Name: ________________________
Pennkey: ________________________

CIS 120 Midterm II
November 2011

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/20</td>
</tr>
<tr>
<td>2</td>
<td>/20</td>
</tr>
<tr>
<td>3</td>
<td>/20</td>
</tr>
<tr>
<td>4</td>
<td>/20</td>
</tr>
<tr>
<td>5</td>
<td>/20</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>

• Do not begin the exam until you are told to do so.
• You have 50 minutes to complete the exam.
• There are 100 total points.
• There are 9 pages in this exam.
• Make sure your name and Pennkey (a.k.a. username) is on the top of this page.
1. Abstract Stack Machine (20 points)

Consider the following OCaml program that uses the queue types seen in Lecture and HW05:

(* Mutable queues, as defined in class. *)

type 'a queuenode = { v: 'a;
mutable next: 'a queuenode option}

type 'a queue = { mutable
head : 'a queuenode option;
mutable tail : 'a queuenode option }

let qn1 : int queuenode = {v = 1; next = None;}
let qn2 : int queuenode = {v = 2; next = Some qn1;}
let qn3 : int queuenode = qn2
let qn4 : int queuenode = {v = 4; next = Some qn3;}
;; qn1.next <- qn3.next
;; qn3.next <- Some qn4
(* HERE *)

Complete the diagram below of the state of the stack and heap parts of the ASM when the program reaches the point marked (* HERE *) in the program above. Note that you may need to add “Some bubbles” in the appropriate places, and that if you are simulating the execution of the program, you might have to erase pointers at times (or, if using ink, mark the erased pointers clearly with an X)—you should show only the final state! The Appendix of the exam contains an example of the stack and heap diagram for a similar OCaml program.

Stack

- qn1
- qn2
- qn3
- qn4

Heap

- v 1
 - next
- v 2
 - next
- v 4
 - next

answer:
2. Mutable State, Queues, and Iteration (20 points total)

This problem uses the ‘a queue and ‘a queuenode datatypes from Problem 1. Recall that the queue invariant for an ‘a queue value q is:

- q.head and q.tail are either both None, or
- q.head and q.tail both point to Some nodes, and
 - q.tail is reachable by following next pointers from q.head
 - q.tail’s next pointer is None

a. (10 points) Complete the definition of the function insert_after, given below. Its inputs are q, an ‘a queue, qn an ‘a queuenode value that is assumed to be a node in q, and a value x. The function should modify q in place to insert a new node with value component x after the node qn. Note that this function is not recursive. Make sure that it preserves the queue invariant.

answer:

(* Modify q by inserting a node with value x after the node qn: *

q satisfies the queue invariant
qn is a node assumed to be in q
x is the value to insert after qn

After the insertion, q must still satisfy the queue invariant.
*)

let insert_after (q: 'a queue) (qn: 'a queuenode) (x: 'a) : unit =
 begin match qn.next with
 | None -> (* qn must be last by Queue invariant *)
 let new_node = {v = x; next = None} in
 qn.next <- Some new_node;
 q.tail <- Some new_node
 | Some n -> (* qn must not be last *)
 let new_node = {v = x; next = Some n} in
 qn.next <- Some new_node
 end

or

let insert_after (q: 'a queue) (qn: 'a queuenode) (x: 'a) : unit =
 let new_node : 'a queuenode = {v = x; next = qn.next} in
 qn.next <- Some new_node;
 if (new_node.next = None) then
 q.tail <- Some new_node

b. (10 points) Complete the definition of the function \texttt{insert_after_first}, which, given a queue \(q\) and values \(x\) and \(a\), inserts a node with value \(x\) after the first occurrence of a node with value \(a\) that is reachable from \(q.\text{head}\). If \(q\) does not contain \(a\), then \(x\) is not inserted.

For example: if \(\text{to_list } q \Rightarrow [1;2;3;2;4]\), where 1 is the head and 4 is the tail, running

\[
\text{;; insert_after_first } q \ 17 \ 2
\]

should yield: \(\text{to_list } q \Rightarrow [1;2;17;3;2;4]\).

Your solution should use the function \texttt{insert_after} defined above. Write the \texttt{loop} function in tail recursive form.

\begin{verbatim}
answer:

let insert_after_first (q: 'a queue) (x:'a) (a:'a) : unit =
let rec loop (qno : 'a queuenode option) : unit =
begin match qno with
| None -> ()
| Some qn ->
 if qn.v = a then insert_after q qn x
 else loop qn.next
end
in
loop q.head
\end{verbatim}
3. Object Encodings, Transition to Java (20 points total)

Suppose that we wanted to port the OCaml GUI project to Java. Assume that we have already implemented `Gctx` and `Event` classes, the relevant parts of which are shown below:

```java
public class Gctx {
    public Gctx translate(int dx, int dy) { /*...omitted...*/ }
    public void drawString(String s, int x, int y) { /*...omitted...*/ }
    public void textWidth(String s) { /*...omitted...*/ }
    public void textHeight(String s) { /*...omitted...*/ }
    ...
}

public class Event { /*...omitted...*/ }
```

Recall these OCaml type definitions from the `widget` library:

```ocaml
type t = {
    repaint: Gctx.t -> unit;
    handle: Gctx.t -> Gctx.event -> unit;
    size: Gctx.t -> int * int
}

type label_controller = {
    set_label: string -> unit
}
```

a. (8 points) A Java interface called `LabelController` is the translation of the OCaml type `label_controller`. It specifies the signature of the `setLabel` method like this:

```java
interface LabelController {
    public void setLabel(String s);
}
```

Do the same thing for the `t` type: Define a Java interface called `Widget` that is the translation of the `t` datatype given above. Because Java does not have tuples, replace the single `size` method with two methods, `width` and `height`:

```java
interface Widget {
    public void repaint(Gctx g);
    public void handle(Gctx g, Event e);
    public int width(Gctx g);
    public int height(Gctx g);
}
```

answer:
b. (12 points) The OCaml code below (taken verbatim from lecture and the project) creates a label widget.

```ocaml
let label (s: string) : t * label_controller =
    let r : string ref = ref s in
    { repaint = (fun (g: Gctx.t) -> Gctx.draw_string g (0,0) !r);
      handle = (fun _ _ -> ());
      size = (fun (g: Gctx.t) -> Gctx.text_size g !r)
    },
    { set_label = fun (s: string) -> r := s }
```

Translate the above OCaml code into Java by completing the single class called Label that provides the functionality required by both the Widget and LabelController interfaces. Be sure to implement a constructor and all the required methods, which themselves might need to invoke Gctx methods. Properly encapsulate the Label’s local state.

answer:

```java
public class Label implements Widget, LabelController {
    private String r;

    public Label(String s) {
        r = s;
    }

    public void repaint(Gctx g) {
        g.drawString(r, 0, 0);
    }

    public void handle(Gctx g, Event e) {
        return;
    }

    public int getWidth(Gctx g) {
        return g.textWidth(s);
    }

    public int getHeight(Gctx g) {
        return g.textHeight(s);
    }

    public void setLabel(String newString) {
        r = newString;
    }
}
```
4. Java Subtyping: Inheritance, Interfaces and Dynamic Classes (20 points)

Hint: Draw the subtype hierarchy. Consider these Java class and interface definitions:

```java
interface I {
    public A method1();
}

interface J extends I {
    public B method2();
}

interface K {
    public B method3(B b);
}

class A implements I, K {
    public A method1() {
        return new A();
    }
    public B method3(B b) {
        return b;
    }
}

class B implements J {
    public A method1() {
        return new A();
    }
    public B method2() {
        return new C();
    }
    public B method3(B b) {
        return b;
    }
}

class C extends B implements K {
    public B method4(B b) {
        return new B();
    }
}
```

For each code fragment below, fill in the blank with the name of the dynamic class of the value stored in the variable indicated on the line, or write “ill typed” if the code fragment contains a compile-time type error (i.e. Eclipse would put a red line under some part of the program).

(a) K k1 = new C(); k1:________C___________
(b) I i1 = new C(); i1:________C___________
(c) I i2 = new A(); i2:________A___________
(d) K k3;
 if (true) {k3 = new A();} else {k3 = new B();} k3:____ill typed________
(e) K k4;
 if (true) {k4 = new A();} else {k4 = new C();} k4:________A___________
(f) J j1 = (new A()).method3(new C()); j1:________C___________
(g) B b1 = new C();
 B b2 = b1.method4(new B()); b2:____ill typed________
(h) J j2 = new B();
 J j3 = j2.method2(); j3:____illl typed________
(i) C c1 = new C();
 Object o1 = c1.method4(new C()); o1:________B___________
(j) C c2 = new Object(); c2:____illl typed________
5. Array Programming (20 points)

Implement the Java method `growByTwo` that takes in a 2D array of `ints` and returns a new array in which each single `int` value is replaced with a 2×2 square of copies of that value.

For example, if the input array is:

```java
int[][] arr = {{ 0, 1, 2 },
               { 3, 4, 5 }};
```

The output of `growByTwo(arr)` should be:

```java
{{ 0, 0, 1, 1, 2, 2 },
 { 0, 0, 1, 1, 2, 2 },
 { 3, 3, 4, 4, 5, 5 },
 { 3, 3, 4, 4, 5, 5 }}
```

You may assume that the input array is rectangular (i.e. every row is the same length) and that both dimensions are of size > 0.

answer:

```java
public int[][] growByTwo(int[][] arr) {
    int height = arr.length * 2;
    int width = arr[0].length * 2;
    int[][] newArr = new int[height][width];

    for(int i=0; i<arr.length; i++) {
        for(int j=0; j<arr[i].length; j++) {
            newArr[i*2][j*2] = arr[i][j];
            newArr[i*2+1][j*2] = arr[i][j];
            newArr[i*2][j*2+1] = arr[i][j];
            newArr[i*2+1][j*2+1] = arr[i][j];
        }
    }
    return newArr;
}
```

OR

```java
public int[][] growByTwo2(int[][] arr) {
    int height = arr.length * 2;
    int width = arr[0].length * 2;
    int[][] newArr = new int[height][width];

    for(int i=0; i<newArr.length; i = i + 2) {
        for(int j=0; j<newArr[i].length; j = j + 2) {
            newArr[i][j] = arr[i/2][j/2];
            newArr[i+1][j] = arr[i/2][j/2];
            newArr[i][j+1] = arr[i/2][j/2];
            newArr[i+1][j+1] = arr[i/2][j/2];
        }
    }
    return newArr;
}
```
public int[][] growByTwo2(int[][] arr) {
 int height = arr.length * 2;
 int width = arr[0].length * 2;
 int[][] newArr = new int[height][width];

 for(int i=0; i<newArr.length; i++) {
 for(int j=0; j<newArr[i].length; j++) {
 newArr[i][j] = arr[i/2][j/2];
 }
 }
 return newArr;
}
Appendix

This appendix shows an example of the Stack and Heap components of the OCaml Abstract Stack Machine. Your diagram for Problem 1 should use similar “graphical notation” for Some _ and None.

(* The types of mutable queues. *)

```ocaml
  type 'a queuenode = { v : 'a;
        mutable next : 'a queuenode option}

  type 'a queue = { mutable head : 'a queuenode option;
        mutable tail : 'a queuenode option }
```

```ocaml
let qn1 : int queuenode = {v = 1; next = None;}
let qn2 : int queuenode = {v = 2; next = Some qn1;}
let q : int queue = {head = Some qn2; tail = Some qn1;}
```

(* HERE *)

The OCaml program above yields the ASM Stack and Heap depicted below when the program execution reaches the point marked (* HERE *).