
CIS 120 Midterm I February 15, 2013

Name (printed):
Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

1ab /15

1c /12

2ab /18

2cde /11

3 /16

4ab /13

4c /15

Total /100

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 100 total points.

• There are 9 pages in this exam.

• Make sure your name and Pennkey (a.k.a. username) is on the top of this page.

• Be sure to allow enough time for all the problems—skim the entire exam first to get a sense of
what there is to do.

1



1. Program Design (27 points total)
Use the four-step design methodology to implement a function called insert that takes an int

and a list of ints and inserts the number into the list at the first position where it is less than or
equal to the next number. If the number is greater than all others in the list, it should be added to
the end. If the list is sorted before the call, the result will also be sorted.

For example, insert 3 [1; 2; 4; 5] should yield the list [1; 2; 3; 4; 5].

(0 points) Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

(3 points) Step 2 is formalizing the interface. Write down the type of the insert function as you might
find it in a .mli file or module interface.

val insert:

(12 points) Step 3 is writing test cases. Complete the following three tests with the expected behavior.
We have done the first one for you, based on the problem description.
Note that some test cases are better than others, and credit will be assigned accordingly:
make sure your tests cover a sufficiently broad range of “interesting” input numbers and
lists. Fill in the description string of the run_test function with a short explanation of why
the test case is interesting. Your description should not just restate the test case, e.g. ”insert
3 [1;2;4;5]”.

i. let test () : bool =
insert 3 [1;2;4;5] = [1;2;3;4;5]

;; run_test "insert into middle of list" test

ii. let test () : bool =

(insert _________ _______________________) = __________________

;; run_test "___________________________________________________" test

iii. let test () : bool =

(insert _________ _______________________) = ____________________

;; run_test "___________________________________________________" test

iv. let test () : bool =

(insert _________ _______________________) = ___________________

;; run_test "___________________________________________________" test

2



(12 points) Step 4 is implementing the program. Fill in the body of the insert function to complete the
design. Do not use any list library functions (such as fold, or @) to solve this problem. If
you would like to use a helper function in your answer, you must define it.

let rec insert (x:___________) (lst:______________) : ______________ =

3



2. List recursion, higher-order functions and generic types (29 points total)
This problem considers the following function, called separate.
let rec separate (v:int) (lst : int list) : int list * int list =
begin match lst with
| [] -> ([],[])
| hd :: tl ->

let (xs,ys) = separate v tl in
if hd >= v then

(xs, hd :: ys)
else

(hd :: xs, ys)
end

a. (9 points) Complete the following test cases for separate so that they return true.
let test () : bool =

separate 5 [] = ___________________________________

let test () : bool =

separate 5 [1;3;6;7] = ____________________________

let test () : bool =

separate 5 [1;5;6] = ______________________________

b. (9 points) Now consider a version of separate, called ho_separate, that takes a higher-
order function as an additional argument. Here are two test cases for this version.
let nonnegative (x:int):bool = x >= 0
let test () : bool =

ho_separate nonnegative [-1; 1; 0; -2] = ([-1; -2],[1;0])

let positive (x:int):bool = x > 0
let test () : bool =
ho_separate positive [-1; 0; 2; -2] = ([-1; 0; -2],[2])

Fill in the blanks to complete the implementation of ho_separate.

let rec ho_separate (f : _________________________________)
(lst : int list) : int list * int list =

begin match lst with
| [] -> ([],[])
| hd :: tl ->

let (xs,ys) = ___________________________________ in

if ____________________ then
(xs, hd :: ys)

else
(hd :: xs, ys)

end

4



c. (4 points) Reimplement separate using ho_separate as a helper function. You should not
use recursion—just call ho_separate with the appropriate arguments.
let separate (v:int) (lst : int list) : int list * int list =

d. (3 points) Now consider a different version of separate, called generic_separate. Here
are two test cases for generic_separate.
let test () : bool =
generic_separate "c" ["a";"b";"d"] = (["a";"b"],["d"])

let test () : bool =
generic_separate 0.5 [0.0;0.7;0.2; 0.8] = ([0.0;0.2],[0.7;0.8])

(Note that generic_separate does not take a higher-order function as an argument.)
What is the interface to this function? Write the type as it might appear in a .mli file.

val generic_separate:

e. (4 points) Reimplement separate using generic_separate as a helper function. You
should not use recursion—just call generic_separate with the appropriate arguments.
let separate (v:int) (lst : int list) : int list * int list =

5



3. Types (16 points)
For each OCaml value or function definition below, fill in the blank where the type annotation
could go or write “ill typed” if there is a type error. If an expression can have multiple types, give
the most generic one. Recall that the @ operator appends two lists together in OCaml. We have
done the first one for you. Consider the definitions to be below the following code:
module type SET = sig
type ’a set
val fromList : ’a list -> ’a set

end

module LSet : SET = struct
type ’a set = ’a list
let fromList (l : ’a list) = l

end

open LSet;;

let x : ______ string _____________ = "120 " ˆ "is fun"

let a : _____________________________________ = "120" ˆ 120

let b : _____________________________________ = [120] :: [120]

let c : _____________________________________ = 120 :: [120]

let d : _____________________________________ = (120, 120)

let e : _____________________________________ = [(120, 120)]

let f : _____________________________________ = fromList [120]

let g : _____________________________________ = fromList ([2] @ [3])

let h : _____________________________________ = (fromList [2]) @ (fromList [3])

6



4. Binary Search Trees (28 points total)
Recall the definition of generic binary trees and the binary search tree insert function:
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

a. (5 points) Circle the trees that satisfy the binary search tree invariant. (Note that we have
omitted the Empty nodes from these pictures.)

(a) (b) (c) (d) (e)

4 3 2 3 7
\ / \ / \ \ \
5 2 6 1 6 6 6
\ / \ / \ \
6 5 4 2 7 5
\ \
7 4

b. (8 points) For each definition below, circle the letter of the tree above that it constructs or
“none of the above”.
let t1 : int tree =
Node(Node(Empty, 1, Empty), 2, Node(Empty, 6, (Node (Empty, 4, Empty))))

(a) (b) (c) (d) (e) none of the above

let t2 : int tree =
insert (insert (insert (insert Empty 4) 5) 6) 7

(a) (b) (c) (d) (e) none of the above

let t3 : int tree =
insert (insert (insert (insert Empty 2) 5) 3) 6

(a) (b) (c) (d) (e) none of the above

7



let t4 : int tree =
Node(Empty, 3, Node(Node (Empty, 2, Empty), 6, (Node (Empty, 7, Empty))))

(a) (b) (c) (d) (e) none of the above

c. (15 points) Complete the definition of a function bst_separate that, when given an integer
x, separates a binary search tree into two parts. The first part should contain the values less
than x, the second part should contain the values greater than or equal to x.
For example, when given the binary search tree t

5
/ \

3 6
/ \
0 4

the result of bst_separate 5 t is the pair of binary search trees:

3 5
/ \ and \

0 4 6

Your solution must take advantage of the binary search tree invariant to avoid traversing the
entire tree and should not refer to any of the bst operations such as insert, remove, and
inorder.

(Use the next page for your implementation.)

8



let rec bst_separate (x:int) (t : int tree) : int tree * int tree =
begin match t with
| Empty ->

| Node (l, y, r) ->
if x = y then

else if x < y then

else

9


