Programming Languages
and Techniques
(C1S120)

Lecture 36
April 17, 2013

Hashing, Design Exercise

Hash Maps: The Big Idea

Combine:

* the advantage of arrays:

— efficient random access to its elements

* with the advantage of a map datastructure

— arbitrary keys (not just integer indices)

How?

* Create an index into an array by hashing the data in the key to
turn itinto anint
— Java’s hashCode method maps key data to ints

— Generally, the space of keys is much larger than the space of hashes,
so, unlike array indices, hashCodes might not be unique

Hash Maps, Pictorially

Keys hashCode Array Values

“lohn Doe” 000 null

5> 001 . > (CSCI
“Jimmy Bob” 002 null

> 003 > > CBE
“Jane Smith” |

» 253 . * DMD
v , > 254 ¢ * WUNG
Joan Jones

255 null

A schematic HashMap taking Strings (student names) to Undergraduate Majors.
Here, “John Doe” .hashCode () returns an integer n, its hash, such that n mod
256 is 254,

Hash Collisions

The hashCode function should be chosen so that it is unlikely that two
keys will produce the same hash.

— However, it can happen that two keys do have the same hash value — that is,
their hashes collide

Hash Map data structure implementations must handle such collisions to
preserve the “map” semantics... there are many possible solutions.
One simple fix: array of buckets

— Each bucket is itself a map from keys to values (implemented by a linked list).

— Each bucket stores the mappings for keys that have the same hash.

— The buckets can’t use hashing to index the values — instead they use key
equality (in Java, via the key’s equals method)

To lookup a key in the Hash Map:
— First, find the right bucket by indexing the array through the key’s hash
— Second, search through the bucket to find the value associated with the key

Bucketing and Collisions

Keys hashCode Array Buckets of Bindings
“Jimmy Bob” CSCl
“John Doe” 000 null f
> 001 @m—
”Jimmy Bob” Lo ul f “Joan Jones” CBE
> 003 —

“Jane Smith” DMD

“Jane Smith”
253 L “Joe Shmoe” | MATH

> 254 ~—
“Joan Jones” 5 . L
55 e “John Doe” WUNG

“Joe Schmoe”

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide. The
bucket at the corresponding index of the Hash Map array stores the map data.

Hash Map Performance

 Hash Maps can be used to efficiently implement Maps and Sets
— There are many different strategies for dealing with hash collisions with

various time/space tradeoffs

— Real implementations also dynamically rescale the size of the array (which

might require re-computing the bucket contents)

e |f the hashCode function gives a good (close to uniform) distribution of
hashes the buckets are expected to be small (only one or two elements)

Whenever you override equals you must also override hashCode in a

consistent way:

— whenever ol.equals(02)== true you mustensure that

ol.hashCode() == o2.hashCode()
— note: the converse does not have to hold:

Why? Because comparing
hashes is supposed to be
a quick approximation for
equality.

Computing Hashes

Java library classes come equipped with a good hashCode method
— e.g. String
What is a good recipe for computing hash values for your own classes?
— intuition: “smear” the data throughout all the bits of the resulting integer

Start with some constant, arbitrary, non-zero int in result.

For each significant field f of the class (i.e. each field taken into account when
computing equals), compute a “sub” hash code c for the field:
— Forbooleanfields: (£ 2 1 : 0)
— For byte, char, int, short: (int) £
— Forlong: (int) (£ © (£ >>> 32))
— For references: 0 if the reference is null, otherwise use the hashCode () of the
field.

Accumulate those subhashes into the result by doing (for each field’s c):
result = 31 * result + c;

return result

Example for Point

public class Point {

@Override public int hashCode() {
int result = 17;
result = result * 31 + getX();
result = result * 31 + getY();
return result;

 Examples:
— (new Point(1,2)).hashCode() yields 16370
— (new Point(2,1)).hashCode() yields 16400

* Double check that equal points have the same hashCode

— Trivial in this case.

e Why 17 and 31? Primes chosen to create more uniform distributions.

Spreadsheet desigh exercise

How does the design recipe scale to larger,
graphical projects?

Design Recipe

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

In Class Design: Concepts

et ol

Class Cell

— stores a value and a
function

* SpreadSheet
— stores a 2D array of cells

— displays them using a
GridLayout

— user input of functions in
the function Bar

* |nterface Value with
implementations
IntValue, StringValue,
ErrorValue

Initial specification of functions

CIS120 / Spring 2013

A function is either
- a value

- an '=' character followed
by an expression

An expression is either
- avalue
- a cell reference

- two expressions
separated by an operator

An operator is one of '+, '-',
I*I’ I/l’ I%I’ IAI

