correlation functions showing persistence of correlations for up to 4R; (c) height correlation functions
showing the relaxation time associated with the dominant membrane undulation mode; (d) frequency spectrum indicating the time-
scales for different dynamical behaviour. The symbols correspond to: 
R ¼ 40 nm, C0¼ 20, �* ¼ 0:004; /R ¼ 60 nm, C0¼ 60,
�* ¼ 0:008;

4

R ¼ 40nm, C0 ¼ 20, �* ¼ 0:003;h R¼ 80 nm, C0¼ 30, �* ¼ 0:016;� R¼ 100 nm, C0¼ 30, �* ¼ 0:016; �R ¼ 80 nm,
C0¼ 5, �* ¼ 0:02; 4R ¼ 80 nm, C0¼ 20, �* ¼ 0:03; s R¼ 80 nm, C0¼ 10, �* ¼ 0:02.
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continuum dynamics occur in the same spatial domain.
To be specific, the protein diffusion determines the
intrinsic curvature function C(x, y) for membrane
dynamics and the membrane curvature, in-turn, presents
an energy landscape for protein diffusion. To account
for this coupling correctly, the updates of the intrinsic
curvature function C(x, y) and the rate constants
associated with KMC moves are performed on-the-fly.
We applied the KMC-TDGL method to a protein

adsorbed membrane system in order to determine the
influence of protein–membrane interaction and protein
concentration on the phase and dynamic behaviour of
the membrane. Our findings can be summarized as
follows: for small values of R and C0, we observe no
nucleation at any value of �*. For intermediate values of
R, above a threshold value of C0¼ 40�M�1 , we observe
membrane invagination. This event was, however, non-
cooperative and occurred even at low �*, solely due to
the large curvature induced by each protein. At inter-
mediate values of R and sub-threshold values of C0 and
moderately high �*, we observed nucleation followed
by membrane invagination due to cooperative fluctua-
tions. This was marked by epsin localization, just as one
would expect in an endocytotic internalization event. The
spatial and dynamical correlations provide us with the
measures necessary for a comprehensive thermodynamic
and dynamic characterization of (and therefore measures
to distinguish between) the different states of the
protein–membrane system. For example, the persistence
of spatial and orientational correlation is a signature of
cooperative behaviour. Moreover, dynamical correla-
tions yield membrane relaxation times which reflect on
the dynamical state of the system (liquid versus glass).
Therefore, by exploring the range of values of R and C0,
different states with markedly different equilibrium and
dynamic behaviour were identified.
Our mesoscopic method is based on simplified

physical models and model parameters, which enable
the bridging of disparate length scales, but nevertheless
introduce approximations. The functional form and
the specific values of the interactions in our multiscale
model can be validated by independently calculating
them in microscopic simulations or measuring them
experimentally. For example, within fully atomistic,
explicit water molecular dynamics simulations, a reliable
route to estimating the elastic constants in microscopic
simulations is to employ the cell method of Yoshimoto
and co-workers [55] and calculate the stress tensor �ij
directly from dynamics trajectories [55–57]. For the
membrane system, the interfacial tension � is obtained
by integrating over the stress profile; namely,
� ¼

R
dz½�zz � �xx þ �yy

� �
=2� [18, 58]. Decomposition

of the elastic moduli into the renormalized elastic
constant � appearing in the Helfrich free energy function

equation (5) is cumbersome. Instead, it is possible to
estimate this parameter through fluctuation relation-
ships. Following Lipowsky and co-workers [55], this can
be achieved by computing the fluctuation spectrum
SðqÞ ¼ hjzðqÞj2i, where z(q) is the Fourier transform of
z(r). A fit to the scaling of the SðqÞ � kBT=�q

4þ kBT=�q
2

will yield the estimation of the parameter �. Finally, the
value of the intrinsic curvature C0 can be calculated by
integrating over the lateral stress profile, �k ¼ �xx and
using the relationship: 2�C0 ¼

R
z @�k=@z
� �

dz [59].
Independent measurements of these parameters
(namely, interfacial tension and bending rigidity) from
experiments are also possible [19, 60].

Several predictions from our modelling of the
protein–membrane dynamics can be directly tested in
experiments: the calculated values of relaxation times
in figure 3 can be compared with those obtained from
dielectric relaxation spectroscopy measurements on
protein-adsorbed membranes [61–65]. Parameters such
as interfacial tension and bending rigidity can be
measured using micropippette experiments and local
deformation/curvature can be measured using confocal
microscopy and X-ray diffraction. These experiments
provide avenues to validate model predictions.

Several extensions to our multiscale approach can be
made to make it more general and widely applicable.
In the regime where the time-scales overlap (De � 1),
the discrete (KMC) process has to be integrated with the
continuous TDGL equations. One possible route to
achieving this integration is in the spirit of surface
hopping methodology introduced by Tully and
co-workers [65, 66]. Our methodology can also be
extended to include a curvilinear representation allowing
for larger deformations, and hydrodynamic interactions
between adsorbed epsins if detailed calculations of the
potential of mean force is available through atomistic
simulations. These avenues will be pursued in future
studies. We note that even though our efforts are focused
on membrane mediated processes, the proposed multi-
scale strategy is general enough to be applicable to many
problems requiring the integration of lattice and
continuum length scales; examples include biochemical
signal transduction, DNA dynamics and DNA–protein
interactions, and crystal growth, to name a few.
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Appendix: Numerical analysis of the membrane

finite difference equations

Our intent is to transcribe our fourth-order differential
equation into a difference equation in x and y. The first-
order time derivative we represent as a back-difference
between the times m and m� 1, or


m
i, j ¼ 
m�1

i, j þ 
ð1Þ
i, j � þ


ð2Þ
i, j �

2

2
þ � � � ,


ð1Þ
i, j � ¼


m
i, j � 
m�1

i, j

�

" #
þO �ð Þ,

where i, jð Þ indexes the x–y lattice coordinates and

 ¼ 
ðx, y, tÞ designates the arbitrary single-valued
function under consideration. Similarly, in one spatial
dimension, taking the Taylor expansion about iþ 1 and
subtracting it from the corresponding expansion about
i� 1 we get


ð1Þ
i ¼


iþ1 � 
i�1

2	
�
	2
ð3Þ

i

3!
þOð	4Þ:

Similarly, adding the two we get


ð2Þ
i ¼


iþ1 � 2
i þ 
i�1

	2
�
2	2
ð4Þ

i

4!
þOð	2Þ:

There are two methods worth addressing in solving for
the highest-order terms: iteration of the second-order
difference equation and a derivation from the bottom
up, using linear combinations of Taylor expansions to
systematically minimize error. Were we to iterate the
above, we would inherit a recursive definition of the
fourth-order derivative evaluated at neighbouring
points. We therefore choose the latter, combining
Taylor expansions for neighbouring spaces on a 1D
grid, iþ 1, iþ 2, i� 1 and i� 2. For some linear
combination encoded in the matrix A:


iþ1 � 
i


iþ2 � 
i


i�1 � 
i


i�2 � 
i

0
BBB@

1
CCCA ¼ A

	
ð1Þ

	2
ð2Þ

	3
ð3Þ

	4
ð4Þ

	5
ð5Þ

	6
ð6Þ

0
BBBBBBBB@

1
CCCCCCCCA

þOð	7Þ:

We define A on a per-row basis.

A1,n ¼
1

n!
, A2,n ¼

2n

n!
, A3,n ¼

ð�1Þn

n!
, A4,n ¼

ð�2Þn

n!
:

This gives us 4 equations that correspond to the Taylor
expansions at the 4 neighbouring points. Of these
equations, we need a linear combination that eliminates
all 
n except 
ð4Þ, which is the value for which we are
solving. Then,

1

n!
a1 þ a2 2ð Þ

n
þa3ð�1Þn þ a4 �2ð Þ

n
ð Þ ¼ 0, n 6¼ 4,

for some set of coefficients a1, a2, a3 and a4. Notice,
however that we have 5 equations even if we exclude
n¼ 4. Therefore, the solution is over-determined.
In order to solve this homogeneous equation, we must
reduce the n’s for which we are solving. Realizing that
we can sacrifice n¼ 1 and 2, already having finite
differences with acceptable error for their respective
order derivatives, we will solve the system of equations
for n¼ 3, 5 and 6 to give the values,

a1 ¼ �64, a2 ¼ 1, a3 ¼ �64, a4 ¼ 1:

We use these factors in the linear equation:


iþ1 � 
i


iþ2 � 
i


i�1 � 
i


i�2 � 
i

0
BBB@

1
CCCA ¼

1
1

2

1

3!

1

4!

1

5!

1

6!

2 2
8

3!

16

4!

32

5!

64

6!

�1
1

2
�

1

3!

1

4!
�

1

5!

1

6!

�2 2 �
8

3!

16

4!
�
32

5!

64

6!

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

�

	
ð1Þ

	2
ð2Þ

	3
ð3Þ

	4
ð4Þ

	5
ð5Þ

	6
ð6Þ

0
BBBBBBBB@

1
CCCCCCCCA
,

to eliminate all unknown derivatives (and, incidentally,
the first-order derivative as well) to give �64 
iþ1 � 
ið Þþ


iþ2 � 
ið Þ � 64 
i�1 � 
ið Þ þ 
i�2 � 
ið Þ ¼ �60	2
ð2Þ �

4	4
ð4Þ. Substituting in for 
ð2Þ its corresponding
Taylor expansion through its sixth-order term, we get


ð4Þ ¼

1�2 � 4
i�2 þ 6
i � 4
iþ1 þ 
iþ2

	4 � 	2

6 

ð6Þji þ 0ð	4Þ:
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While obtaining the cross term 
xxyy, we do not need to
go through the trouble of formulating the matrix
problem because the iterative use of fourth-derivatives
is one into which we can insert the above answer in. . .


xxyyji, j ¼
1

	4

n

i�1 � 2
i þ 
iþ1ð Þj�1�2 
i�1 � 2
i þ 
iþ1ð Þj

þ 
i�1 � 2
i þ 
iþ1ð Þjþ1

o
�

1

12
ð
xxxxji, j�1 � 2
xxxxji, j þ 
xxxxji, jþ1Þ þO 	2

� �
:

This expands to


xxyyji, j ¼

�
i�2þ16
i�1�30
iþ16
iþ1�
iþ2ð Þj�1

�2 �
i�2þ16
i�1�30
iþ16
iþ1�
iþ2ð Þj

þ �
i�2þ16
i�1�30
iþ16
iþ1�
iþ2ð Þjþ1

0
B@

1
CA

12	4

þOð	2Þ: ð11Þ

Note that because it depends on the order we plug in
variables x and y into equation (6), equation (11) treats

x and y with some asymmetry. However, we can confide
in the fact that any inaccuracy will emerge only in terms
with 	n�2.

We now rewrite equation (6) in terms of a finite
difference, ensuring stability by the standard Crank–
Nicholson method [68] (that is, applying a two-part time
average to all derivatives of order greater than two).
Cumulatively, with terms corresponding to the two
time points m and m� 1 separated, our equation
becomes:

Arithmetic aside, we are ready to insert these coefficients
into the linear problem Azjm ¼ Bzjm�1 þ R for which,
given a time step � and curvature distribution C(x, y),
we can compute the discrete time evolution of the
membrane.

Stability, however, remains of immediate interest. The
Courant–Friedrich–Levy (CFL) condition [69] dictates
that any propagation in a space interval corresponding
to 	 which projects a causal change over a time interval �
must be governed by some invariant—a ‘light cone’, so
to speak—for which the physical domain of causality

1

M��
zmi, j �

1

2

1

	2
�

�
þ C2

i, j

	 

zmi�1 � 2zmi þ zmiþ1

� �
j
þ zmj�1 � 2zmj þ zmjþ1

	 

i

h i

�
1

	4

zmi�2 � 4zmi�1 þ 6zmi � 4zmiþ1 þ zmiþ2

� �
j

þ zmj�2 � 4zmj�1 þ 6zmj � 4zmjþ1 þ zmjþ2

	 

i

2
4

3
5

�2 �
1

12	4

�zmi�2 þ 16zmi�1 � 30zmi þ 16zmiþ1 � zmiþ2

� �
j�1

�2 �zmi�2 þ 16zmi�1 � 30zmi þ 16zmiþ1 � zmiþ2

� �
j

þ �zmi�2 þ 16zmi�1 � 30zmi þ 16zmiþ1 � zmiþ2

� �
jþ1

2
6664

3
7775þOð	2Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
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ð2	Þ2
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i�1
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j
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i
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1
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:
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does not outpace the numerical domain of causality.
In our case, we may see simply by inspection from
equation (6) that the highest order time and space terms
preserve the scaling relationship 1=M�� � 1=	4. CFL
therefore conditions our solution to the regime where
� < 	4=M�. Any discretization that does not obey this
rule must necessarily be unstable.
In order to satisfy CFL, two separate grids were

constructed for dealing with epsin diffusion and
membrane deformation, the former fine, the latter
coarse, taking as input from a time-weighted average
interpolated from the former. Adsorbed epsins were
charted as smooth Gaussians, with peak (maximum)
values set to be C0 with units m�1. (C0 scales as 1=<, <
being the characteristic radius of curvature, see
section 3.1).
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