PathDCS Overview

Practical Data-Centric Storage, NSDI 2006
By Cheng Tien Ee, Sylvia Ratnasamy, Scott Shenker
(slides material from http://www.eecs.berkeley.edu/~ct-ee/pathDCS/)

Previously in CIS700

- Major theme in class: Data Centric Storage
- Key based get/put storage and query interface
- Challenging to apply to sensor networks
 - Limited CPU, memory, network resources
- Not worthwhile in some scenarios
 - E.g., all data required by gateway node
- But worthwhile in some scenarios
 - Summarized, periodically queried data
 - Disconnected gateways
 - Foundation for complex query support

DCS Requirements

- A system for consistently locating destination
 - Requires a common frame of reference
 - Mapping from key into that reference
- Routing mechanism to forward to destination

Distributed Hash Tables

- CAN
 - Frame of reference is virtual coordinate space
 - Mapping is hash function into coordinate space, node managing zone in which it falls is destination
 - Routing is greedy forwarding through coordinate space, with underlying point to point support
- Chord
 - Frame of reference is ring identifier
 - Mapping is hash function into identifier space, closest node chosen as destination
 - Routing is forwarding along finger & successor tables, with underlying point to point support

DHTs on Sensor Networks

- Have to handle network layer routing & forwarding in addition to overlay routing
 - No underlying point to point routing support
 - Have to do so in very constrained setting

Previous Reading: GHT

- Geographic Hash Table (GHT)
 - Data-centric storage for sensor nets
 - One of several systems utilizing physical coordinates
- Frame of reference is geographic region encompassing sensor network
- Mapping is hash onto coordinate in region, closest node chosen as destination
- Routing is greedy forwarding toward geographically closer nodes, or walk around network if necessary
Limitations of GHT & Others
- Must know boundaries of reference region
 - Requires preconfiguration and tuning, limits mobility
- Assumes unit-disc connectivity
 - Needed for correctness of perimeter walk
 - Addressed in later work (CLDP) but complex & costly
- Must know node position
 - Not available on all devices
 - Virtual coordinates (GEM, NoGeo) complex & costly
- In general, point to point routing on sensor nets very difficult (power, bandwidth, CPU limits)

PathDCS Goals
- Provide data centric storage for sensor nets
- Make no assumptions about availability of geographic information, or underlying routing
- Use simple, deployable techniques appropriate to limited nodes used in sensor networks

Basics
- Frame of reference is set of known, landmark beacon nodes in network
- Mapping is onto a walk on the network, anchored by those beacons
- Routing is along trees rooted at beacons

Algorithm
- Randomly elect or configure beacons
- Each beacon has logical numeric identifier
- To store data:
 - Hash key into identifier space, choose closest beacon
 - Forward to beacon along that beacon’s routing tree
- For each i <= p (a preconfigured parameter)
 - Hash key and i into identifier space, choose closest beacon
 - Forward toward beacon along its routing tree for the number of hops determined by the hash modulus distance to beacon
 - Final node is destination
- To query data, follow same procedure

PathDCS Sketch

Beacon Election
- Each node is assigned a random identifier
- Identifier space divided by preconfigured # of beacons into equal-sized partitions
- Node with greatest id in partition becomes beacon for that partition
 - Based on announcement delay proportional to distance from upper partition edge
 - Snooping for announcements, choose beacons
- Beacon ids for each partition advertised in distance-vector packets
Tree Routing

- PathDCS built entirely on tree routing
 - A common, deployed capability for sensor networks
 - Does not rely on complex, costly point to point routing
- A routing tree is constructed for each beacon
 - Nodes recursively pick parent closest to beacon among all their neighbors
 - Can apply metrics such as ETX (estimated throughput) or MT (minimum transmission)

Beacon Handoff/Takeover

- Beacons can be overloaded or fail over time
- Can explicitly handoff beacon responsibility
 - Might handoff on dwindling power, nearby beacon
 - Beacon picks a one-hop neighbor & switches IDs
- On timeout, 1-hop neighbors conduct election
 - Very similar process to beacon initialization
- Proximity of new beacons minimizes change in paths, hopefully increase chance of finding data
 - Queries local flood at destination if data not present

Data Preservation

- Nodes storing data periodically push it out
 - Refreshes data, making it accessible if topology has changed and node no longer owns that data
- Data also replicated within a preconfigured number of hops from storage node
 - Neighbor nodes will have data in even of failure
 - May help recover after topology change

High-Level Simulation

- Evaluate load-balancing
 - Storage & transmission
 - Simple network model
- 5000 nodes, ~14.5 neighbors, 20 beacons
- Storage: Seems okay
- Transmission: Not clear from reported graphs
 - Percentage close to optimal, direct routing
 - Stretch proportional to p, about 2.4 when p = 2

TOSSIM (Packet-Level) Simulation

- 500 node, 18 hop diameter network, ~10.4 neighbors, 5 beacons
 - Models loss, queues, etc
 - Node and link failure parameters not clear in paper

Other Simulations

- Includes demonstration on live sensor testbed
 - Not very dynamic, doesn’t provide much insight beyond “it works.” Results similar to TOSSIM graphs.
- Some key metrics not emphasized, e.g. stretch and total # transmissions rather than percentage
- Node mobility not addressed or evaluated
Conclusion

- PathDCS presents a novel approach to in-network sensor data storage
 - Combines distributed hash tables with tree routing
- Needs a strong comparison between the combined cost of maintaining trees and routing stretch, versus cost of maintaining point to point routing and other DHT overlay mechanism
 - Reported stretch not terrible, but may have considerable effect on sensor lifespan
- Probably geared toward refreshed data, certain usage scenarios/rates, static nodes