P.A. Barendt, N.A. Shah, G.A. Barendt, and C.A. Sarkar. "Broad-specificity mRNA-rRNA complementarity in efficient protein translation." PLOS Genetics, 8:e1002598 (2012).

    Studies of synthetic, well-defined biomolecular systems can elucidate inherent capabilities that may be difficult to uncover in a native biological context. Here, we used a minimal, reconstituted translation system from Escherichia coli to identify efficient ribosome binding sites (RBSs) in an unbiased, high-throughput manner. We applied ribosome display, a powerful in vitro selection method, to enrich only those mRNA sequences which could direct rapid protein translation. In addition to canonical Shine-Dalgarno (SD) motifs, we unexpectedly recovered highly efficient cytosine-rich (C-rich) sequences that exhibit unmistakable complementarity to the 16S rRNA of the small subunit of the ribosome, indicating that broad-specificity base-pairing may be an inherent, general mechanism for efficient translation. Furthermore, given the conservation of ribosomal structure and function across species, the broader relevance of C-rich RBS sequences identified through our in vitro evolution approach is supported by multiple, diverse examples in nature, including C-rich RBSs in several bacteriophage and plants, a poly-C consensus before the start codon in a lower eukaryote, and Kozak-like sequences in vertebrates.

    PDF | Supplement