Programming Languages and Techniques (CIS120)

Lecture 7
Jan 26, 2012

Binary Search Trees
Announcements

• Homework 2 is due Monday.
 – On-time due date: Jan 30 at 11:59:59pm

• Updated Lecture Notes available online
 – Covers datatypes and trees
Trees as Containers

• Like lists, trees aggregate data
• Like lists, we can determine whether the data structure contains a particular element

• CHALLENGE: can we use the tree structure to make this process faster?
Search during (contains t 8)
Searching for Data in a Tree

• Recall the contains function:

```plaintext
let rec contains (t:tree) (n:int) : bool =
  begin match t with
  | Empty        -> false
  | Node(lt,x,rt) -> x = n ||
  (contains lt n) || (contains rt n)
  end
```

• It searches through the tree, looking for n
 – In this case, the search is a *pre-order* traversal of the tree
 – Other traversal strategies would work equally well

• In the worst case, it might search through the entire tree

• Can we do better?
Binary Search Trees (BST)

• Key insight:
 – We can use an ordering on the data to cut down the search space
 – This is why telephone books are arranged alphabetically

• A BST is a binary tree with additional invariants:

 • Empty is a BST
 • Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
An Example Binary Search Tree

Note that the BST invariants hold for this tree.
Search in a BST: \((\text{lookup } t \ 8)\)
Searching a BST

(*) Assumes that t is a BST *)

let rec lookup (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 if $x = n$ then true
 else if $n < x$ then (lookup lt n)
 else (lookup rt n)
 end

• The BST invariants guide the search.
• Note that lookup may fail (i.e. return an incorrect answer) if the input is not a BST.
How to we construct a BST?

• Option 1:
 – Write a function to check whether an arbitrary tree satisfies the BST invariant.
 – Call the check whenever we need to know about a given tree.

• Option 2:
 – Create functions that \textit{preserve} the BST invariant
 – Starting from some trivial BST (e.g. \texttt{Empty}), we can apply such functions to get other BSTs
 – Examples: \texttt{insert} and \texttt{delete}
Checking the BST Invariants

(* Check whether all nodes of t are < n *)
let rec tree_less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 x < n && (tree_less lt n) && (tree_less rt n)
end

(* Determines whether t is a BST *)
let rec is_bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 is_bst lt && is_bst rt &&
 (tree_less lt x) && (tree_gtr rt x)
end

*Definition of tree_gtr omitted (it’s similar to tree_less)
Inserting a new node: (insert t 4)
Inserting a new node: (insert t 4)
Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. Why?
Deletion – No Children: (delete t 3)
If the node to be deleted has no children, simply replace it by the Empty tree.
Deletion – One Child: \((\text{delete t 7})\)
Deletion – One Child: (delete t 7)

If the node to be delete has one child, replace the deleted node by its child.
Deletion – Two Children: (delete t 5)
Deletion – Two Children: (delete t 5)

If the node to be delete has two children, *promote* the maximum child of the left tree.
• Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.

• Then:
 – There exists a maximum element, m, of lt (why?)
 – m is smaller than every element of rt (why?)

• To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
 – i.e. we recursively delete m from lt
 – Note the resulting tree satisfies the BST invariants

• Question: will this always work?
Problem: `tree_max` isn’t defined for all binary trees.

- In particular, it isn’t defined for the empty binary tree
- Technically, `tree_max` is a partial function

What to do?
Solutions to Partiality: Option 1

• Return a *default or error value*
 - e.g. define `tree_max Empty` to be `-1`
 - Error codes used often in C programs; null used often in Java

• But...
 - What if -1 (or whatever default you choose) really *is* the maximum value?
 - Can lead to many bugs if the default or error value isn’t handled properly by the callers.

• Defaults should be avoided if possible
Solutions to Partiality: Option 2*

• Abort the program:
 – In OCaml: failwith “an error message”

• Whenever it is called, failwith aborts the program and reports the error message it is given.

• This solution to partiality is appropriate whenever you know that a certain case is impossible.
 – Often happens when there is an invariant on a datastructure
 – The compiler isn’t smart enough to figure out that the case is impossible...
 – failwith is also useful to “stub out” unimplemented parts of your program.

*There are a few other ways to deal with partiality (using datatypes or exceptions) that we’ll see later in the course

CIS120 / Spring 2012
For delete, we *never* need to call `tree_max` on an empty tree

– This is a consequence of the BST invariants and the case analysis done by the delete function.

So: we can write `tree_max` *assuming* that the input tree is a nonempty BST:

```plaintext
let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty)   -> x
  | Node(_,_,rt)      -> tree_max rt
  | _  -> failwith "tree_max called on Empty"
  end
```

Note: BST invariant is used because it guarantees that the maximum valued node is farthest to the right.
(* returns a binary search tree that has the same set of nodes as t except with n removed (if it's there) *)

let rec delete (t:tree) (n:int) : tree =
begin match t with
 | Empty -> Empty
 | Node(lt,x,rt) ->
 if x = n then
 begin match (lt,rt) with
 | (Empty, Empty) -> Empty
 | (Node _, Empty) -> lt
 | (Empty, Node _) -> rt
 | _ -> let m = tree_max lt in
 Node(delete lt m, m, rt)
 end
 else if n < x then Node(delete lt n, x, rt)
 else Node(lt, x, delete rt n)
 end
end