Programming Languages
and Techniques
(C1S120)

Lecture 29
Mar 28, 2012

Exceptions |l

Announcements

* Midterm 2 is Friday, Mar 30th

— Location is across campus: FAGN AUD
— Review session: TONIGHT 8-10PM in Levine 101
— Lab this week is review (bring questions!)

« HWO9 will be available next Monday, Apr2.

Dealing with the unexpected.

Exceptions

* An exception is an object representing abnormal conditions.
— Its internal state describes what went wrong
— e.g. NullPointerException, lllegalArgumentException, IOException
— Can define your own exception classes

 Throwing an exception is an emergency exit from the current
method.

— The exception propagates up the invocation stack until it either
reaches the top and the stack, in which case the program aborts with
the error, or the exception is caught

* Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances

Realistic Example

void loadImage (String fileName) {

try {
Picture p = new Picture(fileName); // could fail
// ... code to display the new picture in the window

// executes only if the picture 1s successfully created.

} catch (IO0Exception ex) {

// Use the GUI to send an error message to the user
// using a dialog window
JOptionPane. showMessageDialog(

frame, // parent of dialog window

// error message to display
"Cannot load file\n" + ex.getMessage(),

"Alert", // title of dialog
JOptionPane.ERROR_MESSAGE // type of dialog
)

CIS120 / Spring 2012

Simplfied Example

class C {
public void foo() {
this.bar();
System.out.println(“here in foo0”);

}

public void bar() {
this.baz();
System.out.println(“here in bar”);

}
public void baz() {

throw new Exception();

}

* What happensifwedo (new C()).foo();"?

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

(new C()).foo();

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

(new C()).foo();

CIS120 / Spring 2012

Abstract Stack Machine

VéOO();

Allocate a new instance of Cin the heap. (Skipping
details of trivial Constructor.)

CIS120 / Spring 2012

W Stack \ Heap

Abstract Stack Machine

Véoon;

CIS120 / Spring 2012

W Stack \Heag

Abstract Stack Machine

Workspace Stack Heap

o ost A N -
System.out.println(

“here in foo0"); this /

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.

Use the dynamic class to lookup the method body from the
class table.

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

this.bar(); ; /////—___‘
System.out.println(

“here in foo0"); this /

CIS120 / Spring 2012

Heap

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); 3 /////—_——~
System.out.println(e
“here in bar”); this / //r

_7
System.out.prAntln(
“here in 0");

this /

CIS120 / Spring 2012

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); K /—\
System.out.println(e
“here in bar”); this / //r

_7
System.out.prAntln(
“here in 0");

this /

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

throw new Exception(); : /?-
- C

this / //,)f

7
System.out.prAntn(
“here in o"Y;

this / /

7
System.out.println(
“here in bar”);

this 1

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

throw new Exception(); ; /?-
B C

this / //,)f

7
System.out.prAntn(
“here in o"Y;

this / /

7
System.out.println(
“here in bar”);

this 1

CIS120 / Spring 2012

Abstract Stack Machine

VVorkspaEE,/””””—————r Stack ——-\\\\\\\\

throw @T;//,

l

CIS120 / Spring 2012

this

System out.prAnt n(
“here in o"

this

7
System.out.println(
“here in bar”);

this i

Heap

Exceptlon

Abstract Stack Machine

Workspacﬁ/ Stack \

throw (";/

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

this / //
7

System.out.prAntn(
“here in o"Y;
this / /T

7

System.out.println(
“here in bar”);
this d

Heap

Exceptlon

Abstract Stack Machine

Workspace/ Stack

/

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

\

this / //
7

System.out.prAntln(
“here in o"Y;
this / /

7

System.out.println(
“here in bar”);
this d

Heap

Exceptlon

Abstract Stack Machine

Workspace Stack Heap
- Pl -
this / /

Discard the current workspace. System.out.println(/

“here in 0"); /

Then, pop saved workspace frames) 7
off the stack, looking for the most this
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

7
System.out.println(
“here in bar”):

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

Abstract Stack Machine

Workspace

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

Stack

, —
//\

Heap

ry/Catch

System.out.println(/*
“here in foo0");
T r\

for ()? M

Abstract Stack Machine

Workspace Stack Heap

[]

Try/Catch ,
for ()? No!’

Exception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap
Program terminated with “

uncaught exception (;)!

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

gz

Catching the Exception

class C {
public void foo() {
this.bar();

System.out.println(“here in foo0”);

}
public void bar() {
try {
this.baz();
} catch (Exception e) { System.out.println(“caught”); }
System.out.println(“here in bar”);
}

public void baz() {
throw new Exception();

}

* Now what happensifwedo (new C()).foo();?

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

(new C()).foo();

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap

(new C()).foo();

CIS120 / Spring 2012

Abstract Stack Machine

AOO();

Allocate a new instance of C in the heap.

CIS120 / Spring 2012

W Stack \ Heap

Abstract Stack Machine

Véoon;

CIS120 / Spring 2012

W Stack \Heag

Abstract Stack Machine

Workspace

this.bar();

System.out.println(
“here in foo”);

Stack Heap
; y Nl -
this //

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

this.bar(); ; ////’—__—~
System.out.println(

“here in foo0"); this /

CIS120 / Spring 2012

Heap

Abstract Stack Machine

Workspace

try {
this.baz();
} catch (Exception e)
{ System.out.Println
(“caught”); }
System.out.println(
“here in bar”);

Stack

Heap

this

17

CIS120 / Spring 2012

_7
System.out.prAntln(
“here in 0");

this /

Abstract Stack Machine

Workspace

try {
this.baz();
} catch (Exception e)
{ System.out.Println
(“caught”); 1}
System.out.println(
“here in bar”);

Stack

Heap

>
17

gystem.out.pr ntln(
“here in 0");

When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { ... } code.

Replace the current workspace
with the body of the try.

CIS120 / Spring 2012

this

{

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); 3 /////’——_-‘
. L
~_ wis | 2] 7
Body of the try. .

Everything else.

When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { ... } code.

Replace the current workspace
with the body of the try.

CIS120 / Spring 2012

Eystem.out.pr ntln(
“here in 0");

this /

4

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

Abstract Stack Machine

Workspace Stack Heap
this.baz(); ;
A ol -
this 7 //rf

i
System.out.prAntln(

“here in 0");

this /

Continue executing as normal.

4

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

CIS120 / Spring 2012

Abstract Stack Machine

Workspace

Stack

throw new Exception();

Heap

The top of the stack is off the
bottom of the page... ©

CIS120 / Spring 2012

this

System out.prAntln (
“here in o"),

this

°
4

catch (Excepti
{ System.out.
(“caught”);

Abstract Stack Machine

Workspace

Stack

throw new Exception();

Heap

YW ad -

CIS120 / Spring 2012

this / //7[

7
System.out.prAntln(
“here in o")}

this / [

7
catch (Excepti
{ System.out.

(“caught”);

Abstract Stack Machine

VVorkspac4,//"””——————7

>

Stack \

throw @T;//,

.
4

CIS120 / Spring 2012

this (/

Heap

=4 c

7
System.out.prAntln(
“here in o")

Exception

this / [

7
catch (Excepti
{ System.out.

(“caught”);

Abstract Stack Machine

Workspacﬁ/ Stack \

throw (";/

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

this / //

System.out.prAntln(
“here in o")}

this / [

4

catch (Excepti
{ System.out.
(“caught”);

|
\

Heap

=d -

Exception

Abstract Stack Machine

Workspace

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

CIS120 / Spring 2012

Stack Heap

A o -
T/

System.out.prAntln(/

“here in 0"); /

this /

4

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

for (#)? No!’

-e

Abstract Stack Machine

Workspace

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

CIS120 / Spring 2012

Stack

Heap

Pl -
T/

Eystem.out.pr ntln(
“here in 0");

Exception

this /

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

N | Yes!

Abstract Stack Machine

Workspace

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

Stack

Heap

= -

this / //r

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

CIS120 / Spring 2012

System.out.prAntln
“here in 0");

T

Exception

this /

e

Abstract Stack Machine

Workspace

{ System.out.Println

Stack

(“caught”); }
System.out.println(
“here in bar”);

Heap

=

17

this

Continue executing as usual.

CIS120 / Spring 2012

_7
System.out.prAntln
“here in 0");

T

this /

e

Exception

Abstract Stack Machine

Heap

=

Workspace Stack
{ i)} i /_\
System.out.println(7
“here in bar”); this / //r

i
System.out.prAntln

7] . "y .
Continue executing as usual. here 1n o")

T

this /

e

Console
caught

CIS120 / Spring 2012

Exception

Abstract Stack Machine

Workspace Stack Heap
I S =
System.out.println(7 —
“here in bar”); this / /

Syst t £1 P .
We’re sweeping a few details about ystem.out.prantin

lexical scoping of variables under “here 1in o");
the rug — the scope of e is just the _ 7

body of the catch, so when that is this
done, e must be popped from the e
stack.

Console
caught

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

Heap

= -

System.out.println(; ////’—___‘
“here in bar”); 7
’ //r

this

7
System.out.prAntln(

7] . "y .
Continue executing as usual. here 1in 0");

Exception

this /

Console
caught

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

Heap

=~ -

System.out.println(_; ////”_“‘
“here in bar”); T
’ //r

this

_7
System.out.prAntln(

7] . "y .
Continue executing as usual. here 1in 0");

Exception

this /

Console
caught

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

Heap

= -

this

T

i
System.out.prAntln(

Pop the stack when the workspace “here 1in f£00");

Exception

is done, returning to the saved
. this /
workspace just after the _ mark.

Console
caught
here in bar

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap
System.out.println(_; /—\.\)
“here in foo”); -
this ’

Continue executing as usual.

Console
caught
here in bar

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap
System.out.println(; /\r\,
“here in foo0"”); -
this 7’

Continue executing as usual.

Console
caught
here in bar

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack Heap
° N N
C
this f/

Continue executing as usual.

Console
caught
here in bar
here in foo

CIS120 / Spring 2012

Abstract Stack Machine

Workspace Stack

Program terminated normally.

Console
caught
here in bar
here in foo

CIS120 / Spring 2012

Heap
)

Exception

When No Exception is Thrown

* If no exception is thrown while executing the body of a try {...}
block, evaluation skips the corresponding catch block.

— i.e. if you ever reach a workspace where “catch” is the statement to
run, just skip it:

Workspace Workspace
catch (Exception e) System.out.println(
{ System.out.Println “here in bar”);

(“caught”); }
System.out.println(
“here in bar”);

Catching Exceptions

* There can be more than one “catch” clause associated with each “try”

— Matched in order, according to the dynamic class of the exception thrown
— Helps refine error handling

try {

// do something with the IO library
} catch (FileNotFoundException e) {

// handle an absent file
} catch (IOException e) {

// handle other kinds of IO errors.

}

* Good style: be as specific as possible about the exceptions you’re
handling.

— Avoid catch (Exception e) {..} it’susually too generic!

CIS120 / Spring 2012

Exception Class Hierarchy

Object
Type of all !
2 1
throwable objects. :
1
Throwable
P~~~ Fatal Errors, should
1 RN
Subtypes of i e never be caught.
Exception must be Exception Error
declared. o
T |
_____ 1
—— I
————— [
|OException RuntimeException Subtypes of
: : RuntimeException
i ' do not have to be
i lllegalArgumentException declared.

FileNotFoundException

Checked (Declared) Exceptions

Exceptions that are subtypes of Exception but not RuntimeException are
called checked or declared.

A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

The method might raise a checked exception, either by:

— directly throwing such an exception

public void maybeDoIt (String file) throws AnException {
if (..) throw new AnException(); // directly throw

— or, calling another method that might itself throw a checked exception

public void doSomeIO (String file) throws IOException ({
Reader r = new FileReader(file); // might throw

CIS120 / Spring 2012

Unchecked (Undeclared) Exceptions

* Subclasses of RuntimeException do not need to be declared via “throws”
— even if the method does not explicitly handle them.

* Many “pervasive” types of errors cause RuntimeExceptions
— NullPointerException
— IndexOutOfBoundsException
— lllegalArgumentException

public void mightFail (String file) {
if (file.equals(“dictionary.txt”) {
// file could be null!

 The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover...

Declared vs. Undeclared?

Tradeoffs in the software design process:

Declared = better documentation
— forces callers to acknowledge that the exception exists

Undeclared = fewer static guarantees
— but, much easier to refactor code

In practice: test-driven development encourages “fail early/fail often”
model of code design and lots of code refactoring, so “undeclared”
exceptions are prevalent.

A good compromise?

— Declared exceptions for libraries, where the documentation and usage
enforcement are critical

— Undeclared for client-exceptions to facilitate more flexible code

Good Style for Exceptions

In Java, exceptions should be used to capture exceptional circumstances

— Try/catch/throw incur performance costs and complicate reasoning about the
program, don’t use them when better solutions exist

Re-use existing exception types when they are meaningful to the situation
— e.g. use NoSuchElementException when implementing a container

Define your own subclasses of Exception when doing so can convey useful
information to possible callers that can handle the exception.

It is often sensible to catch one exception and re-throw a different (more
meaningful) kind of exception.
— e.g. when implementing WordScanner, we caught IOException and threw
NoSuchElementException in the next() method.
Catch exceptions as near to the source of failure as makes sense
— i.e. where you have the information to deal with the exception

Catch exceptions with as much precision as you can

— i.e. Don’t do: try{...} catch (Exception e) {...}
instead do: try{...} catch (IOException e) {...}

Finally

A “finally” clause of a try/catch/finally statement always gets run,
regardless of whether there is no exception, a propagated exception, a
caught exception, or even if the method returns from inside the try.

“Finally” is most often used for releasing resources that might have been
held/created by the “try” block:

public void doSomeIO (String file) {
FileReader r = null;
try {
r = new FileReader(file);
.. // do some IO
} catch (FileNotFoundException e) {
.. // handle the absent file
} catch (IOException e) {
.. // handle other IO problems

} finally {
if (r != null) { // don’'t forget null check!
try { r.close(); } catch (IOException e) {..}
}

