Programming Languages
and Techniques
(C1S120)

Lecture 29
March 27, 2013

10



Announcements

 Midterm 2 is Friday

— Towne 100 last names A—K
— Cohen G17 last names L—Z

* Review session: Wednesday 6:30-9:30pm
— Wu & Chen (Levine 101)
— Lab this week is review (bring questions!)







/O Streams

 The stream abstraction represents a communication channel
with the outside world.

— potentially unbounded number of inputs or outputs (unlike a list)
— data items are read from (or written to) a stream one at a time

* The Java I/0O library uses subtyping to provide a unified view
of disparate data sources or data sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...




Binary-based |10

A stream is a sequence of binary numbers

197 46 182 170

The simplest |0 classes break up the sequence into 8-bits
chunks, called bytes. Each byte corresponds to an integer in
the range 0 — 255.



InputStream and OutputStream

Abstract classes™ that provide basic operations for the Stream class hierarchy:

abstract int read (); // Reads the next byte of data
abstract void write (int b); // Writes the byte b to the output

These operations read and write int values that represent bytes
— range 0-255 represents a byte value
— value -1 represents “no more data” (when returned from read)

* java.io provides many subclasses for various sources/sinks of data:

— files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:
— encoding, buffering, formatting, filtering

*Abstract classes are classes that cannot be directly instantiated (via new). Instead, they provide partial,
concrete implementations of some operations. In this way, abstract classes are a bit like interfaces (they
provide a partial specification) but also a bit like classes (they provide some implementation). They are most
useful in building big libraries, which is why we aren’t focusing on them in this course.



Binary input demo



Binary 10 example

public Image() throws IOException {
InputStream fin = new FileInputStream(“mandrill.pgm”);

data = new int[width][height];
for (int 1=0; 1 < width; i++) {
for (int j=0; j < height; j++) {
int ch = fin.readQ;
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended too early");
ks
data[j][1] = ch;
¥
ks

fin.close();



BufferedIinput Stream

 Reading one byte at a time is slow

 Each time a stream is read there is a fixed overhead, plus time
proportional to the number of bytes read.

disk -> JVM -> program
disk -> JVM -> program
disk -> JVM -> program

e A BufferedIinput Stream reads many bytes at once into a buffer
(incurring the fixed overhead only once) while still producing the
data with the same interface.

disk ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program



Buffering example

public Image() throws IOException {
FileInputStream finl = new FileInputStream("mandrill.pgm");

InputStream fin = new BufferedInputStream(finl);

data = new int[width][height];
for (int 1=0; 1 < width; i1++) {
for (int j=0; j < height; j++) {
int ch = fin.readQ);
if (ch == -1) {
throw new IOException("File ended too early");
Iy
data[j][1] = ch;
¥
ks

fin.close();



The Standard Java Streams

* java.lang.System provides an InputStream and two
standard PrintStream objects for doing console I/O.

System.out

Sys tem.1in standard output (display)
standard input (keyboard)

| > Application

standard error (display)

System.err

Note that System. in is a static member of the class System — this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.
Methods can also be static — the most common being “main”, but see also the Math class.




Example PrintStream Methods

* Adds Buffering and binary-conversion methods to OutputStreams

void println(boolean b); // write b followed by a new line

void println(String s); // write s followed by a newline
void println(); // write a newline to the stream
void print(String s); // write s without terminating the line
(output may not appear until the stream is flushed)
void flush(); // actually output any characters waiting to be sent

* Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments, and/
or the static type of the argument you pass in at the method’s call site.

— Thejava 1/0 library uses overloading of constructors pervasively to make it easy to “glue
together” the right stream processing routines



Character based 10

 Astream is a sequence of binary numbers

593 46,762
\u0251 \UBGAA
lal ::
p—
=1L

 The character-based IO classes break up the sequence into
16-bit chunks, called chars. Each character corresponds to a
letter (specified by a character-encoding).



Reader andWriter

Similar to the InputStream and OutputStream classes, including:

abstract int read (); // Reads the next character
abstract void write (int b); // Writes the char to the output

These operations read and write int values that represent
unicode characters

— read returns an integer in the range 0 to 65535 (i.e. 16 bits)
— value -1 represents “no more data” (when returned from read)
— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.

— use these for portable text I/0

Gotcha: System. in, System.out, System.err are byte streams
— So wrap in an InputStreamReader / PrintWriter if you need unicode console I/0



How do you read from a file into a String?

FileReadingTest.java



Java I/O Design Strategy Summary

1. Understand the concepts and how they relate:
— What kind of stream data are you working with?
— Is it byte-oriented or text-oriented?

* InputStream vs. InputReader
— What is the source of the data?
* e.g. file, console, network, internal buffer or array

— Does the data have any particular format?
* e.g.comma-separated values, line-oriented, numeric
e Consider using Scanner or another parser

2. Design the interface:
— Browse through java.io libraries (to remind yourself what’s there!)

— Determine how to compose the functionality your need from the library

— Some data formats require more complex parsing to convert the data stream
into a useable structure in memory



