Programming Languages
and Techniques
(C1S120)

Lecture 34
April 10, 2013

Swing II: Layout and Inner Classes

Announcements

* Friday is the BONUS lecture

e HW1O0 is available:
— due Tuesday, April 23rd at 11:59:59pm

HW 10: Game projects

(HeNé) Othello

File Edit Help Pass) White: 2 Black: 5

Planet Game

0 coins 0 coins
Pong 1 bomb 3 bombs

(Instructions Restart Level Quit Objectives

Orbit Cruiser

0 asteraids Polftcted

energy

CIS 120

10 Mg effective mass

(_PLAY/RESET) (HELP)

Swing Programming Demo

CIS 120

Layout & Wiring

Inner Classes

CIS 120

Inner Classes

Useful in situations where two objects require “deep access”
to each other’s internals

Replaces tangled workarounds like “owner object” (as in the
drawing example)

— Solution with inner classes is easier to read

— No need to allow public access to instance variables of outer class

Also called “dynamic nested classes”

Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outerVar = 6; Name of this class is

} _ Outer.Inner
public class Inner {

private int innerVar;
public Inner(int z) {
innerVar = outerVar + z;

}

(which is also the static

type of objects that this
class creates)

Reference from inner
class to instance variable

bound in outer class

cis420

Object Creation

* |nner classes can refer to the instance variables and methods of the
outer class

* Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

* Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer a = new Outer();
Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner();‘v/

CIS 120

Inner classes

DrawingExample Constructor

bl.addActionListener (new DrawingButtonListener(bl));
b2.addActionListener (new DrawingButtonListener (b2));

Button action code far
from button creation

Inner Class

class DrawingButtonListener impleme

JButton button; . .

DrawingButtonListener (JButton b) Awkward |OgIC to avoid
one class per button
public void actionPerformed(ActionEvent e

// Find out which button generated the event

if (button.equals(bl)) {

shapes.add(new Line());
} else if (button.equals(b2)) {

shapes.add(new Square());

}

CIS 120

Anonymous Inner Classes

* Define a class and create an object from it all at once, inside a
method

bl.addActionListener (new ActionListener () {

public void actionPerformed(ActionEvent e) {
shapes.add(new Line());

drawingCanvas.repaint(); [zl =lee=o il=lle s =le
methods of outer class

})s

b2.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {

shapes.add(new Square()); . .
drawingCanvas.repaint(); Puts button action rlght

} with button definition

})i

Each button gets its own
CIS 120 inner class

Anonymous Inner class

* New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.

CIS 120

Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml|
first-class functions

* Both create "delayed computation” that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final

