Programming Languages and Techniques (CIS120)

Lecture 6
Jan 25, 2012

Binary Trees
Announcements

• Homework 2 is on the web pages.
 – On-time due date: Jan. 30 at 11:59:59pm
 – Get started early, and seek assistance if you get stuck!
DNA Computing Abstractions

• Nucleotide
 – Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

• Codon
 – three nucleotides: e.g. (A,A,T) or (T,G,C)
 – codons map to amino acids and other markers

• Helix
 – a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...

• Phylogenetic tree
 – Binary (2-child) tree with helices (species) at the nodes and leaves
DNA Computing Abstractions

```
type nucleotide =
  | G (* Guanine *)
  | C (* Cytosine *)
  | A (* Adenine *)
  | T (* Thymine *)

type codon = nucleotide * nucleotide * nucleotide

type helix = nucleotide list

type tree =
  | Leaf of helix
  | Node of tree * helix * tree
```

Simple datatypes

Tuples

Recursive datatypes
A binary tree is either empty, or a node with at most two children, both of which are also binary trees.

A leaf is a node whose children are both empty.
Integer Binary Trees in OCaml

```
type tree =
 | Empty
 | Node of tree * int * tree
```

```
let t : tree =
 Node (Node (Empty, 1, Empty),
      3,
      Node (Empty, 2,
            Node (Empty, 4, Empty)))
```
Demo

see demotree.ml
Other uses for trees?
Family trees
Organizational charts
Game trees
Expression trees
Trees as Containers

• Like lists, trees aggregate data
• Like lists, we can determine whether the data structure contains a particular element

• CHALLENGE: can we determine where a tree contains a particular element quickly?