Programming Languages
and Techniques
(C1S120)

Lecture 18
Feb. 24, 2012

GUI Design lll: Events & Listeners



GUI Library Architecture

-
GUI
Library
-
Native B
graphics
library

CIS120/ Spring 2012

Eventloop.ml Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)




Design Challenge #2: User Interactions

* Problem: When a user moves the mouse, clicks the button, or
presses a key, the GUI should react.

swdemo.m|

let w = .. (* top-level widget *)

let run () :unit =
(* open the window *)
Graphics.open graph "";
let g = Gectx.create () in
(* draw the widget *)
w.repaint g;
(* infinite loop so we can see the window. *)

let rec loop () : unit = loop () in
loop ()

CIS120/ Spring 2012




Solution: The Event Loop

eventloop.ml

let run (w:Widget.t) : unit = Note: when accessing record
Graphics.open graph ""; components from another
Graphics.auto synchronize false; module that hasn’t been opened,
let g = Gectx.create() in the module name is
part of the component name.
let rec loop () = e.g “w.repaint” vs
Graphics.clear graph (); “w.Widget.repaint”

w.Widget.repaint g;
Graphics.synchronize ();

let e = Getx.wait for event g in (* wait for user input *)
w.Widget.handle g e; loop () (* react to it *)
in
loop ()

 The run function takes in the “root widget”, creates the graphics window, initializes
the graphics context, and then enters an infinite loop.

 The loop clears the window, repaints it, waits for a user event, and then asks the
root widget to handle that event.

CIS120/ Spring 2012



Events and Event Handling

An event is a signal
— e.g. a mouse click or release, mouse motion, or keypress

Events carry data
— e.g. state of the mouse button, the coordinates of the mouse, the key pressed

An event can be handled by some widget
— The top-level loop waits for an event and then gives it to the root widget.

— The widgets forward the event down the tree until some widget handles the event
(or no suitable widget is found, in which case the event is just dropped)

— e.g. a button handles a mouse click event

Typically, the widget that handles an event updates some state of the GUI
— e.g. torecord whether the light is on and change the label of the button

User sees the reaction to the event when the GUI repaint itself
— e.g. button has new label, canvas is a new color



Reactive Widgets

Graphics library

type status = {
mouse X : int; (* X coordinate of the mouse *)
mouse y : int; (* Y coordinate of the mouse *)
button : bool; (* true if a mouse button is pressed *)
keypressed : bool; (* true if a key has been pressed *)
key : char; (* the character for the key pressed *)

}

widget.mli

type event = Graphics.status

type t = {

repaint : Gctx.t -> unit;

size : Getx.t -> Getx.dimension;

handle : Gectx.t -> event -> unit (* NEW! *)
}

The graphics context translates the location
CIS120/ Spring 2012 of the event to widget-local coordinates



Event-handling: Containers

Container widgets propagate events to their children:

User clicks,
generating
event e

/

[
borfjer .handle e
{

Hello

1

hpéik .handle e

/

border hpair ™handle e
label space borden | .handle e

l

label ¢ handle e

Widget tree

CIS120/ Spring 2012

On the screen




Event Handling: Routing

* When a container widget handles an event, it passes the event to the
appropriate child

* The Gcetx.t must be translated so the child can interpret the event in its
own local coordinates.

widget.ml
let border (w:t):t =
{ repaint = ..;

size = ..;
handle = (fun (g:Gctx.t) (e:Gctx.event) ->
w.handle (Gctx.translate g (2,2)) e);



Routing events through hpair widgets

* The event handler of an hpair must check to see whether the event should
be handled by the left or right widget.

— Check the event’s coordinates against the size of the left widget

— If the event is within the left widget, let it handle the event

— Otherwise check the event’s coordinates against the right child’s

— If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.t) (e:Gectx.event) ->
if event within g e (wl.size g)
then wl.handle g e
else
let g = (Gctx.translate g (fst (wl.size g), 0)) in
if event within g e (w2.size g)
then w2.handle g e
else ());



Stateful Widgets

What state do the event handlers modify?

How can widgets expose extra this state to the
application?




A stateful 1abel Widget

let label (s: string) : t
let r = ref s in
{ repaint =
(fun (g: Gectx.t) -> Getx.draw string g (0,0) !r);
handle = (fun = -=> ());
size = (fun (g: Gctx.t) -> Getx.text size g !r)

* The label “object” can make its string mutable. The three “methods” can
encapsulate that string.

* But what if the application wants to change this string in response to an
event?

CIS120/ Spring 2012




A stateful 1abel Widget

widget.ml

type label controller = { set label: string -> unit }

let label (s: string) : t * label controller =
let r = ref s in
({ repaint =
(fun (g: Gectx.t) -> Getx.draw string g (0,0) !r);

handle = (fun = -=> ());

size = (fun (g: Gctx.t) -> Getx.text size g !r)
b
{ set label = fun (s: string) -> r := s })

* A controller object gives access to the state.
— e.g.the label controller object provides a way to set the label

e Each kind of stateful widget gets its own kind of controller
— As weé'll see, Java’s subtyping helps manage this complexity

CIS120/ Spring 2012



Event Listeners

How to react to events in a modular way?




Event Listeners

Widgets may want to react to many different sorts of events

Example: Button
— button click: changes the state of the paint program and button label
— mouse movement: tooltip? highlight?
— key press: provide keyboard access to the button functionality?

Want these reactions to be independent of each other
— Each sort of event handled by a different event listener (i.e. a first-class function)
— Reactive widgets may have several listeners to handle a triggered event
— Listeners react in sequence, earlier ones may prevent the event from propagating

A notifier is a container widget that adds event listeners to a node in the
widget hierarchy

Note: this way of structuring event listeners is based on Java’s Swing Library
design
— We adopt the terminology from Swing.



Listeners and Notifiers Pictorially

borijer
{

User clicks,
generating
event e

/

Hello V&ld

border hpair
)
label space borde
notifie 4 11 ::12 :: I3\:: []
Widget tree label

CIS120/ Spring 2012

On the screen



Notifiers

* A notifieris a container widget that adds event listeners to a
node in the widget hierarchy

 The event listeners “eavesdrop” on the events flowing through the
node

— The event listeners are stored in a list

— They react in order, if one of them handles the event the later ones do not
hear it

— |f none of the listeners handle the event, then the event continues to the child
widget

* List of event listeners can be updated by using a notifier_controller



Listeners

widget.ml

type listener result =
| EventFinished
| EventNotDone

type listener = Gectx.t -> Gectx.event -> listener result

(* Performs an action upon receiving a mouse click. *)
let mouseclick listener (action: unit -> unit) : listener =
fun (g:Gctx.t) (e: Gctx.event) ->
1f Gectx.button pressed g e
then (action (); EventFinished)
else EventNotDone

* Alistener returns EventFinished if it handled the event (i.e. the event should not
be passed on) and EventNotDone otherwise.

A mouseclick_listener performs an action and stops the event when it “hears” a
mouse click, and passes on the event to later listeners otherwise

CIS120/ Spring 2012



Notifiers and Notifier Controllers

widget.ml

let notifier (w: t) : t * notifier controller =
let listeners = ref [] in
({repaint = w.repaint;
handle = (fun (g:Gctx.t) (e: Gctx.event) ->
let rec loop (l: listener list) : unit =
begin match 1 with
| [1 -> w.handle g e
| h::t -> begin match h g e with
| EventFinished -> ()
| EventNotDone -> loop t
end
end in
loop !listeners);
size = w.size
by
{ add_listener =
fun newl -> listeners := newl::!listeners }

type notifier controller = { add listener: listener -> unit }

Loop through the list
of listeners, allowing
each one to process
the event. If they all
pass on the event,
send it to the child.

CIS120/ Spring 2012

The controller allows
new listeners to be
added to the list.




Buttons (at last!)

widget.ml

(* A text button *)

let button (s: string) : t * label controller *
notifier controller =

label s in

notifier w in

let (w, 1lc)
let (w', nc)
(w', lc, nc)

* A button widget is just a label wrapped in a notifier

 Add a mouseclick_listener to the button using the
notifier_controller

e (For aesthetic purposes, you can but a border around the
button after the fact.)



GUI Program Architecture

Application \

GUI
Library
Native

. —
graphics
library

CIS120/ Spring 2012

Paint.ml

Eventloop.ml Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)




Demo: lightswitch.ml

Putting it all together.




