Programming Languages
and Techniques
(C1S120)

Lecture 20
February 27, 2013

Transition to Java

Objects, classes, and interfaces

Announcements

HWO6 Due Friday, March 15t at 11:59:59pm
Lab this week: setting up eclipse for Java!

For the Java portion of the course, we recommend creating a
new Eclipse workspace

— So that you don’t have to switch settings between OCaml/Java when
you move back and forth

Upcoming HW due dates

HW 07 Monday, March 18t released over
break

HW 08 Monday, March 25

Exam 2 Friday, March 29th
HW 09 Tuesday, April 9th
HW 10 Tuesday, April 23 last day of classes

CIS120 / Spring 2013

Looking Back...

Course Overview

* Declarative (Functional) programming
— persistent data structures
— recursion is main control structure
— heavy use of functions as data

* |mperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

e Object-oriented (and reactive) programming
— mutable data structures / iteration
— heavy use of functions (objects) as data
— pervasive “abstraction by default”

OCaml: What's Left

OCaml is not a very large language — we’ve actually seen most of its
important features. But we’ve omitted a few...

* Module system

— One of OCaml’s most interesting features is its excellent support for large-
scale programming

— We saw just the tip of the iceberg: structures and signatures
— Key feature: functors (functions from structures to structures)

* QObject system
— OCaml actually includes a powerful system of classes and objects
— We left them out to avoid confusion with Java’s way of doing things

* Miscellaneous handy type-system features

— e.g. “polymorphic variants” (used, for example, to support parameter
passing by name instead of by position)

— Type inference — almost all of the type annotations we’ve been using can
be omitted.

Recap: The Functional Style

Core ideas:
— value-oriented programming
— immutable (persistent / declarative) data structures
— recursion (and iteration) over tree structured data
— functions as data
— generic types for flexibility (i.e. ‘a list)
— abstract types to preserve invariants (i.e. BSTs)

Good for:

— simple, elegant descriptions of complex algorithms and/or data
— parallelism, concurrency, and distribution
— “symbol processing” programs (compilers, theorem provers, etc.)

Language Support for FP

“Functional languages” (OCaml, Standard ML, F#, Haskell,
Scheme) promote this style as a default and work hard to
implement it efficiently

“Hybrid languages” (Scala, Python) offer it as one possibility
among others

Mainstream “Object Oriented” languages (Java, C#, C++,
Objective C) favor a different style by default

— But many common OO idioms and design patterns have a functional
flavor (e.g. the “Visitor” pattern is analogous to transform)

— And most of them are gradually adding features (like anonymous
functions) that make functional-style programming more convenient

— Best practices discourage use of imperative state

Functional programming

OCaml

Immutable lists primitive,
tail recursion

Datatypes and pattern
matching for tree structured

data
First-class functions
Generic types

Abstract types through
module signatures

Java (and C, C++, C#)

No primitive data
structures, no tail recursion

Trees must be encoded by
objects

No first-class functions.*
Must encode first-class
computation with objects

Generic types

Abstract types through
public/private modifiers

*until Java 8, coming this summer

OCaml

VS. Java

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is _empty (t:'a tree) =
begin match t with
| Empty -> true

| Node(_ , ,) -> false
end
let t int tree = Node(Empty,3,Empty)
let ans bool = is empty t

CIS120 / Spring 2013

interface Tree<A> {
public boolean isEmpty();
}
class Empty<A> implements Tree<A> {
public boolean isEmpty() {
return true;
}
}

class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> 1lt;
private final Tree<A> rt;

Node (Tree<A> 1lt, A v, Tree<A>
this.lt = 1lt; this.rt = rt;

rt) {
this.v = v;

}

public boolean isEmpty() {
return false;
}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty();

Recap: Imperative programming

e Coreideas:

computation as change of state over time

distinction between primitive and reference values
aliasing

linked data-structures and iteration control structure
generic types for flexibility (i.e. ‘a queue)

abstract types to preserve invariants (i.e. queue invariant)

 Good for:

numerical simulations

implicit coordination between components

Imperative programming

OCaml

No null. Partiality must be

made explicit with options.

Code is an expression that
has a value. Sometimes
computing that value has
other effects.

References are immutable
by default, must be
explicitly declared to be
mutable

Java (and C, C++, C#)

Null is contained in (almost)
every type. Partial functions
can return null.

Code is a sequence of
statements that do
something, sometimes
using expressions to
compute values.

References are mutable by
default, must be explicitly
declared to be constant

Recap (and coming): The OO Style

 Coreideas:
— objects (state encapsulated with operations)
— classes (“templates” for object creation)
— dynamic dispatch (“receiver” of method call determines behavior)
— subtyping (grouping object types by common functionality)
— inheritance (creating new classes from existing ones)

e Good for:

— GUIs!

e and other complex software systems that include many different
implementations of the same “interface” (set of operations) with different
behaviors (cf. widgets)

— Simulations

» designs with an explicit correspondence between “objects” in the
computer and things in the real world

OO programming

OCaml Java (and C, C++, C#)

* Explicitly create objects * Primitive notion of object
using a record of higher creation (classes, with
order functions and hidden fields, methods and
state constructors)

* Flexibility through * Flexibility through
composition: objects can extension:
only implement one Subtyping allows related
interface objects to share a common

(i.e. button = widget * interface
label controller * (i.e. button <: widget)

notifier_controller).

Java and OCaml together

Guy Steele, one of the
principal designers of Java

Xavier Leroy, one of the principal
designers of OCaml

CIS120 / Spring 2012 15

Looking Forward

Today: Objects, Classes and Interfaces in Java

Friday: Declarative programming in Java

Smoothing the transition

DON’T PANIC

Ask questions, but don’t worry about the details until you
need them.

Java resources:
— Lecture notes and lecture slides

— Online Java textbook (http://math.hws.edu/javanotes/) linked from
“CIS 120 Resources” on course website

— Penn Library: Electronic access to “Java in a Nutshell” (and all other
O’Reilly books)

— Piazza!

Caveats

Some aspects of Java involve quite a bit of detail

There is often much more to the story than presented in
the lectures (and more than needed for CIS 120).

We expect you to use various online and print resources
to fill in the details (and you can ask when in doubt)

But don't worry about details until you need them

The best way to learn details is to use them in solving a
problem

from OCaml to Java

"Objects"

IN

OCaml

(* The type of counter objects *)
type counter = {

inc : unit -> 1int;

dec : unit -> 1int;

}

(* Create a counter "object" with
hidden state: *)
let new_counter () : counter =
let r = {contents = 0} in {
inc = (fun) ->
r.contents <-
r.contents + 1;
r.contents);
dec = (fun O ->
r.contents <-
r.contents - 1;
r.contents)

CIS120 / Spring 2013

Why is this an object?

= FEncapsulated local state
only visible to the methods
of the object

= QObjectis defined by what it
can do—Ilocal state does not
appear in the interface

» There is a way to construct
new object values that
behave similarly

Critique of Hand-Rolled Objects

* “Roll your own objects” made from records, functions, and
references are good for understanding...

type counter = {
inc : unit -> 1int;
dec : unit -> 1int;

}

e ...but not that good for programming
— minor: syntax is clunky (too many parens, etc.)
— major: OCaml’s record types are too rigid, cannot reuse functionality

type reset_counter = {
inc : unit -> int;
dec : unit -> int;
reset : unit -> unit;

Java Objects and Classes

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— ohe or more constructors: code that is executed when the
object is created (optional)

Every Java object is an instance of some class

Can (optionally) implement an interface that
specifies it in terms of its operations

Objects in Java

) class declaration
public class Counter { (|ass name

private int r; instance variable

public Counter) { onstructor

r=0;

}

public intlinc O { methods object creation and use
r=r + 1;

, return r; public class Main {

.. ublic static void
public int dec () { P main (String[] args) { constructor

r=r - 1; invocation
return r; Counter c = new Counter();

}
} System.out.printin(c.inc());

1 method call

CIS120 / Spring 2013

Creating Objects

* Declare a variable to hold the Counter object

— Type of the object is the name of the class that creates it

* |nvoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

CIS120 / Spring 2013

Counter c = new Counter();

Constructors with Parameters

Constructor methods can take

public class Counter {
parameters

private int r;
Constructor must have the same

public g(?unter (int ro) { name as the class
, r = ro;
Puglicriztl?nc O { object creation and use
! return r;’ public class Main {
pubLic it dec O { P ain (Stringl] argsy { invocation.
! return r; Counter ¢ = new Counter(3);
} System.out.printin(c.inc());

CIS120 / Spring 2013

Creating objects

* Every Java variable is mutable

Counter ¢ = new Counter(2);
c = new Counter(4);

* A lJava variable of reference type can also contains the special
value “null”

Counter ¢ = null;

45 Single = for assignment
Double == for reference equality testing

Using objects

* At any time, a Java variable of reference type can contain
either the special value “null” or a pointer into the heap
— i.e., a Java variable of reference type "T" is like an OCaml variable of
type "T option ref"
— The dereferencing of the pointer and the check for “null” are implicitly
performed every time a variable is used

class Foo {

let £ (co : counter option ref) : int =
begin match co.contents with public int f (Counter c¢) {
| None -> return c.incQ);
failwith "NullPointerException" }
| Some ¢ -> c.inc() }
end

* If null value is used as an object (i.e. with a method call) then
a NullPointerException occurs

Encapsulating local state

public class Counter { — ris private

}

private int r;

public Counter () {

el

constructor and

r = 0;

1 methods can
refertor

public int inc O {

r=r + 1;

return r; public class Main { other parts of the
¥ program can only access

. public static void public members

public int dec () { main (String[] args) {
! return r; Counter c = new Counter();

System.out.printin(c.inc());

CIS120 / Spring 2013

} method call

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— public : accessible from anywhere in the program
— private : only accessible inside the class
e Design pattern: first cut
— Make all fields private
— Make constructors and methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

