CIS 700/005
Networking Meets Databases

Boon Thau Loo
Spring 2007
Lecture 1

Note: Some slides are courtesy of Jan Helmer and Scott Shenker

Overview

- Introductions
- Course logistics
- Overview of the course
- Review of database concepts

Introductions

- Assistant Professor since Jan ’07
- Areas of interests: databases and networking
- Ph.D. from UC Berkeley, Dec ’06
- Industry collaborations:
 - Intel Research Labs at Berkeley (’05/’06)
 - Visiting researcher at Microsoft Research (Aug-Dec ’06)
- Current areas of focus:
 - Distributed query processing and optimizations,
 - Internet-scale query processing,
 - Extensible data-centric network architectures
 - Large-scale DB-IR infrastructures

You?

- Name, year, background, interest, advisor(s), etc.

Contact Information

- Office: 605 Levine Hall
- Office hours: Wednesday 3-4pm or by appt
- Email: boonloo@cis.upenn.edu
- Home page: http://www.cis.upenn.edu/~boonloo

Course Logistics

- Enroll for credit:
 - Paper summaries: 30%
 - Class participation: 20%
 - Class presentation: 10%
 - Project: 40%
- Welcome to audit the class (officially or unofficially)
- Mix of lectures + paper discussions
- 1-1.5 papers per class
Paper summaries and presentations

- Summaries due noon of the day of class
 - Main contributions
 - Limitations
 - Propose improvements
- Pick your favorite paper to present
 - Week in advance notice
 - Work with me on presentations

Class Project

- Two options:
 - Research project (individual or groups of 2)
 - Survey paper (individual)
 - End-result: 6 pages workshop paper + in-class presentation
- A good project can become the basis for:
 - Publication (VLDB, SIGMOD, NSDI, SIGCOMM, IMC, etc)
 - Masters/Ph.D. thesis
 - WPE-II critical review
- My role is to work with you:
 - Suggest/develop ideas, regular meetings, provide tools
 - http://www.cis.upenn.edu/~boonloo/cis700-sp07/ideas/ideas.html

Primary Goal of the Course

- Explore topics at the intersection of database and networking
- Study how database concepts can influence the way networks are designed and built
- Equivalent courses in other universities:
 - Networked Information Systems, Distributed Data Management, P2P networks, sensor databases, etc
- Main difference:
 - Stronger networking flavor
 - Aim for impact in the networking community

For the Rest of Today

- From DB to NetDB: Emerging Synergies
- Topic Highlights
- Review Database Concepts

Database Systems Then

Slides courtesy of CS186: Fall 2008, UC Berkeley
Napster, Gnutella, KaZaA, etc.

Points to key social issues driving adoption of decentralized technology:

- Fairly trivial technology
- IP, SMTP, HTTP, SNMP log formats, firewall logs, etc.
- DoS attacks cross administrative boundaries
- Network forensics and accountability (various papers)

Knowledge plane (SIGCOMM ’03)
Information plane (OSDI ’04, OSDI ’06)

Who Needs Internet-Scale Querying?

Example 1: Filenames

- Simple ubiquitous schemas:
 - Filenames, Sizes, ID3 tags
 - Early P2P filesharing apps
 - Napster, Gnutella, KaZaA, etc.
 - Fairly trivial technology
 - But...
 - Points to key social issues driving adoption of decentralized systems
 - Provide real workloads to validate more complex designs for the future
- PIER + Gnutella infrastructure (VLDB ’04)

Example 2: Network Traces

- Schemas are mostly standardized:
 - IP, SMTP, HTTP, SNMP log formats, firewall logs, etc.
- Network administrators are looking for patterns within their site AND with other sites:
 - DoS attacks cross administrative boundaries
 - Tracking sources of viruses/worms
 - Timeliness is very helpful
- Hot topic today:
 - PlanetLab (distributed research test bed) is mostly filled with people monitoring the network status
 - Network forensics and accountability (various papers)
Future: Data-centric Internet

- "Clean-slate" Internet Designs:
 - NSF FIND and GENI programs
- Traditional Internet:
 - Host-centric protocols
 - Get data from here to there
 - Protocols defined in terms of IP addresses
- Web-based Internet:
 - DNS, URLs
 - Data-centricity in a host-centric world
 - Key-enabler: search engines

Routing Protocols as Dataflows

- P2 declarative networking system: distributed query processor for the core network architecture
- Network routing as database execution plans:
 - Query processors are dataflow engines.
 - So are routers (e.g., CLICK modular router toolkit).

Networking meets Databases

- Great research opportunities
- Potentially high-impact area:
 - New classes of data-intensive applications
 - Cross-disciplinary (networks, algorithms, databases, security, languages)
- Emerging publication venues:
 - VLDB Information Infrastructure track
 - NetDB (co-located with NSDI/ICDE),
 - MineNet (co-located with SIGCOMM)
 - Others (IPTPS, WORLDS, etc)
Topic Highlights: Building blocks

- Content-addressable networks:
 - Chord (SIGCOMM ’01), all others (survey paper)
- Internet-scale query processing:
 - PIER (VLDB ’03), SDMIS (SIGCOMM ’04)
 - Internet-scale publish-subscribe
 - SIENA (SIGCOMM ’03), ONYX (VLDB ’04)
- Cost-based network optimizations:
 - CORONA (NSDI ’06), XPORT (SIGMOD ’06)

Topic Highlights: Applications

- Data-centric network architectures:
 - 3 (SIGCOMM ’03), ROFL (SIGCOMM ’06)
 - Declarative networking (SIGCOMM ’05, SOSP ’05)
 - Revisit active networking research
- Network monitoring and security
 - Query languages and systems for monitoring
 - Network/database forensics and accountability
 - Uncertainty, heterogeneity and data reduction

Topic Highlights: Rest of semester

- Stream processing:
 - Continuous and adaptive query processing
 - Systems: TelegraphCQ, Aurora, HiFi, Borealis
- Other possible topics:
 - Sensor databases. E.g. TinyDB
 - Data management in delay-tolerant networks
 - Large-scale web infrastructures
 - Your suggestions and interests matter!

For the Rest of Today

- Emerging synergies between networking and databases
- Topic Highlights
- Review key database concepts

What is a DBMS?

- A Database Management System is a software system designed to provide data management services
- Examples of DBMS
 - Oracle, DB2 (IBM), SQL Server (Microsoft),
 - PostgreSQL, MySQL,…

Relational Data Model

- Collection of relations (or tables)
 - Each relation has a list of attributes (or columns)
 - Each relation contains a set of tuples (or rows)
 - Duplicates not allowed

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>462</td>
<td>Unix</td>
<td>5</td>
<td>140</td>
</tr>
<tr>
<td>123</td>
<td>C++</td>
<td>3</td>
<td>122</td>
</tr>
<tr>
<td>500</td>
<td>SQL</td>
<td>4</td>
<td>697</td>
</tr>
<tr>
<td>456</td>
<td>Reln</td>
<td>2</td>
<td>426</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>462</td>
<td>Unix</td>
<td>5</td>
<td>140</td>
</tr>
<tr>
<td>123</td>
<td>C++</td>
<td>3</td>
<td>122</td>
</tr>
<tr>
<td>500</td>
<td>SQL</td>
<td>4</td>
<td>697</td>
</tr>
<tr>
<td>456</td>
<td>Reln</td>
<td>2</td>
<td>426</td>
</tr>
</tbody>
</table>
Relational Algebra

- Core set of operators:
 - Selection, projection, cross-product, union, difference and renaming
 - Set operations
- Additional derived operator:
 - Join, etc

SQL Example

- Names of students in CIS 700 with GPA 4.0

```sql
SELECT Student.name
FROM Student, Enroll
WHERE Enroll.CID = CIS700
AND Enroll.SID = Student.SID AND Student.GPA = 4.0;
```

Life of a Query

Advantages of DBMS

- Data independence: applications insulated from how data is structured and stored
- Optimizability
- Reduced application development time
- Efficient data accesses
- Data integrity and security
- Concurrency control and crash recovery
- So why not use them always?
 - Expensive/complicated to set up & maintain
 - This cost & complexity must be offset by need
 - General-purpose, not suited for special-purpose tasks (e.g. text search)

Next lecture

- Thursday
 - Review of distributed and parallel databases
 - Loosely based on Ramakrishnan’s textbook, R*, Gamma
 - No readings due
- Due by Thursday noon:
 - Introduction email (year, background, research interest, advisor, audit/enroll)