Programming Languages
and Techniques
(C1S120)

Lecture 6
Jan 23, 2013

Datatypes and Trees

Announcements

Homework 2 is up
— On-time due date: Tuesday, Jan 29t at 11:59:59pm
— Get started early, and seek assistance if you get stuck!

Weirich OH today cancelled, email if you would like
an appointment (see schedule for TA OH tonight)

Ask questions on Piazza, but be kind to your TAs.

Lecture Notes for ch. 1-6 will be posted after class.

Case Study: DNA and Evolutionary Trees

* Problem: reconstruct evolutionary trees from biological data.
— What are the relevant abstractions?

— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated List for
Type for Double
Nucleotides Helix lots Apes

and lots
of time

Greater Apes Lesser Apes

>2H00>—002>—0>—>—0-400

4

orangutan

white-cheeked gibbon

gorilla

siamang

chimpanzee

pileated gibbon
Suggested reading:

CI5120 / Spring 2013 Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions

Nucleotide

— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)
Codon

— three nucleotides : e.g. (A,A,T) or (T,G,C)

— codons map to amino acids and other markers

Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...

Phylogenetic tree
AAAA

— Binary (2-child) tree ACAT | AAGA
with helices (species)

at the nodes and leaves | | | I
GCAT TCGT TAGA GAGA

Building Datatypes

* Programming languages provide means of creating
and manipulating structured data

 We have already seen
— primitive datatypes (int, string, bool, ...)
— immutable lists (int list, string list, string list list, ...)
— tuples (int * int, int * string, ...)
— functions (that define relationships among values)

e How do we build new datatypes from these?

Simple User-defined Datatypes

 OCaml lets programmers define new datatypes

‘type’ keyword type name

'type day = // ‘}ust/be lowercase)

bunday type nucleotide =

Monday A

Tuesday C

Wednesday G

Thursday T “\\\\\\\\

Fri dCly \

>atu I"CICly construc?names (tags)

(must be capitalized)

* The constructors are the values of the datatype
— e.g. Aisanucleotideand [A; G; (] isa nucleotide list

CIS120 / Spring 2013

Pattern Matching Simple Datatypes

e Datatypes can be analyzed by pattern matching:

let string_of_n (n:nucleotide) : string =
begin match n with

A -> “adenine”

C -> “cytosine”

G -> “guanine”

T -> “thymine”

end

* There is one case per constructor
— you will get a warning if you leave out a case

* As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

A Point About Abstraction

We could represent data like this by using integers:
— Sunday = 0, Monday = 1, Tuesday = 2, etc.

But:

— Integers support different operations than days do
i.e. it doesn’t make sense to do arithmetic like:

Wednesday - Monday = Tuesday

— There are more integers than days, i.e. “17” isn’t a valid
day under the representation above, so you must be
careful never to pass such invalid “days” to functions that
expect days.

Conflating integers with days can lead to many bugs.

All modern languages (Java, C#, C++, OCaml,...)
provide user-defined types for this reason.

Type Abbreviations

OCaml also lets us name types, like this:

nucleotide list
nucleotide * nucleotide
* nucleotide

type helix
type codon

type keyword type
name definition in terms of existing types

* i.e.a codonisjusta triple of nucleotides

* |ts scope is the rest of the program.

Datatypes Can Also Carry Data

» Datatype constructors can also carry values

type measurement =

Missing

NucCount of nucleotide * int
CodonCount of codon * int

/ \ J
{ 7 Y
keyword ‘of Constructors may take a
tuple of arguments

* Values of type ‘measurement’ include:
Missing
NucCount(A, 3)
CodonCount(CA,G,T), 17

CIS120 / Spring 2013

Pattern Matching Datatypes

e Pattern matching notation combines syntax of tuples
and simple datatype constructors:

let get_count (m:measurement) : int =
begin match m with

Missing -> 0

NucCount(_, n) -> N

CodonCount(_, n) -> n
end

e Patterns bind variables (e.g. ‘n’) just like lists and
tuples

CIS120 / Spring 2013

Recursive User-defined Datatypes

e Datatypes can mention themselves!

— There should be at least one non-recursive ‘base case’
e Otherwise, how would you build a value for such a datatype?

type tree
| Leaf of helix
| Mode of tree * helix * tree

base case Node carries a recursive
(nonrecursive) tuple of values definition

* Recursive datatypes can be taken apart by pattern
matching (and recursive functions).

Syntax for User-defined Types

type tree =
| Leaf of helix
| Node of tree * helix * tree

* Example values of type tree

let t1 = Leaf [A;G]
let t2 = Node (Leaf [G], [A;T], Leaf [Al
let t3 = Node (Leaf [T], [T;T.

Node (Leaf [G;C], [G] Leaf

)

T~

Constructors
(note the
CIS120 / Spring 2013 capitalization)

Trees are everywhere

Family trees

wals o ‘;“" e |l¢ I L\ :.-/l-u- o b / |
/"‘ "'“’"' ";};.‘. ,",::‘,' /(unr.«, O d

CIS120 / Spring 2013

Organizational charts

CoRPORATE HIERARLHY

You ARE HERE

CIS120 / Spring 2013

Game trees

o]

L

Expression trees

CIS120 / Spring 2013

Natural Language Parse Trees

S
NP VP
N /\
D N \% NP

| |
the chef coéks tf/A\ﬁﬁ

| |
the soup

CIS120 / Spring 2013

File System Directory Structure

v [classes
v [cis110
v [12fa
» [trunk
» [12su
v [cis120
» O 11fa
» [11sp
v [12fa
» [doc
» [] exams

v [hw

assert.ml
7 assert.mli

- CommonExportMakefile

- CommonjavaMakefile

~ CommonMakefile
 CommonOcam|Makefile
v [hwOl
» (] export
» (] export_html
CIS120 / Spring 2013 » [html
 Makefile

| notes-from-11fa.txt

mmbmes LBomumn 17 e anrd

Domain Name Hierarchy

/N

com net
cornell ... upenn cisco..yahoo nasa ... nsf arpa ..

,//\AAAAAA

seas Wwharton ..

AN A

Binary Trees

root node
root’s root’s
left child right child
left subtree
\ & |eaf node

(.} & empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

C15120 / Spring 2013 A leaf is a node whose children are both empty.

Another Example Tree

CIS120 / Spring 2013

Integer Binary Trees in OCaml|

type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
3 —

Node (Empty, 2,
Node (Empty, 4, Empty)))

CIS120 / Spring 2013

see trees.ml

