Programming Languages
and Techniques
(C1S120)

Lecture 9
Jan 30, 2013

Abstract Types: Sets



Announcements

« Homework 3 is available on the web
— Due MONDAY, February 4t at 11:59:59pm
— Practice with BSTs, generic functions, abstract datatypes

* |f you added CIS 120 recently, make sure that you can see
your scores online.
— If you get feedback about your scores, you are in our database.
— If not, please send mail to tas120@lists.seas.upenn.edu




Abstract Collections




Design Process

Understand the problem
Formalize the interface

Write test cases
Implement the required behavior

B w N e

How to formalize the interface?
— Determine data representation + relevant operations
— So far, we have used built-in structures for representation (int, list, tree)
— What if the built-in structures don’t fit exactly?



A design problem

As a high-school student, Stephanie had the job of reading
books and finding which words, out of a list of the 1000-most
common SAT vocabulary words, appeared in a particular
book. She enjoyed being paid to read, but she would have
enjoyed being paid to program more. How could she have
automated this task?

What are the important concepts or abstractions for this
problem?

* The collection of words that appear in a book

* The collection of 1000-most common SAT words

* The collection of words from the first collection that are
contained in the second collection




A set is an abstract type

e Use a set for this collection

— In math, we typically write sets like this: {1,2,3} {true,false}
with operations like: SUT or ST for union and intersection
we write x €S to mean that “x is a member of the set §”

 Asetis alot like a list, except:
— Order doesn't matter

— Duplicates don't matter
— It isn't built into OCaml

* Sets show up frequently in applications

— Examples: set of students in a class, set of coordinates in a
graph, set of answers to a survey, set of data samples from
an experiment, ...



2. Formalize the interface: myset.ml file

type 'a set = .

(* Need a way to create sets.. *)

let empty : 'a set = ..

let add (x:'a) (s:'a set) : 'a set = .

let union (sl:'a set)(s2:'a set) : 'a set = ..
let remove (x:'a) (s:'a set) : 'a set = ..

let list to_set (1l:'a list) : 'a set = ..

(* ..and a way to work with them *)

let is_empty (x:'a set) : bool = ..
let member (x:'a) (s:'a set) : bool = ..
let equal (sl:’a set) (s2:’a set) : bool = ..

let elements (s:'a set) : 'a list = ..



2a. Look at the interface: myset.mli file

Keyword ‘val’ names values

type 'a set = . that must be defined and
val empty : 'a set their types.

val add : 'a -> 'a set -> 'a set

val union : 'a set -> 'a set -> 'a set

val remove : 'a -> 'a set -> 'a set

'a list -> 'a set
set -> bool

val list to set :
‘a
'‘a => 'a set -> bool
‘a
‘a

val is empty :
val member :
val equal :
val elements :

set -> 'a set -> bool
set -> 'a list

e« OCaml puts interfaces (as above) in a .mli file

 The corresponding implementation goes in the .ml file



Aside: Function Types

In OCaml, the type of functions from input t to output u is

written:
t -=> u

Functions with multiple arguments use multiple arrows

Here are some examples we have already seen:

size : tree -> int
hamming distance : helix -> helix -> int

acids of helix : helix -> acids 1list
length : ‘a list -> int
Zip : ‘a list -> ‘b list -> ('a*’'b) list

lookup : tree -> int -> bool
insert : ‘a tree -> ‘a -> ‘a tree



3. Write tests (in another file)

let sl = Myset.add 3 Myset.empty
let s2 = Myset.add 4 Myset.empty
let s3 = Myset.union sl s2

let test () : bool = (Myset.member 3 sl) = true
;7 run test “Myset.member 3 sl” test
let test () : bool = (Myset.member 4 s3) = true

;7 run test “Myset.member 4 s3” test

To use the values defined in the set module use the “dot”
syntax:
Myset .<member>

Alternatively, use “; ; open Myset” at the top of a file to
bring all of the names defined in the interface into scope.

Note: Module names are always capitalized in OCaml



4. Implement the behavior

There are many ways to implement sets.

— lists, trees, arrays, etc.

How do we choose which implementation?

Many such implementations are of the flavor
“a setis a ... with some invariants”
— Asset is a list with no repeated elements.
— Asetis a tree with no repeated elements
— A setis a binary search tree
— Asetis an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants?



Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface.

Example:
— concrete ‘set’ representation — the implementation — is a list or a tree

— abstract interface defines the operations in terms of a ‘set’ type

The interface restricts how other parts of the program can interact
with the data.

Benefits:
— Safety: The other parts of the program can’t break any invariants
— Modularity: It is possible to change the implementation without changing
the rest of the program



Defining Abstract Types

* Different programming languages™ have different ways of
letting you define abstract types.

* At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

* In OCaml:
— Interfaces are specified using a signature or ML interface file (.mli)
— Encapsulation is achieved because the interface can omit definitions.
— Clients can’t mention values not named in the interface.

*In Java, interfaces can also be written down explicitly and encapsulation is achieved by public/
private modifiers on object fields. (We’ll cover this in detail later.)



Example module interface: .mli file

type 'a set

val empty : 'a set

'a set -> 'a set
->

a set -> 'a

'a set -> 'a set

'a list -> 'a set

val add : 'a ->
val union : 'a set
val remove : 'a ->
val list to set :

val is empty : 'a set
val member : 'a =->
val equal : 'a set
val elements : 'a set

-> bool
a set -> bool

-> 'a set -> bool

-> 'a list

Type declaration has no
definition — its representation
is abstract.

set

* Create a .mli file that omits information on purpose
— The definition of the set type is hidden
— Aukxiliary functions used in the implementation are hidden




Naming the interface (a signature)

module type Set

type

val
val
val
val
val
val
val
val
val
end

= sig
'a set \ Name the interface so that it
can be reused by multiple
empty : 'a set implementations.
is empty : 'a set -> bool
member : 'a -> 'a set -> bool
add : 'a -> 'a set -> 'a set
union : 'a set -> 'a set -> 'a set
remove : 'a -> 'a set -> 'a set
list to set : 'a list -> 'a set
equal : ‘a set -> ‘a set -> bool
elements : 'a set -> 'a list




Module Implementation: trees

module BSet : t =

struct Constrains the module to use
type ‘a tree = the named interface.
| Empty

| Node of ‘a tree * ‘a * ‘a tree
type 'a set = ‘a tree (* definition hidden by .mli ¥*)

let empty : 'a set = Empty
let is empty (s:'a set) : bool = ..

end

* The implementation has to include all of the interface values

— It can contain more functions and type definitions (e.g. auxiliary
functions) but those cannot be used outside the module

— The types of the provided implementations must match the interface




Module Implementation: lists

module LSet : t =
struct Constrains the module to use

the given interface.

type 'a set = ‘a list

let empty : 'a set = []
let i1s _empty (s:'a set) : bool = ..

end

e To use the values defined in this module later on in the file
use the “dot” syntax: LLSet .<member>

* Inanotherfile,use “; ; open Hwset.LSet” atthe top of
the file to bring all of the names defined in the interface into
scope.




