Programming Languages
and Techniques
(C1S120)

Lecture 8
Jan 28, 2013

BSTs Il and Generic Types

Announcements

* Homework 2 due tomorrow

CIS120 / Spring 2013

Binary Search Trees (BST)

* Key insight:
— We can use an ordering on the data to cut down the search space
— This is why telephone books are arranged alphabetically

« ABST is a binary tree with additional invariants:

* Empty isaBST
*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if x = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

* Note the similarity to searching the tree.
* Assuming that t is a BST, the result is also a BST. Why?

CIS120 / Spring 2013

Demo: bst.ml

CIS120 / Spring 2013

Checking the BST Invariants

(* Check whether all nodes of t are < n ¥*)
let rec tree less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
X < n && (tree_less 1t n) && (tree_ less rt n)
end

(* Determines whether t is a BST *)
let rec is bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(1lt,x,rt) ->
is bst 1t && is bst rt &&
(tree less 1t x) && (tree gtr rt x)
end

*Definition of tree_gtr omitted (it’s similar to tree_less)
CIS120 / Spring 2013

Deletion — No Children: (delete t 3)

CIS120 / Spring 2013

Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.

CIS120 / Spring 2013

Deletion — One Child: (delete t 7)

7>5

CIS120 / Spring 2013

Deletion — One Child: (delete t 7)

If the node to be delete has one

child, replace the deleted node
by its child.

CIS120 / Spring 2013

Deletion — Two Children: (delete t 5)

CIS120 / Spring 2013

Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.

CIS120 / Spring 2013

Subtleties of the Two-Child Case

Suppose Node(lt,x,rt) is to be deleted and It and rt are both
themselves nonempty trees.

Then:

— There exists a maximum element, m, of It (why?)

— mis smaller than every element of rt (why?)

To promote m we replace the deleted node by:
Node(delete It m, m, rt)
— i.e. we recursively delete m from It
— Note the resulting tree satisfies the BST invariants

Question: will this always work?

tree max: A partial function

let rec tree max (t:tree) : int =
begin match t with
| Empty -> 2222
| Node(lt,x,rt) -> ..
end

* Problem: tree maxisn’t defined for all binary trees.
— In particular, it isn’t defined for the empty binary tree
— Technically, tree max is a partial function

e What to do?

CIS120 / Spring 2013

Solutions to Partiality: Option 1

* Return a default or error value
— e.g.define tree max Empty tobe -1
— Error codes used often in C programs; null used often in Java

* But...

— What if -1 (or whatever default you choose) really is the maximum
value?

— Can lead to many bugs if the default or error value isn’t handled
properly by the callers.

» Defaults should be avoided if possible

Solutions to Partiality: Option 2*

 Abort the program:

— InOCaml: failwith “an error message”

* Whenever itis called, failwith aborts the program and
reports the error message it is given.

* This solution to partiality is appropriate whenever you know
that a certain case is impossible.

— Often happens when there is an invariant on a datastructure

— The compiler isn’t smart enough to figure out that the case is
impossible...

— failwith is also useful to “stub out” unimplemented parts of your
program.

*There are a few other ways to deal with partiality (using datatypes or exceptions) that
we’ll see later in the course

BST Invariants and tree max

* For delete, we never need to call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis done
by the delete function.

* So: we can write tree_max assuming that the input tree is a
nonempty BST:

let rec tree max (t:tree) : int =
begin match t with
| Node(,x,Empty) -> X
| Node(_ , ,rt) -> tree max rt
| -> failwith “tree max called on Empty”
end

 Note: BST invariant is used because it guarantees that the
maximum valued node is farthest to the right

Deleting From a BST

(* returns a binary search tree that has the same set of
nodes as t except with n removed (if it's there) ¥*)
let rec delete (t:tree) (n:int) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->
if x = n then
begin match (lt,rt) with
(Empty, Empty) -> Empty
(Node , Empty) -> 1t
(Empty, Node) => rt
_ => let m = tree max 1t in
Node (delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end

CIS120 / Spring 2013

Generic Functions and Data

Wow, that was a lot of work. What about BSTs
containing strings, or characters, or floats?

Structurally Identical Functions

* Observe: many functions on lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

e Compare: length for “int list”vs.“string list”

let rec lengthl (l:int list) : int =
begin match 1 with

| [] -> 0

| _::tl -> 1 + lengthl tl

end % | The functions are
identical, except
for the type

/’ .
let rec length2 (l:string list) : int = annotation for 1.

begin match 1 with

| [] > 0

| _::tl -> 1 + length2 tl
end

CIS120 / Spring 2013

Notation for Generic Types

OCaml provides syntax for functions with generic types

let rec length (1:'a list) : int =
begin match 1 with
| [] -> 0
| _::tl -> 1 + (length t1)
end

Notation: ‘a isa type variable; the function 1ength can
beusedonat list for any type t.

Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list

Generic List Append

Note that the two input
lists must have the same
type of elements.

The return type can also
be generic — in this case
the result is of the same
type as the inputs.

/

N>

v

let rec append (11:'a list) (1éttaﬁiist) : 'a list =

begin match 11 with
| [1 -> 12
| h::tl -> h::(Cappend tl 12)

eni/\

/

Pattern matching works over generic types.
In the body of the branch:

h has type ‘a

tl hastype ‘a list

CIS120 / Spring 2013

Generic Zip

Functions can operate
over multiple generic

types.

‘—\

v e
let rec zip (11:'a list) (12:'b list) : ('a*'b) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
| _ > []

end

* Distinct type variables can be instantiated differently:
le [1;2;3] [”a.";"b";"C"]

* Here, ‘a instantiatedto int, ‘btostring
* Result isthe (int * string) list:
[(1,,,a,,);(2,,,b,,);(3,,,C,,)]

CIS120 / Spring 2013

User-defined Generic Datatypes

* Recall our integer tree type:

type tree =
| Empty
| Node of tree * int * tree

 We can define a generic version by adding a type parameter,
like this: Parameter ‘a

/
used here

p——

type 'a tree =
| Empty

| Node of 'a tree * 'a * 'a tree
\ /

\ /

Note that the recursive
CIS120 / Spring 2013 uses also mention ‘a

User-defined Generic Datatypes

» BST operations can be generic too, only change is to type
annotation

(* Inserts n into the BST t *)

let rec insert (t:'a tree) (n:'a) : ’a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f x = n then t
else n < x then Node(insert 1t n, x, rt)

else Nodé %\\f;\fnsert rt n)

end

N

Equality and comparison
work for any type of data

CIS120 / Spring 2013

