
CIS 120 — Programming Languages and Techniques

Final Exam, May 3, 2011

Answer key



1. Dynamic Dispatch
Consider the following Java class definitions:

class A {
private int x;
public A (int x0) { x = x0; }
public int getX () {

return x;
}

}
class B extends A {

private int x1;
private int y;
public B (int x0, int y0) {

super (x0 + 1);
x1 = x0;
y = y0;

}
public int getX() {

return x1;
}
public int getY() {

return y;
}

}

(a) (12 points) For each of the following variable declarations and initializations, list the static
type of the variable and the dynamic class of the object referred to by that variable. If the
initialization is invalid, write “INVALID” in both blanks. Assume that these statements occur
in order, and that INVALID initializations do not prevent subsequent lines from referring to
the variable.

A a1 = new A(3); Static: A Dynamic: A
B b1 = a1; INVALID: B INVALID: A
B b2 = new B(3,3); Static: B Dynamic: B
A a2 = b2; Static: A Dynamic: B
A a3 = new Object(); INVALID: A INVALID: Object
Object o1 = new B(2,3); Static: Object Dynamic: B

Grading scheme: 1 point per blank. If they misread and put the correct static type for the two
INVALIDs, do not count off.

1



(b) (10 points) Draw the state of the abstract stack machine just after the variable z has been
pushed onto the stack. Be sure to include the class table. A sample ASM (from lecture 28)
appears in the Appendix.

A b = new B(1,3);
int z = b.getX();

Grading scheme:

• stack variable b

• stack variable x

• object in Heap B

• field x

• field x1

• field y

• A in class table

• getX in A

• B in class table

• getX in B

2



(c) (5 points) Briefly define the terms “static type” and “dynamic class” in Java. How are they
related?

Answer: The dynamic class of an object is the class that the object was created from. The
static type of a variable or expression is the type declared by the programmer or calculated by
the type checker. The static type of a variable is a supertype of the dynamic classes of every
object that can be stored in that variable. Grading scheme: 2 points each for definition of
static type and dynamic class. 1 point for saying that static type is a supertype of the dynamic
class.

(d) (5 points) Briefly describe how the ASM model determines what code to put on the workspace
at a method call.

Answer: The Java ASM uses dynamic dispatch for method calls. Dynamic dispatch means
that the code (e.g. method body) that is executed depends on the dynamic class of the object.
The dynamic class is stored in the heap as part of the object. Methods are stored in the class
table, if the method is not in the object’s class, then the ASM looks in the superclasses.
Grading scheme: 2 points for stating that the code executed depends on the dynamic class of
the object. 1 point for saying dynamic class is stored in the heap as part of the object. 1
point for saying that methods are retrieved from the class table. 1 point for describing method
lookup.

3



2. First-class functions

(a) (5 points) Recall the OCaml function map:

let rec map (f : ’a -> ’b) (l : ’a list) : ’b list =
begin match l with
| [] -> []
| (x :: xs) -> (f x) :: map f xs
end

What is the value of the following OCaml expression?

map (fun (x : int) -> (x,x+1)) [1;3;5]

Answer : [(1,2);(3,4);(5,6)] Grading scheme: 5 points total.

• full points for slightly confused syntax such as ((1,2),(3,4),(5,6)) or [[1,2],[3,4],[5,6]].

• 4 points if the shape is correct, but the numbers are wrong, such as [(2,1);(4,3);(5,6)]

• 3 points for not pairing but having all of the numbers, such as [ 1;2;3;4;5;6 ] or
(1,2,3,4,5,6).

• 2 points for 3 element lists [1;3;5] or [2;4;6]

• 1 point for any other list

(b) (5 points) Now consider this OCaml function:

let rec foo (g : ’a -> ’a) (x : ’a) (n : int) : ’a =
if n <= 0 then x else foo g (g x) (n-1)

What is the value of the following OCaml expression?

foo (fun (x : string list) -> "a" :: x) ["b"] 2

Answer : ["a"; "a"; "b"] grading scheme: 5 points total.

• full points for slightly confused syntax such as [a,a,b] or ("a"; "a"; "b")

• 4 points if the shape is correct, but the strings are wrong. (Too many/too few a’s.)
["a";"b"] or ["a";"a";"a";"b"] or ["a";"a"]

• 3 points if the strings are correct but the shape is wrong such as [["a";"a"];"b"]

• 2 points for any list composed of a’s and b’s

• 1 point for any other list

4



3. Tree traversals
(12 points) In this problem you will identify the behavior of a few simple tree functions in

OCaml. Recall our OCaml definition of binary trees that store data in their internal nodes.

type ’a tree = Empty
| Node of ’a tree * ’a * ’a tree

Here is an example of one such tree:

let example_tree : int tree =
Node (Node (Node (Empty, 1, Empty),

2,
Node (Empty, 3, Empty)),

4,
Node (Node (Empty,5,Empty),

6,
Node (Empty,7,Empty)))

Now consider a few tree traversals:

(a) let rec pre_t (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node (t1,a,t2) -> a :: (pre_t t1) @ (pre_t t2)
end

in
pre_t example_tree

Circle the result of this program.

[1; 2; 3; 4; 5; 6; 7]

[4; 2; 1; 3; 6; 5; 7]

[7; 6; 5; 4; 3; 2; 1]

[1; 3; 2; 5; 7; 6; 4]

5



(b) let rec in_t (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node (t1,a,t2) -> (in_t t1) @ [a] @ (in_t t2)
end

in
in_t example_tree

Circle the result of this program.

[1; 2; 3; 4; 5; 6; 7]

[4; 2; 1; 3; 6; 5; 7]

[7; 6; 5; 4; 3; 2; 1]

[1; 3; 2; 5; 7; 6; 4]

(c) let rec post_t (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node (t1,a,t2) -> (post_t t1) @ (post_t t2) @ [a]
end

in
post_t example_tree

Circle the result of this program.

[1; 2; 3; 4; 5; 6; 7]

[4; 2; 1; 3; 6; 5; 7]

[7; 6; 5; 4; 3; 2; 1]

[1; 3; 2; 5; 7; 6; 4]

(d) let rec no_t (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node (t1,a,t2) -> (no_t t1) @ (no_t t2)
end

in
no_t example_tree

Write the result of this program.
Answer: []

6



4. Program Design
Use the four-step design methodology to implement a Java method, called isAlmostCorrect,

which determines whether a Word is almost correctly spelled.
A word is almost correct if it is either already correct, or could be made to be correct by

swapping two adjacent letters. For example, the word “cat” is almost correct. However, the word
“cta” is also almost correct because it is one swap away from “cat”. However, the word “tac” is
not almost correct because there is no way to swap two adjacent letters to form a correctly spelled
word.

The design process that we have been using this semester has four steps and you should use
them to solve this design problem.

(a) (0 points) Step 1 is understanding the problem. You don’t have to write anything for this
part—your answers below will demonstrate whether or not you succeeded with Step 1.

(b) (4 points) Step 2 is formalizing the interface. The first part of formalizing the interface is to
understand the interfaces of the classes that this method should interact with.

The argument to isAlmostCorrect should be an instance of the class Word, which represents
sequences of letters. This class has the following interface:

public class Word {
// Construct a word from the given string. If the argument string
// contains nonletter characters (such as spaces or punctuation),
// this constructor throws an InvalidArgumentException
public Word (String w) { ... }

// Return the number of letters in the word
public int length() { ... }

// Return a new word that exchanges the positions of the characters
// at indices i and i+1.
// For example, new Word("cta").swapAt(1) returns the word "cat"
//
// throws IllegalArgumentException when i is out of range
// (i.e. not 0 <= i < length()-1 )
public Word swapAt(int i) { ... }

// Compare two words ignoring their case
public boolean equals(Object o) { ... }

// Determine the ordering between words, ignoring their case
public int compareTo(Object o) { ... }

}

The method isAlmostCorrect should be a member of the class Dictionary. This class
contains a set of correct words, a constructor, and isAlmostCorrect. The declarations for
these class members are at the top of the next page.

7



public class Dictionary {
// set of correct words, stored in a binary search tree
private TreeSet<Word> dict;

// initializes dict with words from a file
public Dictionary(String filename) { ... }

// The method that you need to write
public boolean isAlmostCorrect(Word word) { ... }

}

Although we have given you the method declaration for isAlmostCorrect, only part of the
interface to this method is specified by this declaration. Below, complete the description of
the interface to isAlmostCorrect by describing any exceptions that could be thrown and
any shared state it must access. There are several correct answers here, but your answer to
this problem must match your steps 3 and 4.

Answer: The method must read dict to determine if the word is correct. If the argument
is null the method should throw an InvalidArgumentException or NullPointerException or
return false. Grading scheme: 2 points for dict, two points for specifying what to do with a
null input. Whatever they pick should match their test cases and implementation.

(c) (8 points) Step 3 is writing test cases. Create at least four new test cases with examples of
the expected behavior, in addition to the one we have done for you.

Note that some test cases are better than others, and credit will be assigned accordingly:
make sure your tests cover a sufficiently broad range of “interesting” inputs. Also, we have
not specified what words are considered “correct”. For the purposes of this problem, consider
any common, normally uncapitalized English word to be correct. If it is unclear in your test
cases whether a word is correct or not, please document your assumptions.

assertTrue(isAlmostCorrect(new Word("cta")));
Given from the problem description.

assertFalse(isAlmostCorrect(new Word(""))); // Empty string cannot be corrected
assertFalse(isAlmostCorrect(new Word("m"))); // single letter word
assertTrue(isAlmostCorrect(new Word("haet"))); // Correctable word
assertFalse(isAlmostCorrect(new Word("tac"))); // Not correctable
assertTrue(isAlmostCorrect(new Word("no"))); // Already correct word
null argument throws InvalidArgumentException

Grading scheme: 1 point per test case. Do not deduct for omitting “new Word”. Cases that
cause exceptions in the Word constructor do not earn points.

8



(d) (12 points) Step 4 is implementing the program. Implement the isAlmostCorrect method
to complete the design. For reference, documentation for the Java Collections class TreeSet
appears in the Appendix.

Answer:

boolean isAlmostCorrect(Word word) {
if (word == null) {

throw new InvalidArgumentException();
}
if (dict.contains(word)) {

return true;
}
for (int i=0; i < word.length()-1; i++) {

Word n = word.swapAt (i);
if (dict.contains(n)) {
return true;

}
}
return false;
}

Grading scheme: 1 point per part unless otherwise stated

• detect null input

• do what their interface says for null

• check if word already in dictionary

• return true for already correct word

• loop through positions in word

• correct initial condition for loop (i=0)

• correct termination condition for loop (i=length - 1)

• increment index by 1

• call swapAt

• check result of swapAt in dictionary

• return true if found

• return false if not found

Ignore any attempts to to handle capitalization.

9



Linked data structures

The next few questions concern an implementation of mutable queues in Java. The classes
Queue, QueueNode, and EmptyQueueException are shown in the Appendix. This implementation
is a slight variant of the code that we discussed in class and lecture, so read through the classes
now before continuing on to the problems below.

5. (10 points) Circle the result of each of the following code snippets.

(a) Queue<String> q = new Queue<String>();
q.enq("a");
q.enq("b");
System.out.println(q.deq());

prints a prints b does nothing

throws NullPointerException throws EmptyQueueException

(b) Queue<String> q1 = new Queue<String>();
Queue<String> q2 = new Queue<String>();
q1.enq("a");
q2.enq("b");
q1.deq();
System.out.println(q1.deq());

prints a prints b does nothing

throws NullPointerException throws EmptyQueueException

(c) Queue<String> q1 = new Queue<String>();
Queue<String> q2 = q1;
q1.enq("a");
q2.enq("b");
q1.deq();
System.out.println(q1.deq());

prints a prints b does nothing

throws NullPointerException throws EmptyQueueException

10



(d) Queue<Queue<String>> q1 = new Queue<Queue<String>>();
Queue<String> q2 = new Queue<String>();
q2.enq("a");
q1.enq(q2);
q2.enq("b");
System.out.println(q1.deq().deq());

prints a prints b does nothing

throws NullPointerException throws EmptyQueueException

(e) Queue<Queue<String>> q1 = new Queue<Queue<String>>();
Queue<String> q2 = new Queue<String>();
q1.enq(q2);
q1.enq(q2);
Queue<String> q3 = q1.deq();
q3.enq("a");
q2.enq("b");
System.out.println(q1.deq().deq());

prints a prints b does nothing

throws NullPointerException throws EmptyQueueException

Grading scheme: 2 points per answer. No partial credit.

11



6. The next two parts ask you to extend the Java Queue class shown in the Appendix with a new
method, called insert.

The method insert(n,v) inserts an element v into the nth position of the queue. To do so, it
should create a new queue node containing v and add it into the queue so that it occurs at position
n, where the head is at position 0. If n is a negative number, then the new element should be
inserted at the beginning of the queue. If n is larger than the size of the queue, then the new
element should be inserted at the end of the queue.

(a) (8 points) Briefly describe four test cases for the insert method. You don’t have to give the
complete code for these test cases, just describe what they should test in words.

Answer: potential tests include

• Insert at position 0 to an empty queue

• Insert at position < 0 to an empty queue

• Insert at position ≤ 0 to any queue

• Insert at position 0 to a nonempty queue

• Insert at an interior position to a nonempty queue

• Insert at the last position of a nonempty queue

• Insert a null item in the queue

Grading scheme, 1 point each

12



(b) (14 points) Now implement the insert method.

public void insert(int n, E v) {

if (head == null || n <= 0) {
head = new QueueNode<E>(v, head);
if (head == null) {

tail = head;
}

} else {
QueueNode<E> cursor = head;

for(int i = 1; i < n && cursor.next != null; i++) {
cursor = cursor.next;

}

cursor.next = new QueueNode<E>(v,cursor.next);

if (tail == cursor) {
tail = cursor.next;

}
}

}

Grading scheme: 1 point for each item

• detecting when the queue is empty

• correct behavior when n < 0

• detecting when inserting at beginning of queue

• creating new queuenode to insert

• assigning to head when inserting at beginning (*)

• updating tail to alias head when queue is empty (*)

• creating a cursor

• loop moving the cursor

• correct initial condition of loop

• termination condition of loop (found the spot)

• termination condition of loop (end of the queue)

• detecting when adding to the end of queue (*)

• updating tail when adding to end of queue (*)

• not losing any existing elements in the queue

Starred items may be replaced with enq in some solutions.

13



7. GUIs and Reactive Programming
(10 points) This question concerns the Java Paint program from lecture and lab. For reference,

an outline of this program appears in the Appendix. For each of the following statements, circle
True or False.

(a) A good use of inner classes is when two classes need to share private state.

Answer: true

(b) The class Canvas is an inner class of the class Paint and can access all private fields and
methods of that class.

Answer: true

(c) The fields thinStroke and thickStroke cannot be modified by any method, except for those
in the class Paint.

Answer: false

(d) The mousePressed method in the class Mouse is called by the Swing event loop whenever the
user clicks a mouse button while the pointer is in the Canvas part of the screen.

Answer: true

(e) It is the responsibility of the mousePressed method to draw a newly added shape on the
canvas.

Answer: false

(f) It is impossible to test Graphical User Interfaces.

Answer: false

(g) The paintComponent method in the class Canvas only executes the very first time the canvas
is displayed, at the start of the application.

Answer: false

(h) The same object can be both a MouseListener and a MouseMotionListener.

Answer: true

(i) In the Paint constructor, the purpose of the local variable pane is to help position the GUI
elements on the screen by grouping together the two toolbars.

Answer: true

(j) A JPanel cannot be added to another JPanel.

Answer: false

14



For Reference: Documentation for class java.util.TreeSet<E>

class java.util.TreeSet<E>

boolean add(E e)
Adds the specified element to this set if it is not already
present. Returns true if the set did not already contain the
specified element.

boolean contains(Object o)
Returns true if this set contains the specified
element. More formally, returns true if and only if this set
contains an element e such that (o==null ? e==null : o.equals(e)).

boolean isEmpty()
Returns true if this set contains no elements.

int size()
Returns the number of elements in this set.

boolean remove(Object o)
Removes the specified element from this set if it is present.
Returns true if the set contained the specified element.

Sample Java ASM with Class Table (from Lecture 28)

15



For Reference: Queue, EmptyQueueException and QueueNode
The logic of these classes is the same as the code presented in class. The differences are (a) there

is no division between the Queue interface and the QueueImpl implementation (b) deq throws an
exception when called on an empty queue (c) fields in QueueNode are public, there are no getter
or setter methods.

/** Nodes in the linked list */
class QueueNode<E> {

public E v;
public QueueNode<E> next;

public QueueNode(E v0, QueueNode<E> next0) {
v = v0;
next = next0;

}
}

/** Thrown when deq invoked on an empty queue. */
class EmptyQueueException extends RuntimeException { }

class Queue<E> {

/** A reference to the first node in the queue */
private QueueNode<E> head;
private QueueNode<E> tail;

/** Create an empty queue */
public Queue() {
head = null;
tail = null;

}

/** isEmpty() is true when the list has no elements */
public boolean isEmpty() {

return head == null;
}

public void enq(E x) {
QueueNode<E> newnode = new QueueNode<E>(x, null);
if (tail == null) {

head = newnode;
tail = newnode;

} else {
tail.next = newnode;
tail = newnode;

}
}

16



/** Retrieves and removes the first element of this queue. This
method fails if the queue is empty. */

public E deq() {
if (head != null) {

throw new EmptyQueueException();
}
E x = head.v;
QueueNode<E> next = head.next;
head = next;
if (next == null) {

tail = null;
}
return x;

}
}

17



Outline of the Java Paint program.
Most of the method implementations are not shown, and are replaced with . . . .

public interface Shape {
public void draw(Graphics2D gc);

}

public class PointShape implements Shape { ... }
public class LineShape implements Shape { ... }

public class Paint {
/** Area of the screen used for drawing */
private Canvas canvas;

/** Current drawing color */
private Color color = Color.BLACK;

/** Strokes for drawing shapes with thin/thick lines */
public final static Stroke thinStroke = new BasicStroke(1);
public final static Stroke thickStroke = new BasicStroke(3);

/** Current drawing thickness */
private Stroke stroke = thinStroke;

/** Available modes for user input */
public enum Mode {
PointMode,
LineStartMode,
LineEndMode,

}

/** Current drawing mode */
private Mode mode = null;

/** Location of the mouse when it was last pressed. */
private Point modePoint;

/** The list of shapes that will be drawn on the canvas. */
private LinkedList<Shape> actions = new LinkedList<Shape>();

/** an optional shape for preview mode */
private Shape preview;

private class Canvas extends JPanel {
public Canvas(){ ... {
public void paintComponent(Graphics gc) { ... }
public Dimension getPreferredSize() { ... }

}

18



/** Code to execute when the button is pressed while the mouse
* is in the canvas. */
private class Mouse extends MouseAdapter {

public void mousePressed(MouseEvent arg0){ ... }
public void mouseDragged(MouseEvent arg0) { ... }
public void mouseReleased(MouseEvent arg0) { ... }

}

/** Create the toolbar containing radio buttons for the input
modes as well as the thickness checkbox, Undo and Quit buttons */

private JPanel createModeToolbar(final JFrame frame) { ... }

/** Create the color toolbar */
private JPanel createColorToolbar() { ... }

/** Creates the main application window, assembles the user interface
and displays it. */

public Paint () {
final JFrame frame = new JFrame();
frame.setLayout(new BorderLayout());

canvas = new Canvas();
Mouse mouseListener = new Mouse();
canvas.addMouseMotionListener(mouseListener); // dragged events
canvas.addMouseListener(mouseListener); // press/release events
frame.add(canvas, BorderLayout.CENTER);

JPanel pane = new JPanel();
pane.setLayout(new GridLayout(2,1));
frame.add(pane, BorderLayout.PAGE_END);
pane.add(createModeToolbar(frame));
pane.add(createColorToolbar());

frame.pack();
frame.setVisible(true);

}

/** Entry point for the Paint application. */
public static void main(String[] args){
SwingUtilities.invokeLater(new Runnable() {
public void run() { new Paint(); }

});
}

}

19


