Programming Languages
and Techniques
(C1S120)

Lecture 7/
Jan 25, 2013

Binary Search Trees

Announcements

 Homework 2 is due Tuesday, Jan 29", at 11:59:59pm

* Did the CIS 120 web page get hacked this week?

Representing trees

type tree =
| Empty
| Node of tree * int * tree

Node (Node (Empty, @, Empty),
1,
Node (Empty, 3, Empty))

Node (Empty, @, Empty) é

Empty V

CIS120 / Spring 2013

Demo: bst.ml

CIS120 / Spring 2013

Trees as Containers

Like lists, trees aggregate ordered data

Like lists, we can determine whether the data
structure contains a particular element

CHALLENGE: can we use the tree structure to make
this process faster?

Searching for Data in a Tree

e Recall the contains function:

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(1lt,x,rt) -> x = n ||
(contains 1t n) || (contains rt n)
end

* It searches through the tree, looking for n
— In this case, the search is a pre-order traversal of the tree
— Other traversal strategies would work equally well

* |nthe worst case, it might search through the entire tree

e Can we do better?

Search during (contains t 8)

CIS120 / Spring 2013

Binary Search Trees (BST)

e Key insight: Ordered data can be searched more

quickly than unordered data.
— This is why telephone books are arranged alphabetically
— But requires the ability to focus on half of the current data

 ABST is a binary tree with additional invariants:

* Empty isaBST
*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

An Example Binary Search Tree

Note that the BST
invariants hold for
this tree.

CIS120 / Spring 2013

Search in a BST: (lookup t 8)

8>5

CIS120 / Spring 2013

Searching a BST

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
if x = n then true
else if n < x then (lookup 1lt n)
else (lookup rt n)
end

* The BST invariants guide the search.

* Note that lookup may fail (i.e. return an incorrect
answer) if the input is not a BST.

CIS120 / Spring 2013

How to we construct a BST?

* Option 1:
— Write a function to check whether an arbitrary tree satisfies the BST
invariant.

— Call the check whenever we need to know about a given tree.

* Option 2:
— Create functions that preserve the BST invariant

— Starting from some trivial BST (e.g. Empty), we can apply such
functions to get other BSTs

— Examples: insert and delete

Checking the BST Invariants

(* Check whether all nodes of t are < n ¥*)
let rec tree less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
X < n && (tree_less 1t n) && (tree_ less rt n)
end

(* Determines whether t is a BST *)
let rec is bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(1lt,x,rt) ->
is bst 1t && is bst rt &&
(tree less 1t x) && (tree gtr rt x)
end

*Definition of tree_gtr omitted (it’s similar to tree_less)
CIS120 / Spring 2013

Inserting a new node: (1nsert t 4)

CIS120 / Spring 2013

Inserting a new node: (1nsert t 4)

CIS120 / Spring 2013 o !

Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if x = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

* Note the similarity to searching the tree.

* Assuming that t is a BST, the result is also a BST.
Why?

CIS120 / Spring 2013

