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Lecture 34
April 10, 2013

Swing II: Layout and Inner Classes



Announcements

* Friday is the BONUS lecture

e HW1O0 is available:
— due Tuesday, April 23rd at 11:59:59pm



HW 10: Game projects

(HeNé) Othello

File Edit Help Pass ) White: 2 Black: 5

Planet Game

0 coins 0 coins
Pong 1 bomb 3 bombs

( Instructions Restart Level Quit Objectives

Orbit Cruiser

0 asteraids Polftcted

energy
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10 Mg effective mass

(_PLAY/RESET ) ( HELP )




Swing Programming Demo
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Layout & Wiring




Inner Classes
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Inner Classes

Useful in situations where two objects require “deep access”
to each other’s internals

Replaces tangled workarounds like “owner object” (as in the
drawing example)

— Solution with inner classes is easier to read

— No need to allow public access to instance variables of outer class

Also called “dynamic nested classes”



Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outerVar = 6; Name of this class is

} _ Outer.Inner
public class Inner {

private int innerVar;
public Inner(int z) {
innerVar = outerVar + z;

}

(which is also the static

type of objects that this
class creates)

Reference from inner
class to instance variable

bound in outer class
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Object Creation

* |nner classes can refer to the instance variables and methods of the
outer class

* Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

* Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer a = new Outer();
Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner();‘v/
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Inner classes

DrawingExample Constructor

bl.addActionListener (new DrawingButtonListener(bl));
b2.addActionListener (new DrawingButtonListener (b2));

Button action code far
from button creation

Inner Class

class DrawingButtonListener impleme

JButton button; . .

DrawingButtonListener (JButton b) Awkward |OgIC to avoid
one class per button
public void actionPerformed(ActionEvent e

// Find out which button generated the event

if (button.equals(bl)) {

shapes.add(new Line());
} else if (button.equals(b2)) {

shapes.add(new Square());

}
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Anonymous Inner Classes

* Define a class and create an object from it all at once, inside a
method

bl.addActionListener (new ActionListener () {

public void actionPerformed(ActionEvent e) {
shapes.add(new Line());

drawingCanvas.repaint(); [zl =lee=o il=lle s =le
methods of outer class

})s

b2.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {

shapes.add(new Square()); . .
drawingCanvas.repaint(); Puts button action rlght

} with button definition

})i

Each button gets its own
CIS 120 inner class




Anonymous Inner class

* New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.
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Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml|
first-class functions

* Both create "delayed computation” that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final



