Announcements

• Homework 2 due tomorrow
Binary Search Trees (BST)

• Key insight:
 – We can use an *ordering* on the data to cut down the search space
 – This is why telephone books are arranged alphabetically

• A BST is a binary tree with additional *invariants*:

 • **Empty** is a BST
 • **Node**(*lt*, *x*, *rt*) is a BST if
 - *lt* and *rt* are both BSTs
 - all nodes of *lt* are < *x*
 - all nodes of *rt* are > *x*
Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. Why?
Demo: bst.ml
Checking the BST Invariants

(* Check whether all nodes of t are < n *)
let rec tree_less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 x < n && (tree_less lt n) && (tree_less rt n)
end

(* Determines whether t is a BST *)
let rec is_bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 is_bst lt && is_bst rt &&
 (tree_less lt x) && (tree_gtr rt x)
end

*Definition of tree_gtr omitted (it’s similar to tree_less)
Deletion – No Children: (delete t 3)
Deletion – No Children: `(delete t 3)`

If the node to be deleted has no children, simply replace it by the Empty tree.
Deletion – One Child: (delete t 7)
Deletion – One Child: \((\text{delete } t \ 7)\)

If the node to be delete has one child, replace the deleted node by its child.

If the node to be delete has one child, replace the deleted node by its child.
Deletion – Two Children: (delete t 5)
Deletion – Two Children: (delete t 5)

If the node to be delete has two children, promote the maximum child of the left tree.
Subtleties of the Two-Child Case

• Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.

• Then:
 – There exists a maximum element, m, of lt (why?)
 – m is smaller than every element of rt (why?)

• To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
 – i.e. we recursively delete m from lt
 – Note the resulting tree satisfies the BST invariants

• Question: will this always work?
tree_max: A *partial* function

```ocaml
let rec tree_max (t:tree) : int =
  begin match t with
    | Empty  -> ????
    | Node(lt, x, rt) -> ...
  end
```

• Problem: tree_max isn’t defined for *all* binary trees.
 – In particular, it isn’t defined for the *empty* binary tree
 – Technically, tree_max is a *partial function*

• What to do?
Solutions to Partiality: Option 1

• Return a *default or error value*
 – e.g. define tree_max Empty to be -1
 – Error codes used often in C programs; null used often in Java

• But...
 – What if -1 (or whatever default you choose) really *is* the maximum value?
 – Can lead to many bugs if the default or error value isn’t handled properly by the callers.

• Defaults should be avoided if possible
Abort the program:
 – In OCaml: failwith “an error message”

Whenever it is called, failwith aborts the program and reports the error message it is given.

This solution to partiality is appropriate whenever you know that a certain case is impossible.
 – Often happens when there is an invariant on a datastructure
 – The compiler isn’t smart enough to figure out that the case is impossible...
 – failwith is also useful to “stub out” unimplemented parts of your program.

There are a few other ways to deal with partiality (using datatypes or exceptions) that we’ll see later in the course
• For delete, we never need to call tree_max on an empty tree
 — This is a consequence of the BST invariants and the case analysis done by the delete function.

• So: we can write tree_max assuming that the input tree is a nonempty BST:

```haskell
let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty) -> x
  | Node(_,_,rt) -> tree_max rt
  | _ -> failwith "tree_max called on Empty"
  end
```

• Note: BST invariant is used because it guarantees that the maximum valued node is farthest to the right
Deleting From a BST

(* returns a binary search tree that has the same set of nodes as t except with n removed (if it's there) *)

let rec delete (t:tree) (n:int) : tree =
begin match t with
 | Empty -> Empty
 | Node(lt,x,rt) ->
 if x = n then
 begin match (lt,rt) with
 | (Empty, Empty) -> Empty
 | (Node __, Empty) -> lt
 | (Empty, Node __) -> rt
 | __ -> let m = tree_max lt in
 Node(delete lt m, m, rt)
 end
 else if n < x then Node(delete lt n, x, rt)
 else Node(lt, x, delete rt n)
 end
Wow, that was a lot of work. What about BSTs containing strings, or characters, or floats?
Structurally Identical Functions

• Observe: many functions on lists, trees, and other datatypes don’t depend on the contents, only on the structure.

• Compare: length for “int list” vs. “string list”

```ocaml
let rec length1 (l:int list) : int =
  begin match l with
  | [] -> 0
  | _::_tl -> 1 + length1 tl
  end

let rec length2 (l:string list) : int =
  begin match l with
  | [] -> 0
  | _::_tl -> 1 + length2 tl
  end
```

The functions are identical, except for the type annotation for `l`.
Notation for Generic Types

• OCaml provides syntax for functions with \textit{generic} types

\begin{verbatim}
let rec length (l:'a list): int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + (length tl)
 end
\end{verbatim}

• Notation: ‘\texttt{a} is a \textit{type variable}; the function \texttt{length} can be used on a \texttt{t list} for \textit{any} type \texttt{t}.

• Examples:
 – \texttt{length [1;2;3]} \hfill use length on an int list
 – \texttt{length ["a";"b";"c"]} \hfill use length on a string list
let rec append (l1:'a list) (l2:'a list) : 'a list =
begin
 match l1 with
 | [] -> l2
 | h::tl -> h::(append tl l2)
end

Note that the two input lists must have the *same* type of elements.

The return type can also be generic – in this case the result is of the same type as the inputs.

Pattern matching works over generic types.
In the body of the branch:
 h has type ‘a
 tl has type ‘a list
Generic Zip

- Distinct type variables can be instantiated differently:
 \[
 \text{zip } [1;2;3] \ ["a";"b";"c"]
 \]
- Here, ‘a’ instantiated to int, ‘b’ to string
- Result is the (int * string) list:
 \[
 [(1,"a");(2,"b");(3,"c")]
 \]
• Recall our integer tree type:

\[
\text{type tree } = \\
\mid \text{Empty} \\
\mid \text{Node of tree } * \text{ int } * \text{ tree}
\]

• We can define a generic version by adding a type parameter, like this:

\[
\text{type } \text{'a tree } = \\
\mid \text{Empty} \\
\mid \text{Node of } \text{'a tree } * \text{'a } * \text{'a tree}
\]

Parameter ‘a used here

Note that the recursive uses also mention ‘a
User-defined Generic Datatypes

• BST operations can be generic too, only change is to type annotation

(*) Inserts n into the BST t *)

let rec insert (t:'a tree) (n:'a) : 'a tree =
begin
match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
end