Programming Languages
and Techniques
(C1S120)

Lecture 35
April 15, 2013

Swing IlI: OO Design, Mouse Interaction

Announcements

« HW10: Game Project is out, due Tuesday, April 23" at
midnight
— |If you want to do a game other than one of the ones listed, send email
to tas120@seas.upenn.edu (or check on Piazza)

Java Paint

Basic structure

Main frame for application (class Paint) the MODEL
Drawing panel (class Canvas, inner class of Paint) the VIEW
Control panel (class JPanel) the CONTROLLER

— Contains radio buttons for selecting shape to draw
— Line thickness checkbox, undo and quit buttons

Paint class contains the state of the application
— List of shapes to draw
— Preview shape (if any...)
— The current color (will always be BLACK today)
— The current line thickness
— References to Ul components: canvas, modeToolbar

Program Design

How does our treatment of shape drawing in Java
compare with the OCaml GUI project?

Java Version of Paint

public interface Shape { Interface describes what
public void draw(Graphics2D gc); | shapescando

¥

public class PointShape implements Shape { .. } Classes describe how
public class LineShape implements Shape { .. } to draw themselves

private class Canvas extends JPanel {
public void paintComponent(Graphics gc) {
super.paintComponent(gc);
for (Shape s : actions)
s.draw((Graphics2D)gc);

if (preview != null)
Canvas uses dynamic

preview.draw((Graphics2D)gc);
dispatch to draw the shapes

OCaml Version of Paint

type shape =

let

Points of Gctx.color * int * point list
Line of Gctx.color * int * point * point

repaint (g:Gctx.t) : unit =

Datatypes define the
structure of information.

let draw_shape (s:shape) : unit =
begin match s with
| Points (c,t,ps) -> ..

Drawing operation is
defined externally to the
datatype and uses

case analysis to dispatch.

| Line (c,t,pl,p2) -> ..
end 1in
Deque.iterate draw_shape paint.shapes;
begin match paint.preview with
| None -> ()
| Some d -> draw_shape d
end

The “main” loop looks
very similar.

Comparison with OCaml|

How does our treatment of shape drawing in the Java Paint
example compare with the OCaml GUI project?

Java:
— Interface Shape for drawable objects
— Classes implement that interface
— Canvas uses dynamic dispatch to draw the shapes
— Add more shapes by adding more implementations of "Shape"

OCaml
— Datatype specifies variants of drawable objects

— Canvas uses pattern matching to draw the shapes
— Add more shapes by adding more variants, and modifying drawit

Datatypes vs. Objects

Datatypes

Focus on how the data is
stored

Easy to add new operations

Hard to add new variants

Best for: situations where

the structure of the data is
fixed (i.e. BSTs)

Objects

 Focus on what to do with
the data

e Easy to add new variants

 Hard to add new operations

e Best for: situations where
the interface with the data
is fixed (i.e. Shapes)

Mouse Interaction

How do we draw shapes on the canvas?

Mouse Interaction

* One Option: Copy OCaml structure
public enum Mode ({

PointMode, LineStartMode, LineEndMode
}

private Mode mode = Mode.PointMode;

* Button press switches between PointMode and LineStartMode
* Mouse click in PointMode =2 add a new point to the list of shapes

* Mouse press in LineStartMode =2 remember location, switch to
LineEndMode, remember preview shape

 Mouse movement in LineEndMode =» update preview shape

* Mouse release in LineEndMode = add a new line to list of shapes,
switch to LineStartMode, set preview to null

Two interfaces for mouse listeners

interface MouselListener extends EventListener {
public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);

}

Lots of boilerplate

There are seven methods in the two interfaces.

We only want to do something interesting for three of them.

Need "trivial" implementations of the other four to
implement the interface...

public void mouseMoved(MouseEvent e) { return; }
public void mouseClicked(MouseEvent e) { return; }
public void mouseEntered(MouseEvent e) { return; }
public void mouseExited(MouseEvent e) { return; }

e Solution: MouseAdapter class...

Adapter classes:

Swing provides a collection of abstract event adapter classes

These adapter classes implement listener interfaces with
empty, do-nothing methods

To implement a listener class, we extend an adapter class and
override just the methods we need

private class Mouse extends MouseAdapter {

¥

public void mousePressed(MouseEvent e) { .. }
public void mouseReleased(MouseEvent e) { .. }
public void mouseDragged(MouseEvent e) { .. }

OO Mouse Interaction

What about OO version

