Programming Languages
and Techniques
(C1S120)

Lecture 31
April 3, 2013

Overriding, Equality, and Casts



Announcements

e HW 09 due Tuesday at midnight

* More information about exam 2 available on Friday



Unfinished Business

Histogram.java and WordScanner.java




Problem Statement

Write a command-line program that, given a filename for a
text file as input, calculates the frequencies (i.e. number of
occurrences) of each distinct word of the file. The program
should then print the frequency distribution to the console as
a sequence of “word: freq” pairs (one per line).

Histogram result:

The: 1 each:1 line : 2 should : 1
Write : 1 file:2 number : 1 text: 1
a:4 filename : 1 occurrences : 1 that: 1
as:2 for:1 of : 4 the : 4
calculates : 1 freq:1 one:1 then:1
command : 1 frequencies : 1 pairs : 1 to:1
console : 1 frequency : 1 per:1 word : 2
distinct : 1 given : 1 print: 1

distribution : 1 i:1 program : 2

e:1l input: 1 sequence : 1



Method Overriding




A Subclass can Override its Parent

public class C {
public void printName() { System.out.println(“I'm a C”); }
}

public class D extends C {
public void printName() { System.out.println(“I'm a D”); }
}

C c = new D();
c.printName(); // what gets printed?

Our ASM model for dynamic dispatch already explains what will happen
when we run this code.

Useful for changing the default behavior of classes.

But... can be confusing and difficult to reason about if not used carefully.



Overriding Example

Workspace

Stack Heap

Cc =new C();

c.printName();

Class Table

Object
String toString(){..

boolean equals..

C
extends
c() {1}

void printName(){..}

D

extends

D() { 1}

void printName(){..}



Overriding Example

Workspace

Stack Heap

c.printName();

- =—EN

Class Table

Object
String toString(){..

boolean equals..

C
extends
coy { }

void printName(){..}

D

extends

D() { .}

void printName(){..}



Overriding Example

Workspace

Stack Heap

.printName();

Class Table

Object

String toString(){..

boolean equals..

C
extends
coy { }

void printName(){..}

D

extends

D() { .. }

printName () {..}



Overriding Example

Workspace

Stack Heap

System.out.
println(“I'm a D”);

Class Table

Object
String toString(){..

boolean equals..

C
extends
coy { }

void printName(){..}

D

extends

D() { .}

void printName(){..}



. 1 The C class might be
Dangers of Overriding inanotner package, or2
library...
public class C { / Whoever wrote D might
Exam exam2 = .. not be aware of the
public void printTest() { implications of
if (onDate(”March 29th")) { changing onDate.

System.out.println(“as scheduled”);
} else { System.out.prinln(“postponed”); }

}

public boolean onDate(String s) {
return exam2.date().equals(s);

}
} Overriding the method can
public class D extends C { cause the behavior of
Exam final = .. printTest to change!

public boolean onDate(String s) {
return final.date().equals(s);

— Overriding can break
invariants/abstractions relied
} upon by the superclass.

}

C ¢ = new D(

)i
c.printTest(); // what gets printed?




When To Override?

* Only override methods when the parent class is designed specifically to
support such modifications:

— If you’re writing the code for both the parent and child class (and will maintain
control of both parts as the software evolves) it might be OK to overrride.

— If the library designer specifically describes the behavioral contract that the
parent methods assume about overridden methods (and the child follows that
contract).

— Either way: document the design.
— Use the @Override annotation to mark intentional overriding

* Look for other means of achieving the desired outcome:
— Use composition & delegation (i.e. wrapper objects) rather than overriding.



The final modifier

By default, fields and local variables are mutable and methods can be
overridden*.
* The £inal modifier changes that.

* Final fields and local variables:
— Must be initialized (either by a static initializer or in the constructor) and

cannot thereafter be modified.

— Act like the immutable name bindings in OCaml
— static final fields are useful for defining constants (e.g. Math.PI)

* Final methods cannot be overridden in subclasses.
— Also useful in combination with static
— Prevents subclasses from changing the “behavioral contract” between
methods by overriding.

*Technically, fields can also be re-declared in a subclass (i.e. C has field x and D extends C and also declares a
field x, not even necessarily of the same type!). Don’t do this! But be aware that you can introduce bugs by

inadvertently using this “feature”.



When to override: Equality



Consider this example

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in madin

List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

 Whatis printed to the terminal? Why?




Equality*

1. lIdentity vs. Equality
2. Pitfalls with overriding equals

3. Recipe for overriding equals

*See the very nicely written article “How to write an Equality Method in Java” by Oderski, Spoon, and
Venners (June 1, 2009) at http://www.artima.com/lejava/articles/equality.html



ldentity vs. Equality

Object identity is “pointer equality” a.k.a. “reference equality”
— Indicates where in the heap the object is located

— Tested using ==

Object equality is “value”, “logical”, “structural” or “deep” equality
— Indicates when two objects are “the same” as values
— Tested using the equals method inherited from Object

In Java, the default implementation of equalsis ==
— In this case, instances are equal only to themselves

Classes can override the default implementation to provide a
different “structural” notion of equality.

— e.g. String tests for identical sequences of characters.



Logical Equality

What does it mean for two things to be equal?
— “that depends on what your definition of is is”
— In what way is the equality being used?

Answer 1: Mutable objects are (usually) only equal to themselves
— Why?

Answer 2: Two immutable objects (of the same type) are equal if their
corresponding fields are equal

— What if there are “unimportant” fields?
— What if the objects are of different types?

What is a reasonable definition of equality?



The contract for equals

* The equals method implements an equivalence relation on non-null
objects.
e ltis reflexive:

— for any non-null reference value x, x.equals(x) should return true

* |tis symmetric:

— for any non-null reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true

* |tis transitive:
— for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
* [tis consistent:

— for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information
used in equals comparisons on the object is modified

For any non-null reference x, x.equals(null) should return false.

Directly from: http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)




