Programming Languages
and Techniques
(C1S120)

Lecture 17/
Feb 22, 2012

GUI Design |I: Layout

Announcements

* Weirich Office hours today, 3:30-5PM in Levine 510

* Lab today: Graphing Calculator & Midsemester survey

« HWO6: Building a GUI from scratch
— Will be available this afternoon.
— |s officially due Thursday, Mar 1 at 11:59:59pm

— ... but grace period until Friday, Mar 2 at 11:59:59pm (free late day)
— NOTE: TAs will not be available after the due date

Building a GUIl and GUI Applications

8006 . Caml raphlcs
o)

[O Point| O Line|] |® Ellipse| [O Text] EEThick lines| [O Copy| |O Paste| |Undo| [Quit]
(m] (] [w] [=] O (] [5] [m] Text buffers | y
2

CIS120/ Spring 2012

Project Architecture

Application e — :
\ Paint.m| g

’ Eventloop.ml Widget.ml
Getx.ml
Native — OCaml’s Graphics Module (graphics.cma)
graphics
library

CIS120/ Spring 2012

Challenge 1: Widget Layout

* Widgets are “things drawn on the screen”. How to make them
location independent.

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Paint.ml

Application \ --- :

q—

GUI Eventloop.m Widget.ml

Library
Getx.ml

]|

Native |
graphics
library

OCaml’s Graphics Module (graphics.cma)

—

CIS120/ Spring 2012

Graphics Contexts

A graphics context Gctx.t represents a position within the window, relative to which
the widget-local coordinates should be interpreted. We can add additional context
information that should be “inherited” by children widgets (e.g. current pen color).

Absolute
(0,0)
widget-local
(0,0)
(%y) 7
widget h
w

All drawing that is done by the widget should be done using the graphics context
operations (i.e. Getx.draw_rect), instead of using the native graphics library (i.e.
Graphics.draw_rect) so that the widget is location independent.

Gcetx.mli (excerpt)

type t (** The main (abstract) type of graphics contexts *)

(** Creates a fresh Gectx.t *)

val create : unit -> t

(** Produce a new Gctx.t shifted by (dx,dy) *)
val translate : t -> int * int -> t

(** A widget-relative position *)

type position = int * int

(** A width and height paired together. *)
type dimension = int * int

(** Display text at the given (widget-local) position *)
val draw string : t -> position -> string -> unit
(** Calculates the size of a text when rendered. *)

val text size : t -> string -> dimension

CIS120 / Spring 2012

OCaml vs. Standard Coordinates

Standard (0,0)
\£ X_size () >
 §
. (xy) o
@
\/
OCaml (0,0) Standard (x,y) = OCaml (x,y_size() - y)

CIS120 / Spring 2012

Simple Widgets

Building Widgets up from scratch

Simple Widgets

(* An interface for simple GUI widgets *)

type t = {

repaint : Gctx.t -> unit;

size : Getx.t -> Getx.dimension
}

* You can ask a simple widget to repaint itself.

* You can ask a simple widget to tell you its size.

* Both operations are relative to a graphics context

Note: don’t confuse this type with the type named ‘t’ in the Gctx module. In the paint application, we’ll
call the type of (simple) widgets “(Simple)Widget.t” and the type of graphics contexts “Gctx.t.” In their
respective modules, they are the type of interest, so there they are just t.

CIS120 / Spring 2012

10

Simple widgets (SimpleWidget.mli)

(* Some text on the screen *)
val label : string -> t

(* Empty space *)
val space : Gctx.dimension -> t

(* Some space parameterized by a draw fcn *)
val canvas : Gctx.dimension -> (Gectx.t -> unit) -> t

(* Adds a border around another widget *)
val border : t -> t

(* Put two widgets next to each other ¥*)
val hpair : t -> t -> t

CIS120 / Spring 2012

11

Demo: swdemo.ml

The Widget Hierarchy

 Widgets form a tree*:

— Leaf widgets — don’t contain any children
* label, space, and canvas widgets are leaves

— Container widgets — are “wrappers” for their children
* border and hpair widgets are containers

* Build container widgets by passing in their children as
arguments to their “constructor” functions

— e.g. let b = border w in..
let h = hpair bl b2 in..

 The repaint method of the root widget initiates all the
drawing and layout for the whole window

*If you draw the state of the abstract machine for a widget program, the tree will be visible in the
heap — the saved stack of the “repaint” function for a container widget will contain references to
its children.

Widget Hierarchy Pictorially

(* Create some simple label widgets *)

let 11 = label "Hello"
let 12 = label "World"

(* Compose them horizontally, adding some borders *)

let h = border (hpair (border 11)

(hpair (space (10,10)) (border 12)))

border
!
hpair
4/,,/;”“::* Hello World
border hpair
label space border On the screen

<

Widget tree label

CIS120 / Spring 2012

14

Implementing the Widgets

Implementing the Widgets

simpleWidget.ml

(* Display a string on the screen. *)
let label (s:string) : t =
{
repaint = (fun (g:Gctx.t) ->
Gectx.draw string g (0,0) s);
size = (fun (g:Gctx.t) -> Getx.text size g s)

simpleWidget.ml

(* A region of empty space. *)
let space ((w,h) : Gctx.dimension) : t =
{

repaint = (fun (_:Gectx.t) -> ());

size (fun (_:Gectx.t) -> (w,h))

CIS120 / Spring 2012

The canvas Widget

* Region of the screen that can be drawn upon
* Has a fixed width and height

* Parameterized by a repaint method

simpleWidget.ml

(* some space with a draw fcn *)
let canvas ((w,h): Gctx.dimension)

{
repaint = repaint fun;
size = (fun (_:Gctx.t) -> (w,h))

(repaint fun: Gectx.t -> unit) : t

CIS120 / Spring 2012

17

The Border Widget Container

0 (w’s width +4) -1

12 3.
IIIIIIIIIIIIIIIIIIIIIIIII=

0
translate\ 1%
the Getx | 2

3

W'S

o
o
-
B height
o
o
u
u

EREEEEEED
=

(wsheight + 4) - 1 NN

w’s width

let b = border w

* Draws a one-pixel wide border around contained widget w

* b’s sizeis slightly larger than w’s (+4 pixels in each dimension)
* b’s repaint method must call w’s repaint method

* When b asks w to repaint, b must translate the Gctx.t to (2,2) to account for the
displacement of w from b’s origin

The Border Widget

simpleWidget.ml

let border (w:t) :t

{

repaint =

let x =
let y = height
Gectx.draw line
Gectx.draw line
Gctx.draw line
Gectx.draw line
let g =
w.repaint g);

size =

(fun (g:Gectx.t)
let (width,height) =
(width+4, height+4))

(fun (g:Gectx.t)
let (width,height) =
width + 3 in

+ 3 in
g (0,0)
g (0,0)
g (x,0)
g (0,y)

wW.Size g in =

->
w.Size g in

->

(x,0);
(0,y)7

(X,5);
(X,¥Y)7 -

Gctx.translate g (2,2) in

Draw the border

I,

Display the interior

CIS120 / Spring 2012

19

The hpair Widget Container

translate Gctx
to repaint w2 _

wl
h’s

w2 Pheight

h’s width
* let h = hpair wl w2
e Creates a horizontally adjacent pair of widgets

* Aligns them by their top edges
— Must translate the Getx when repainting the right widget

* Size is the sum of their widths and max of their heights

CIS120 / Spring 2012 20

