CORONA
A High Performance Publish – Subscribe System for the World Wide Web

Proposed by
Venugopalan Ramanathan, Ryan Peterson, Emin Gun Sirer
Cornell University
Presented by
Mohammed Shaik Hussain Ali
University of Pennsylvania

Current Situation
No web protocols to automatically notify the Web content changes

“Micronews Syndication” based on naive and repeated polling

Resulting Problems
Poor performance & limited scalability
Servers face high load through active polling
Wasted bandwidth due to sticky users
Blockage of IP address for crossing limit of polling

Working
Computes the optimal way of implementation using a Mathematical Optimization Problem

Inputs
- Object Popularity
- Update Rate
- Content Size
- Internal system overhead (user information, dissemination, etc.)

Output
- A polling schedule that achieves global performance goals

Goals
- Minimize Update Latency ensuring average load on system
- Achieve target latency minimizing bandwidth consumption

Components

Channels
- CORona monitors a set of news feeds & web pages
- Nodes
- Polling is distributed over a set of nodes (cooperative polling)
 - Identifies clients that have been changed
 - Distributes changes to the subscribers
Architecture

Corona can be applied to any distributed structured overlay system having uniform node degree.

Corona is a topic-based publish-subscribe system.

Based on an overlay structure, it provides:
- Decentralization
- High-fault resilience
- Scalability

Important key points:
- Uses an Optimization Algorithm which results in optimal resource management.
- Cooperative Pulling:
 - Allocates multiple nodes to periodically pull a channel
 - Shares updates
 - \(n \) nodes pulling with some polling interval
 - \(n \) times faster

Analytical Modeling

Corona Lite

Minimize average update detection time by keeping the total load constant.

Overall Update Performance = \(\frac{\text{Weighted sum of update detection time of each channel}}{\text{Total number of clients subscribed to all the channels}} \)

Salient features
- Popular channel subscribers gain greater importance.
- Overall global average is better.
- Changes with changing load.

Corona Fast

Achieves target average update detection time by minimizing the load on content servers.

Salient features
- Opposite of Corona Lite
- Minimizes the load for a given amount of time
- Serves from flash flooded sticky users
- No increase in load even if subscribers increase
- Stays steady by changing the work load

Corona Fair

Minimizes average update detection time w.r.t. expected update frequency by spreading the load on servers.

Overall Update Performance = \(\frac{\text{Update Detection Time of channels}}{\text{Update Interval of Channels}} \)

Salient features
- Both Corona Lite & Fast do not consider actual rates of change of data
- Achieves fair distribution of update performance
- The overall update performance is minimized to achieve a target load
- Two types: Sort & Log
Management

- Each channel has a unique identifier based on a Hash Algorithm upon its URL.
- Each channel has more than one owner node managing it.
- Primary owner is the closest node.
- Owner nodes are responsible for subscriptions, notifications, and updates.
- Owner nodes have information of:
 - Number of Subscribers
 - Content Size
 - Update interval of site (web page)

Periodic protocol

Optimization Phase
Appplies optimization algorithm on data of the trade-off parameters

Maintenance Phase
Changes in polling load are sent through maintenance messages

Aggregation Phase
Receives new values of trade-off parameters

All phases occur concurrently.

Experiment

One of the several experiments was:

- 60 PlanetLab Nodes
- 100,000 Subscriptions
- 7,500 Different Channels

Fresh Updates

++ Corona Result: 45 seconds
++ Normal (RSS): 15 minutes

Figure 3: Network Load on Content Servers: Corona-Lite converges quickly to match the network load imposed by legacy RSS clients.

Figure 4: Average Update Detection Time: Corona-Lite provides 15-fold improvement in update detection time compared to legacy RSS clients for the same network load.

Figure 5: Number of Pollers per Channel: Corona trades off network load from popular channels to decrease update detection time of less popular channels and achieve a lower system-wide average.
Figure 6: Update Detection Time per Channel: Popular channels gain greater decrease in update detection time than less popular channels.

Figure 9: Average Update Detection Time: Corona provides an order of magnitude lower update detection time compared to legacy RSS.

Figure 10: Total Polling Load on Servers: The total load generated by Corona is well below the load generated by clients using legacy RSS.

Summary

CORONA

- is compatible with existing infrastructure
- uses mathematical optimization algorithms to arrive at an optimum resource management technique
- could be deployed over any distributed overlay structure
- achieves several orders of magnitude improvement in update latency without an increase in average load
- shields servers from the impact of flash crowds & sticky traffic