CIS 700/005
Networking Meets Databases

Boon Thau Loo
Spring 2007
Lecture 10

Internet Architecture & Layering
Intra-domain routing
Inter-domain routing

Outline

Internet Structure

The Internet contains a large number of diverse networks

Tier 1 networks: The Global ISPs
- AT&T
- Global Crossing
- Level 3
- Verizon Business (formerly UUNET)
- NTT Communications
- Qwest
- SAVVIS
- Sprint Nextel Corporation

Computers Inside the Core

Outline
Re-implement every application for every technology?
No! But how does the Internet architecture avoid this?

Layering
- Layering is a particular form of modularization
- System is broken into a vertical hierarchy of logically distinct entities (layers)
- Service provided by one layer is based solely on the service provided by layer below
- Rigid structure:
 - (+) easy reuse
 - (-) performance suffers

Solution: Intermediate Layer
- Introduce an intermediate layer that provides a single abstraction for various network technologies
 - A new app/media implemented only once
 - Variation on “add another level of indirection”

ISO OSI Reference Model for Layers
- Application
- Presentation
- Session
- Transport
- Network
- Datalink
- Physical

ISO: International Standards Organization
OSI: Open System Interface

Physical Communication
- Communication goes down to physical network, then to peer, then up to relevant layer
A layer can use only the service provided by the layer immediate below it.

Each layer may change and add a header to data packet.

OSI vs. Internet

- OSI: conceptually define services, interfaces, protocols
- Internet: provide a successful implementation

Single Internet layer module:

- Allows networks to interoperate
 - Any network technology that supports IP can exchange packets
- Allows applications to function on all networks
 - Applications that can run on IP can use any network
- Simultaneous developments above and below IP

Think twice before implementing functionality in the network.

If hosts can implement functionality correctly, implement it a lower layer only as a performance enhancement.

But do so only if it does not impose burden on applications that do not require that functionality.

Outline

- Internet Architecture & Layering
- Intra-domain routing
- Inter-domain routing
Routing
- Intra-domain: use link state or distance vector protocols
- Inter-domain: use path vector protocol

Packet Forwarding
- At each router the packet destination address
 1. Is matched according to longest prefix matching rule
 2. Packet is forwarded to the corresponding output port

Link State: Node State
- Each node floods its local information to every other node in the network
- Each node ends up knowing the entire network topology
- Use Dijkstra to compute the shortest path to every other node

Distance Vector: Control Traffic
- When the routing table of a node changes, the node sends its table to its neighbors
- A node updates its table with information received from its neighbors
Addressing

- ARP (Address Resolution Protocol):
 - MAC (Ethernet, 802.11) address <-> IP Address
- DHCP (Dynamic Host Configuration Protocol):
 - Request and obtain an IP address from DNS server
- DNS (Domain Name Service):
 - Hostname to IP address mapping

Support for Mobility

- What if the host moves around and changes its IP address?
- Use DHCP? What if host moves in the middle of a session?
- Solution:
 - Level of indirection
 - Home agent with permanent IP address
 - Stores information on mobile host
 - All nodes send packets to home agent, who forwards to mobile host
 - Foreign agent with permanent IP address
 - Tunnel traffic from home agent to foreign agent
 - Supports device in foreign network
 - Issues: security and efficiency

IP Addressing

- Unicast – Send to one host
- Broadcast – Send to all possible destinations
- Multicast – Send to interested receivers associated with multicast address
- Anycast – Send to closest receiver associated with anycast address

IPv6

- Supports 2^{128}, as oppose to 2^{32} addresses
- IP Anycast
- Mobile IPv6
- IPSec
- Etc…

Outline

- Internet Architecture & Layering
- Intra-domain routing
- Inter-domain routing

Issues We Haven’t Addressed

- Scaling
 - Router table size
- Structure
 - Autonomy
 - Policy
Every router must be able to forward based on *any* destination IP address
- Given address, it needs to know “next hop” (table)
- Naive: Have an entry for each address
 - There would be 10^8 entries!
- Better: Have an entry for a range of addresses
 - But can’t do this if addresses are assigned randomly!

Class-based addressing schemes:
- 32 bits divided into 2 parts:
 - Class A
 - Class B
 - Class C

Classless Inter-domain Routing (CIDR)
- Variable prefix – prevents wastage
- Prefix aggregation – lower overhead of Inter-domain routing
- Routers match to longest prefix

Routing Table Size

Without CIDR:

- 232.71.0.0
- 232.71.1.0
- 232.71.2.0
- 232.71.255.0

With CIDR:

- 232.71.0.0/16
- 232.71.0.0/16
- 232.71.1.0/16

The Internet contains a large number of diverse networks

Autonomous Systems (AS)

- Internet is not a single network!
- The Internet is a collection of networks, each controlled by different administrations
- An autonomous system (AS) is a network under a single administrative control

Implications

- ASs want to choose own local routing algorithm
 - Intra-domain routing algorithm, e.g., link state (OSPF), distance vector
- ASs want to choose own nonlocal routing policy
 - Inter-domain routing: BGP de facto standard
Interconnection

- IP unifies network technologies
 - Allows any network to communicate with another

- BGP unifies network organizations
 - Ties them into a global Internet

Border Gateway Protocol

ignore the details
pay attention to the “why”

Who speaks BGP?

- Two types of routers
 - Border router (Edge), Internal router (Core)

Purpose of BGP

Share connectivity information across ASes

I-BGP and E-BGP

Issues

- What basic routing algorithm should BGP use?
- How are the routes advertised?
- How are routing policies implemented?
 - Policy routing: not always shortest path
Choice of Routing Algorithm

<table>
<thead>
<tr>
<th>Constraints:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
</tr>
<tr>
<td>Autonomy (policy and privacy)</td>
</tr>
<tr>
<td>Link-state?</td>
</tr>
<tr>
<td>Requires sharing of complete network information</td>
</tr>
<tr>
<td>Information exchanges doesn’t scale</td>
</tr>
<tr>
<td>All policies exposed</td>
</tr>
<tr>
<td>Distance Vector?</td>
</tr>
<tr>
<td>Scales and retains privacy</td>
</tr>
<tr>
<td>Can’t implement policy</td>
</tr>
<tr>
<td>Can’t avoid loops if shortest paths not taken</td>
</tr>
</tbody>
</table>

Path Vector Protocol

<table>
<thead>
<tr>
<th>Distance vector algorithm with extra information</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each route, store the complete path (ASs)</td>
</tr>
<tr>
<td>No extra computation, just extra storage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can make policy choices based on set of ASs in path</td>
</tr>
<tr>
<td>Can easily avoid loops</td>
</tr>
</tbody>
</table>

Advertising Routes

- One router can participate in many BGP sessions.
- Initially, a node advertises ALL routes it wants neighbor to know (could be > 50K routes)
- Ongoing: only inform neighbor of changes
- TCP connections

Routes Have Attributes

- When a route is “advertised” it is described in terms of attributes:
 - next hop, AS-path, etc.
 - Other attributes: Origin, MED, Local Preference
- Steps in advertisements:
 - Import policy: Determine which route advertisements should be filtered
 - Decision policy: Select most desirable route
 - Export policy: Determine which neighbors to export routes to
- Example policies:
 - “Use provider B only to reach these addresses”
 - “Use the path that crosses the fewest number of AS”
 - “Use AS x in preference to AS y for route to destination z”

Is Reachability Guaranteed?

- In normal routing, if graph is connected then reachability is assured
- With policy routing, not always
- Issues:
 - Traffic engineering constraints
 - Optimal path is seldom achieved – good path that satisfies policies
 - “Hot potato” routing
 - Pass traffic to another AS as quickly as possible
 - Route to nearest exit point when there is more than one route to destination
 - High convergence delays

Roadmap

- Internet Indirection Infrastructure
 - DHT-based overlay to support flexible multicast, anycast, service composition and mobility
- Revisiting the IP waistline:
 - Active networks: Allow routers to run arbitrary code
 - Declarative networks: Allow routers to run database queries
- Routing on Flat Labels:
 - Clean-slate redesign – Get rid of location and route using DHTs
- Network Forensic Alliance
 - AS collaborate to locate origin of epidemic worm attacks
Announcements

- Feb 12 proposal deadline
- Volunteers to present twice
 - Improve presentation / class participation scores
 - Improve presentation skills
- In-class presentation:
 - Roughly 10 presentations, 15 minutes each
 - 19th Apr (Thursday) : 4:30pm – 7pm??
 - 20th Apr (Friday) : 1pm – 3:30pm??