Programming Languages and Techniques (CIS120)

Lecture 7

Jan 26, 2012

Binary Search Trees

Announcements

- Homework 2 is due Monday.
 - On-time due date: Jan 30 at 11:59:59pm
- Updated Lecture Notes available online
 - Covers datatypes and trees

Trees as Containers

- Like lists, trees aggregate data
- Like lists, we can determine whether the data structure *contains* a particular element
- CHALLENGE: can we use the tree structure to make this process faster?

Search during (contains t 8)

Searching for Data in a Tree

Recall the contains function:

- It searches through the tree, looking for n
 - In this case, the search is a pre-order traversal of the tree
 - Other traversal strategies would work equally well
- In the worst case, it might search through the entire tree
- Can we do better?

Binary Search Trees (BST)

- Key insight:
 - We can use an ordering on the data to cut down the search space
 - This is why telephone books are arranged alphabetically
- A BST is a binary tree with additional invariants:
 - Empty is a BST
 - Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x

An Example Binary Search Tree

Search in a BST: (lookup t 8)

Searching a BST

```
(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) ->
        if x = n then true
        else if n < x then (lookup lt n)
        else (lookup rt n)
end</pre>
```

- The BST invariants guide the search.
- Note that lookup may fail (i.e. return an incorrect answer) if the input is not a BST.

How to we construct a BST?

Option 1:

- Write a function to check whether an arbitrary tree satisfies the BST invariant.
- Call the check whenever we need to know about a given tree.

Option 2:

- Create functions that preserve the BST invariant
- Starting from some trivial BST (e.g. Empty), we can apply such functions to get other BSTs
- Examples: insert and delete

Checking the BST Invariants

```
(* Check whether all nodes of t are < n *)
let rec tree_less (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> true
  | Node(lt,x,rt) ->
      x < n && (tree_less lt n) && (tree_less rt n)
  end</pre>
```

```
(* Determines whether t is a BST *)
let rec is_bst (t:tree) : bool =
  begin match t with
  | Empty -> true
  | Node(lt,x,rt) ->
      is_bst lt && is_bst rt &&
            (tree_less lt x) && (tree_gtr rt x)
  end
```

Inserting a new node: (insert t 4)

Inserting a new node: (insert t 4)

Inserting Into a BST

```
(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) ->
      if x = n then t
      else if n < x then Node(insert lt n, x, rt)
      else Node(lt, x, insert rt n)
end</pre>
```

- Note the similarity to searching the tree.
- Assuming that t is a BST, the result is also a BST.
 Why?

Deletion - No Children: (delete t 3)

Deletion - No Children: (delete t 3)

Deletion - One Child: (delete t 7)

Deletion - One Child: (delete t 7)

Deletion - Two Children: (delete t 5)

Deletion - Two Children: (delete t 5)

Subtleties of the Two-Child Case

- Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.
- Then:
 - There exists a maximum element, m, of lt (why?)
 - m is smaller than every element of rt (why?)
- To promote m we replace the deleted node by: Node(delete lt m, m, rt)
 - i.e. we recursively delete m from lt
 - Note the resulting tree satisfies the BST invariants
- Question: will this always work?

tree_max: A partial function

```
let rec tree_max (t:tree) : int =
  begin match t with
  | Empty -> ????
  | Node(lt,x,rt) -> ...
  end
```

- Problem: tree_max isn't defined for all binary trees.
 - In particular, it isn't defined for the empty binary tree
 - Technically, tree_max is a partial function
- What to do?

Solutions to Partiality: Option 1

- Return a default or error value
 - e.g. define tree max Empty to be -1
 - Error codes used often in C programs; null used often in Java
- But...
 - What if -1 (or whatever default you choose) really is the maximum value?
 - Can lead to many bugs if the default or error value isn't handled properly by the callers.
- Defaults should be avoided if possible

Solutions to Partiality: Option 2*

- Abort the program:
 - In OCaml: failwith "an error message"
- Whenever it is called, failwith aborts the program and reports the error message it is given.
- This solution to partiality is appropriate whenever you know that a certain case is impossible.
 - Often happens when there is an invariant on a datastructure
 - The compiler isn't smart enough to figure out that the case is impossible...
 - failwith is also useful to "stub out" unimplemented parts of your program.

^{*}There are a few other ways to deal with partiality (using datatypes or exceptions) that we'll see later in the course

BST Invariants and tree max

- For delete, we never need to call tree_max on an empty tree
 - This is a consequence of the BST invariants and the case analysis done by the delete function.
- So: we can write tree_max assuming that the input tree is a nonempty BST:

```
let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty) -> x
  | Node(_,,rt) -> tree_max rt
  | _ -> failwith "tree_max called on Empty"
  end
```

 Note: BST invariant is used because it guarantees that the maximum valued node is farthest to the right

Deleting From a BST

```
(* returns a binary search tree that has the same set of
  nodes as t except with n removed (if it's there) *)
let rec delete (t:tree) (n:int) : tree =
 begin match t with
     Empty -> Empty
     Node(lt,x,rt) ->
     if x = n then
       begin match (lt,rt) with
           (Empty, Empty) -> Empty
          (Node _, Empty) -> lt
           (Empty, Node ) -> rt
            -> let m = tree max lt in
        Node(delete lt m, m, rt)
       end
     else if n < x then Node(delete lt n, x, rt)
     else Node(lt, x, delete rt n)
  end
```