Programming Languages
and Techniques
(C1S120)

Lecture 7/
Jan 26, 2012

Binary Search Trees

Announcements

* Homework 2 is due Monday.
— On-time due date: Jan 30 at 11:59:59pm

 Updated Lecture Notes available online
— Covers datatypes and trees

Trees as Containers

Like lists, trees aggregate data

Like lists, we can determine whether the data
structure contains a particular element

CHALLENGE: can we use the tree structure to make
this process faster?

Search during (contains t 8)

CIS120 / Spring 2012

Searching for Data in a Tree

e Recall the contains function:

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(1lt,x,rt) -=> x = n ||
(contains 1t n) || (contains rt n)
end

* |t searches through the tree, looking for n
— In this case, the search is a pre-order traversal of the tree
— Other traversal strategies would work equally well

* |nthe worst case, it might search through the entire tree

e Can we do better?

Binary Search Trees (BST)

* Key insight:
— We can use an ordering on the data to cut down the search space
— This is why telephone books are arranged alphabetically

 ABST s a binary tree with additional invariants:

* Empty isaBST
*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

An Example Binary Search Tree

Note that the BST
invariants hold for
this tree.

CIS120 / Spring 2012

Search in a BST: (lookup t 8)

8>5

CIS120 / Spring 2012

Searching a BST

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
if x = n then true
else if n < x then (lookup 1t n)
else (lookup rt n)
end

* The BST invariants guide the search.

* Note that lookup may fail (i.e. return an incorrect
answer) if the input is not a BST.

How to we construct a BST?

* Option 1:
— Write a function to check whether an arbitrary tree satisfies the BST
invariant.

— Call the check whenever we need to know about a given tree.

* Option 2:
— Create functions that preserve the BST invariant

— Starting from some trivial BST (e.g. Empty), we can apply such
functions to get other BSTs

— Examples: insert and delete

Checking the BST Invariants

(* Check whether all nodes of t are < n ¥*)
let rec tree less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
X < n && (tree less 1lt n) && (tree less rt n)
end

(* Determines whether t is a BST *)
let rec is bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(1lt,x,rt) ->
is bst 1t && is bst rt &&
(tree less 1t x) && (tree gtr rt x)
end

*Definition of tree_gtr omitted (it’s similar to tree_less)
CIS120 / Spring 2012

Inserting a new node: (1nsert t 4)

CIS120 / Spring 2012

Inserting a new node: (1nsert t 4)

CIS120 / Spring 2012 o !

Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if x = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

* Note the similarity to searching the tree.

* Assuming that t is a BST, the result is also a BST.
Why?

Deletion — No Children: (delete t 3)

CIS120 / Spring 2012

Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.

CIS120 / Spring 2012

Deletion — One Child: (delete t 7)

7>5

CIS120 / Spring 2012

Deletion — One Child: (delete t 7)

If the node to be delete has one

child, replace the deleted node
by its child.

CIS120 / Spring 2012

Deletion — Two Children: (delete t 5)

CIS120 / Spring 2012

Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.

CIS120 / Spring 2012

Subtleties of the Two-Child Case

Suppose Node(lt,x,rt) is to be deleted and It and rt
are both themselves nonempty trees.
Then:

— There exists a maximum element, m, of It (why?)
— m is smaller than every element of rt (why?)

To promote m we replace the deleted node by:
Node(delete It m, m, rt)

— i.e. we recursively delete m from It
— Note the resulting tree satisfies the BST invariants

Question: will this always work?

tree max: A partial function

let rec tree max (t:tree) : int =
begin match t with
| Empty -> 2227
| Node(lt,x,rt) -> ..
end

* Problem: tree maxisn’t defined for all binary
trees.
— In particular, it isn’t defined for the empty binary tree
— Technically, tree max is a partial function

e What to do?

Solutions to Partiality: Option 1

* Return a default or error value

— e.g. define tree max Empty tobe -1

— Error codes used often in C programs; null used often in
Java

* But...

— What if -1 (or whatever default you choose) really is the
maximum value?

— Can lead to many bugs if the default or error value isn’t
handled properly by the callers.

e Defaults should be avoided if possible

Solutions to Partiality: Option 2*

 Abort the program:

— InOCaml: failwith “an error message”

* Whenever itis called, failwith aborts the program and
reports the error message it is given.

* This solution to partiality is appropriate whenever you know
that a certain case is impossible.

— Often happens when there is an invariant on a datastructure

— The compiler isn’t smart enough to figure out that the case is
impossible...

— failwith is also useful to “stub out” unimplemented parts of your
program.

*There are a few other ways to deal with partiality (using datatypes or exceptions) that
we’ll see later in the course

BST Invariants and tree max

* For delete, we never need to call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis done
by the delete function.

* So: we can write tree_max assuming that the input tree is a
nonempty BST:

let rec tree max (t:tree) : int =
begin match t with
| Node(,x,Empty) -> x
| Node(, ,rt) -> tree max rt
| -> failwith “tree max called on Empty”
end

 Note: BST invariant is used because it guarantees that the
maximum valued node is farthest to the right

Deleting From a BST

(* returns a binary search tree that has the same set of
nodes as t except with n removed (if it's there) *)
let rec delete (t:tree) (n:int) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->
if x = n then
begin match (lt,rt) with
(Empty, Empty) -> Empty
(Node , Empty) -> 1t
(Empty, Node) -> rt
__ => let m = tree max 1t in
Node(delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end

CIS120 / Spring 2012

