Programming Languages
and Techniques
(C1S120)

Lecture 12
February 6", 2013

Options, Unit and (Mutable!) Records



Announcements

* Homework 4 is available on the web
— due Monday, February 11t at 11:59:59pm
— n-body physics simulation
— start early; see Piazza for discussions

 Updated lecture notes also available...

— New language features in homework 4

« Midterm 1 will be in class on Friday, February 15t
— Review materials on website
— Review session Wednesday Feb 13t in the evening
— Let me know about scheduling problems ASAP



Quick quiz

 Write a recursive function to calculate the maximum value in
a list of numbers

let rec list max (l:'a list) : ’'a =

CIS120 / Spring 2013




Quiz answer

 Write a recursive function to calculate the maximum value in
a list of numbers

let rec list max (l:'a list) : ’'a =
begin match 1 with
| []1 -> failwith “empty list”
| [h] -> h
| h::t -> max h (list max t)
end

let 1list max (l:'a list) : 'a =
begin match 1 with
| [1 -> failwith “empty list”
| h::t -> fold max h t
end

CIS120 / Spring 2013




Client of list_max

(* list max : int list -> int ¥*)

(* string of max calls list max ¥*)
let string of max (l:int list) : string =
string of int (list max 1)

e string_of max will fail too if given []

* Not so easy to debug if string_of _max is written by one
person and list_max is written by another

— e.g.ifoneisoneisin alibrary

CIS120 / Spring 2013




Dealing with Partiality

Option Types




Partial Functions

Sometimes functions aren’t defined for all inputs:
— tree_max from the BST implementation isn’t defined for empty trees
— integer division by 0
— Map.find k m when the key k isn’t in the finite map m

We have seen how to deal with partiality using failwith
— but failwith aborts the program

Can we do better?

Hint: we already have all the technology we need.



Option Types
 Define a generic datatype of optional values:

type ‘a option =
| None
| Some of ‘a

|ll

* A “partial” function returns an option

let list max (l:1list) : int option = ..

e Contrast this with null value, a “legal” return value of any type

— caller can accidentally forget to check whether null was used; results in
NullPointerExceptions or crashes

— Sir Tony Hoare, Turing Award winner and inventor of “nul
“billion dollar mistake”!

III

calls it his



Example: list_max

A function that returns the maximum value of a list as an
option (None if the list is empty)

let list max (l:'a list) : 'a option =
begin match 1 with
| [1 -> None
| x::tl -> Some (fold max x tl)
end

CIS120 / Spring 2013




Revised client of list max

(* list max : int list -> int option *)

(* string of max calls list max ¥*)
let string of max (l:int list) : string =
begin match (list max 1) with
| None -> “no maximum”
| Some m -> string of int m
end

e string_of max will never fail

* The type of list_max makes it explicit that a client must check
for partiality.

CIS120 / Spring 2013







unit: the trivial type

e Similar to "void" in Java or C

* For functions that don't take any arguments

let £ () : int = 3 val £ : unit -> int
let vy : int = £ () val y : int

* Also for functions that don't return anything, such as testing
and printing functions a.k.a commands:

(* run test : string -> (unit -> bool) -> unit *)
;7 run_ test “TestName” test

(* print string : string -> unit ¥*)
;7 print string “Hello, world!”

CIS120 / Spring 2013



unit: the boring type

e Actually, () is avalue just like any other value.

* For functions that don't take any interesting arguments

let £ () : int = 3 val £ : unit -> int
let vy : int = £ () val y : int

* Also for functions that don't return anything interesting, such
as testing and printing functions a.k.a commands:

(* run test : string -> (unit -> bool) -> unit *)
;7 run_ test “TestName” test

(* print string : string -> unit ¥*)
;7 print string “Hello, world!”

CIS120 / Spring 2013



unit: the first-class type

e Can define values of type unit

let x = () val x : unit

e (Can pattern match unit (even in function definitions)

let z = begin match x with fun () -> 3
| () =>4
end

* Is the implicit else branch:

;77 1f z <> 4 then + if z <> 4 then
failwith "test failed" failwith "test failed"
else ()

CIS120 / Spring 2013



Sequencing Commands and Expressions

* Expressions of type unit are useful because of their side
effects (e.g. printing)

* We can sequence those effects using ;’

— unlike in C, Java, etc., °;’ doesn’t terminate a statement it separates a
command from an expression

let £ (x:int) : int =
print string “f called”;
X + X

W,
do not use *;’ here! note the use of ;" here

* We can think of *;” as an infix function of type:
unit -> ‘a -> ‘a






Records

* Records are like tuples with named fields:

(* a type for representing colors *)

type rgb

(* some example

let red
let blue
let green

let black :

let white

rgb

rgb =

rgb
rgb
rgb

{r:int; g:int; b:int;}

rgb values *)

{r=255;
{r=0;
{r=0;
{r=0;
{r=255;

g=0;
g=0;
g=255;
g=0;
g=255;

b=0;}
b=255;}
b=0;}
b=0;}
b=255;}

 The type rgb is a record with three fields: r, g, and b
— fields can have any types; they don’t all have to be the same

* Record values are created using this notation:
field2=val2;..}

CIS120 / Spring 2013

{fieldl=vall;




Field Projection

 The value in a record field can be obtained by using “dot”
notation: record.field

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)
let average rgb (cl:rgb) (c2:rgb) : rgb =

{r = (¢cl.r + c2.r) / 2;

g = (cl.g + c2.9) / 2;

b = (cl.b + c2.b) / 2;}

CIS120 / Spring 2013




Imperative Programming



Course Overview

* Declarative programming

— persistent data structures

We are here.
— recursion is main control structure Midterm 1 covers
— heavy use of functions as data Q material up to this point.

* |mperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

* Object-oriented programming
— pervasive “abstraction by default”

— mutable data structures / iteration
— heavy use of functions (objects) as data



Why Use Declarative Programming?

Simple

— small language: arithmetic, local variables, recursive functions,
datatypes, pattern matching, polymorphism and modules

— simple substitution model of computation

Persistent data structures
— Nothing changes, so can remember all intermediate results
— Good for version control, fault tolerance, etc.

Typecheckers give more helpful errors

— Once your program compiles, it needs less testing
— failwith vs. NullPointerException

Easier to parallelize and distribute

— No implicit interactions between parts of the program. All of the
behavior of a function is specified by its arguments



Mutable Record Fields

* By default, all record fields are immutable—once initialized,
they can never be modified.

 OCaml supports mutable fields that can be imperatively
updated by the “set” command: record.field <- val

note the ‘mutable’ keyword

_—

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
77 pO0.x <= 17

;7 Print_ghdlisi\("pO.x = " ”~ (string of int p0.x))

™SS

“in-place” update of p0.x

CIS120 / Spring 2013




Defining new Commands

* Functions can assign to mutable record fields

* Note that the return type of ‘<=’ is unit

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.x + dx;
p.y <- p.y t dy

CIS120 / Spring 2013




Why Use Mutable State?

Action at a distance

— allow remote parts of a program to communicate / share information
without threading the information through all the points in between

Direct manipulation of hardware (device drivers, etc.)

Data structures with explicit sharing

— e.g. graphs

— without mutation, it is only possible to build trees — no cycles
Efficiency/Performance

— a few data structures have imperative versions with better asymptotic
efficiency than the best declarative version

Re-using space (in-place update)

Random-access data (arrays)



state.ml



A new view of imperative programming

Java (and C, C++, C#) OCaml

* Nullis contained in (almost) ¢ No null. Partiality must be
every type. Partial functions made explicit with options.
can return null.

* Code is a sequence of * Code is an expression that
statemgnts that d? has a value. Sometimes
something, sometimes computing that value has
using expressions to other effects.

compute values. :
* References are immutable

* References are mutable by by default, must be

default, must be explicitly explicitly declared to be
declared to be constant mutable



Issue with Mutable State: Aliasing

e What does this function return?

let £ (pl:point) (p2:point) : int =
pl.x <- 17;
p2.x <- 42;
pl.x

(* Are you sure? Consider this call to f *)
let ans = £ p0 pO0

Two identifiers are said to be aliases if they both name the
same mutable record. Inside £, pl and p2 might be aliased,
depending on which arguments are passed to f.

CIS120 / Spring 2013




Aliasing Again

* Does this test pass or fail?

let pl = {x=1; y=1;}
let p2 = pl
;; shift p2 3 4

;7 run_test "pl didn't change”
(fun () -> (pl.x = 1) && (pl.y = 1))

CIS120 / Spring 2013




Reasoning About Mutable State

 Mutable state breaks the simple substitution model!
— program behaviors become much more difficult to reason about
— we have to change our mental model of what is going on...

* For example, if we try to use substitution:

let pl = {x=1; y=1;}
let p2 = pl
let ans = p2.x <- 17; pl.x

—

let pl = {x=1; y=1;}

let p2 = {x=1; y=1;}

let ans = p2.x <- 17; {x=1; y=1;}.X

—

let pl = {x=1; y=1;}

let p2 = {x=1; y=1;}

let ans = {x=1; y=1;}.x <- 17; {x=1; y=1;}.X

CIS120 / Spring 2013




Evaluation Cont’d

—

let pl = {x=1; y=1;}
let p2 = {x=1; y=1;}
let ans = {x=1; y=1;}.x <- 17; {x=1; y=1;}.X
— .
What'’s going on here?
let pl = {x=1; y=1;}
let p2 = {x=1; y=1;}
let ans = {x=17; y=1;}?2?2?; {x=1; y=1;}.X%
—
let pl = {x=1; y=1;}
let p2 = {x=1; y=1;}
let ans = (); {x=1; y=1;}.x
—>
let pl = {x=1; y=1;}
let p2 = {x=1; y=1;} This is the wrong answer!
let ans = 1 & ‘

CIS120 / Spring 2013




