Programming Languages
and Techniques
(C1S120)

Lecture 5
Jan 18, 2013

Tuples and Lists

Announcements

No class Monday

Homework 1 due Tuesday at midnight
— Don’t wait! 24 people have already submitted

See schedule for TA office hours Sunday, Monday and
Tuesday

Post to piazza for help
Weirich Monday OH moved to Wednesday

School

CIS120 / Spring 2013

i College
B SEAS
B \Wharton
B Other

CIS120 / Spring 2013

<

B Freshman
B Sophomore
I Junior
B Senior
B Other

CIS 120 Demographics

149 responses / ~190 registered
2/3 Male, 1/3 Female
80% taken CIS 110, 88% have CIS 110 or AP

Java/C# experience
None 10s 100s 1000s more
3.4% (5) 27.0% (40) 61.5% (91) 6.8% (10) 1.4%(2)

Only 1 person with ML/Haskell experience

Python or Ruby experience
71.1% (86) 19.8% (24) 7.4% (9) 0.8% (1) 0.8% (1)

Tuples and Patterns

Tuples

* Atupleis away of grouping together two or more

data values (of possibly different types).

* |In OCaml, tuples are created by writing the values
separated by commas, in parentheses:

let my pair = (3, true)
let my triple = (“Hello”, 5, false)
let my quaduple = (1,2,"three”, false)

* Tuple types are written using ‘*’
— e.g.my triple has type:

string * int * bool

-

Pattern Matching Tuples

* Tuples can also be inspected by pattern matching:

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
=

llbll

* Note how, as with lists, the pattern follows the syntax for the
corresponding values

CIS120 / Spring 2013

Mixing Tuples and Lists

* Tuples and lists can mix freely:

[(1,"all); (2,"b"); (3,"C")]
(int * string) list

([1;2;3], [ua"; ub"; llcll])
(int list) * (string list)

CIS120 / Spring 2013

Nested Patterns

* So far, we've seen simple patterns:
[]
X:e:tl
(a,b,c)

* Like expressions, patterns can nest:

X::(ys:tl) matches lists of length at least 2
(X::Xs, y::yY8) matches pairs of non-empty lists

* A useful pattern is the wildcard pattern: _
s:tl matches a non-empty list, but only names tail

(_,X) matches a pair, but only names the 2" part

Lists and Tuple Examples

see lists.ml

Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
zip [1; 2; 3] ["a"; “b"; “c"] =
[(1,7a"); (2,"b"); (3,"c")]

let rec zip (ll:int list)
(l2:string list) : (int * string) list =
begin match (11, 12) with
| (01, 1) => [
| (x::xs, y::ys) => (X,yY)::(zip Xs ys)
| -> failwith "zip: unequal length lists"
end

Unused Branches

 The branches in a match expression are considered in
order from top to bottom.

* If you have “redundant” matches, then some later
branches might not be reachable.

— OCaml will give you a warning

let bad cases (1 : int 1list) : int =
begin match 1 with

[] > 0 This case matches more lists

than that one does.
X [J []

x::§::tl -> X + vy (* unreachable *)
end

-> X

Exhaustive Matches

* (Case analysis is exhaustive if every value being matched
against can fit some branch’s pattern.

 Example of a non-exhaustive match:

let sum two (1 : int list) : int =
begin match 1 with
| x::y:: => x+y
end

 OCaml will give you a warning and show an example of
what isn’t covered by your cases.
— in this example, there is no case for [], or for a singleton list

 The wildcard pattern and failwith are useful tools for
ensuring match coverage.

More List Examples

see lists.ml

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec number of songs (pl : string list) : int =
begin match pl with
| 11 >0
| (song :: rest) -> 1 + number of songs rest
end
let rec contains (pl:string list) (s:string) : bool =

begin match pl with

| [1 -> false

| (song :: rest) -=> s = song || contains rest s
end

Structural Recursion Over Lists

Structural recursion builds an answer from smaller
components:

let rec £ (1 : .. list) .. ¢ .. =
begin match 1 with

|] -> .
| (hd :: rest) -> .. f rest ..

end

The branch for [] calculates the value (£ []) directly.
The branch for hd: : rest calculates
(f(hd::rest))given hdand (f rest).

Design Pattern for Recursion

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
 If the main input to the program is an immutable list, make

sure the tests cover both empty and non-empty cases

4. Implement the required behavior
 |f the main input to the program is an immutable list, look for

a recursive solution...

* Suppose someone has given us a partial solution that
works for lists up to a certain size. Can we use it to build
a better solution that works for lists that are one
element larger?

* Isthere a direct solution for the empty list?

CIS120 / Spring 2013

