Programming Languages
and Techniques
(C1S120)

Lecture 28
Mar 26, 2012

Queue lterators and Exceptions



Announcements

HWOS8 is due tonight at 11:59:59pm
HWO9 will be available next Monday, Due Apr2.

Midterm 2 is Friday, Mar 30th

— Location is across campus: FAGN AUD
— Review session: Wed 8-10PM in Levine 101
— Lab this week is review (bring questions!)

Final exam date is confirmed
— Tuesday, May 8t 9-11AM



Queue lterator




Dealing with the unexpected.



Sources of method Failure

Some methods may require that their arguments satisfy
certain preconditions

— Input to max is a nonempty list, ltem is non-null, no more elements for
next

Interfaces may be imprecise
— Some Iterators don't support the "remove" operation

External components might fail
— Try to open a file that doesn't exist

Resources might be exhausted
— Program uses all of the computer's disk space

These are all exceptional circumstances...
— how do we deal with them?



Ways to handle failure

e Return an error value (or default value)
— e.g. Math.sqrt returns NaN ("not a number") if given input < 0
— e.g. Many Java libraries return null
— e.g. file reading method returns -1 if no more input available
— Caller must check return value
— Use with caution — easy to introduce hard to find bugs

e Use an informative result

— e.g.in OCaml we used options to signal potential failure
— e.g.in Java, create a special class like option
— Passes responsibility to caller, but caller must do the proper check

* Use exceptions
— Available both in OCaml and Java
— Any caller can handle the situation
— If exceptions are uncaught, the program terminates



Exceptions

* An exception is an object representing abnormal conditions.
— lIts internal state describes what went wrong

— e.g. NullPointerException, lllegalArgumentException, IOException
— Can define your own exception classes

 Throwing an exception is an emergency exit from the current
method.

— The exception propagates up the invocation stack until it either
reaches the top and the stack, in which case the program aborts with
the error, or the exception is caught

* (Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances



Example

void loadImage (String fileName) {

try {
Picture p = new Picture(fileName); // could fail
// ... code to display the new picture in the window

// executes only if the picture 1is successfully created.

} catch (I0Exception ex) {

// Use the GUI to send an error message to the user
// using a dialog window
JOptionPane.showMessageDialog(

frame, // parent of dialog window

// error message to display
"Cannot load file\n" + ex.getMessage(),
"Alert", // title of dialog
JOptionPane.ERROR_MESSAGE // type of dialog
)

CIS120 / Spring 2012



