Programming Languages
and Techniques
(C1S120)

Lecture 18
Feb. 22, 2013

GUI Design |I: Layout

Announcements

* HWO06: GUI programming available now
— Due: Friday, March 1%t

Designing a GUI library

[O Point| O Line|] |® Ellipse| [O Text] [@Thick lines| [O Copy| |O Paste| |Undo| [Quit]
(w] (] (m] [=] W (] (=] [m] Text buffers |

/.
T

CIS120/ Spring 2013

Project Architecture

Application \ --- :

Paint
GUI Eventloop Widget
Library
Gcetx

Native
graphics
library

OCaml’s Graphics Module (graphics.cma)

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

CIS120 / Spring 2013

Designing a GUI library

 OCaml’s Graphics library* provides very simple primitives for:
— Creating a window
— Drawing various shapes: points, lines, text, rectangles, circles, etc.

— Getting the mouse position, whether the mouse button is pressed,
what key is pressed, etc.

— See: http://www.seas.upenn.edu/~cis120/current/ocaml-3.12-
manual/libref/Graphics.html
* How do we go from that to a functioning, reusable GUI
library?

*Pragmatic note: when compiling a program that uses the Graphics module, add graphics.cmxa
(for native compilation) or graphics.cma (for bytecode compilation) to OCaml Build Flags under
the Projects>Properties dialog in Eclipse.

OCaml vs. Standard Coordinates

Standard (0,0)
\£ size_x () >
 §
_(xy) N
(p]
<
v
OCaml (0,0) Standard (x,y) = OCaml (x,size_y() - y)

CIS120 / Spring 2013

Project Architecture

Application PSSR O R C R S CU O S RT ST T N T IS T T CTTE ST TS eren: :
\ Paint

Eventloop Widget
Gcetx
Native . OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

CIS120 / Spring 2013

GUI terminology — Widget*

* Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position on the screen and know how to display
themselves

 May be composed of other widgets (for layout)

* Widgets are often modeled by objects

— They often have hidden state (string on the button, whether the
checkbox is checked)

— They need functions that can modify that state

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

GUI terminology - Eventloop

* Main loop of any GUI application

let run (w:Widget.t) : unit =
Graphics.open graph ""; (* open a new window *)
Graphics.auto synchronize false;

let rec loop () : unit =
Graphics.clear graph ();
repaint w;
Graphics.synchronize (); (* force window update *)
wait for user input (mouse movement, key press)
inform w about it so widgets can react to it;
loop () (* tail recursion! *)
in
loop ()

* Takes “top-level” widget w as argument. That widget contains all others in
the application.

CIS120 / Spring 2013

Container Widgets for layout

(1N

: Widget.t = hlist

let color toolbar
[color button
color button
color button
color button
color button
color button
color button
color button

black;
white;
red;
green;
blue;
yellow;
cyan;
magenta]

spacer;
spacer;
spacer;
spacer;
spacer;
spacer;
spacer;

hlist is a container widget.

It takes a list of widgets and
turns them into a single one
by laying them out
horizontally.

paint.ml

* Challenge: How can we make it so that the functions that
draw widgets (buttons, check boxes, text, etc.) in different
places on the window are location independent?

Challenge: Widget Layout

* Widgets are “things drawn on the screen”. How to make them
location independent?

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Application \ --- :

Paint.ml

GUI
Library

Native |
graphics

q—

|

library

—

CIS120 / Spring 2013

Eventloop.m Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)

The graphics
context
isolates the

widgets from
the Graphics
module.

11

GUI terminology — Graphics Context

* Wrapper for OCaml Graphics library, putting operations “in
context”

* Aggregates information about the way things are drawn, such
as the foreground color or line width

* Translates coordinates of drawing commands
— Flips between OCaml and
“Standard coordinates” so origin
is top-left
— Translates coordinates so all
widgets can pretend that
they are at the origin

CIS120 / Spring 2013 12

Graphics Contexts

Absolute (Flipped OCaml)
(0,0)

widget-local
0,0)
(X,y T
widget h
e W]

A graphics context Gctx.t represents a position within the window, relative to which

the widget-local coordinates should be interpreted. We can add additional context

information that should be “inherited” by children widgets (e.g. current pen color).
CIS120 / Spring 2013 13

Module: Gctx

Contextualizes graphics drawing operations

Module: Widgets

Building blocks of GUI applications

GUI Library Architecture

GUI
Library

i} |

Native B
graphics
library

CIS120 / Spring 2013

Eventloag Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)

16

Simple Widgets

(* An interface for simple GUI widgets *)

type t = {

repaint : Gectx.t -> unit;

size : Getx.t -> (int * int)
}

* You can ask a simple widget to repaint itself.

* You can ask a simple widget to tell you its size.

* Both operations are relative to a graphics context

swdemo ml

CIS120 / Spring 2013

. Caml graphics

|Hello lWorld

18

Widget Examples

simpleWidget.ml

(* Display a string on the screen. *)

let label (s:string) : t =

{
repaint = (fun (g:Gctx.t) -> Gectx.draw string g s);
size = (fun (g:Gctx.t) -> Getx.text size g s)

simpleWidget.ml

(* A region of empty space. *)
let space ((w,h):int*int) : t =
{
repaint = (fun (_:Gectx.t) -> ());
size (fun (_:Gctx.t) -> (w,h))

The canvas Widget

* Region of the screen that can be drawn upon
* Has a fixed width and height

* Parameterized by a repaint method
— Use the Gctx drawing routines to draw on the canvas

simpleWidget.ml

(* expose the graphics context as a widget *)
let canvas ((w,h):int*int) (repaint: Gctx.t -> unit)
{
repaint = repaint;
size (fun (_:Gectx.t) -> (w,h))

The Border Widget Container

0 (w’s width +4) -1

12 3.
IIIIIIIIIIIIIIIIIIIIIIIII=

0
translate\ 1%
the Getx | 2

3

W'S

o
o
-
B height
o
o
u
u

EREEEEEED
=

(ws height +4) - 1 S NN

w’s width

let b = border w

* Draws a one-pixel wide border around contained widget w

* b’s sizeis slightly larger than w’s (+4 pixels in each dimension)
* b’s repaint method must call w’s repaint method

* When b asks w to repaint, b must translate the Gctx.t to (2,2) to account for the
displacement of w from b’s origin

The Border Widget

simpleWidget.ml

let border (w:t):t
{

repaint =

let x =
let y = height
Gctx.draw line
Gctx.draw line
Gctx.draw line
Gectx.draw line
let g =
w.repaint g);

size =

(fun (g:Gectx.t)
let (width,height) =
(width+4, height+4))

(fun (g:Gectx.t)
let (width,height) =
width + 3 in

+ 3 in
g (0,0)
g (0,0)
g (x,0)
g (0,y)

wW.Size g in =

->
w.Size g in

->

(x,0);
(0,y)7

(X,5)7
(X,¥)7 -

Gctx.translate g (2,2) in

Draw the border

¥

Display the interior

CIS120 / Spring 2013

22

The hpair Widget Container

translate Gctx
to repaint w2

wl
w2 h’s

Pheight

v

h’s width

* let h = hpair wl w2
e Creates a horizontally adjacent pair of widgets

* Aligns them by their top edges
— Must translate the Getx when repainting the right widget

* Size is the sum of their widths and max of their heights

The Widget Hierarchy

 Widget instances form a tree™:

— Leaf widgets — don’t contain any children
* label, space, and canvas widgets are leaves

— Container widgets — are “wrappers” for their children
* border and hpair widgets are containers

* Build container widgets by passing in their children as
arguments to their “constructor” functions

— e.g. let b = border w in..
let h = hpair bl b2 in..

 The repaint method of the root widget initiates all the
drawing and layout for the whole window

*If you draw the state of the abstract machine for a widget program, the tree will be visible in the
heap — the saved stack of the “repaint” function for a container widget will contain references to
its children.

Widget Hierarchy Pictorially

swdemo.ml

(* Create some simple label widgets *)

let 11 = label "Hello"
let 12 = label "World"

(* Compose them horizontally, adding some borders *)

let h = Dborder (hpair (border 11)

(hpair (space (10,10)) (border 12)))

border
!
hpair
Ae””;;’-::\‘\g Hello World
border hpair
label space border On the screen

v

Widget tree label

Demo: swdemo.ml

CIS120 / Spring 2013

26

