Programming Languages
and Techniques
(C1S120)

Lecture 1
January 15, 2014

Course Overview and Logistics
Introduction to Program Design

CIS120

Introductions

* Instructor: Dr. Stephanie Weirich
— sweirich@cis.upenn.edu
— Levine 510
— http://www.cis.upenn.edu/~sweirich

— Office hours: Mondays 1-3 PM or
by appointment

e Course Administrator: Laura Fox

— Levine 308
— Iffox@cis.upenn.edu

CIS120

TA Staff*

Harmony Li .
Tiernan Garsys .
Doron Shapiro .
Jinesh Desai .
Xander Goldman .
Jason Kong .
lan Sibner .
Sudarshan Muralidhar .
Raul Martinez .
Xiuruo Zhang .

Jordan Hurwitz
Thomas Delacour
Cliff Kao

Pearl Li

Nancy Wong

CJ Cobb

Samy Lanka
Lukas Vacek

Jack Gindi

Meyer Kizner

*AKA: CIS 120 spirit guides, student champions, and all-around defenders of the universe.

What is CIS 1207

CIS 120 is a course in program design

Practical skills:

— ability to write larger (~1000 lines) programs

— increased independence ("working without a recipe")
— test-driven development, principled debugging

Conceptual foundations:

— common data structures and algorithms
— several different programming idioms

— focus on modularity and compositionality
— derived from first principles throughout

It will be fun!

Prerequisites

 We assume you can already write 10 to 100-line
programs in some imperative or OO language
— Java experience is strongly recommended
— CIS 110 or AP CS is typical

— You should be familiar with using a compiler, editing code,
and running programs you have created

e CIS110is an alternative this course

— If you have doubts, come talk to me or one of the TAs to
figure out the right course for you

Philosophy

* Teaching introductory computer science
— Start with basic skills of “algorithmic thinking” (AP/110)

— Develop systematic design and analysis skills in the context
of larger and more challenging problems (120)

— Practice with industrial-strength tools and design
processes (120, 121, and beyond)
* Role of CIS120 and program design

— Start with foundations of programming using the rich
grammar and precise semantics of the OCaml language

— Transition (back) to Java after setting up the context
needed to understand why Java and OO programming are
good tools

— Give a taste of the breadth and depth of CS

CIS 120 Tools

e OCaml

— Industrial-strength, statically-typed
Functional Programming language

— Lightweight, approachable setting for A
learning about program design

* Java
— Industrial-strength, statically-typed (

Object Oriented language o
Vo
_ : - : —
Many tools/libraries/resources available < 2
* Eclipse

— Popular open-source integrated
development environment (IDE)

Installation: http://www.seas.upenn.edu/~cis120/current/ocaml_setup.shtml

Why two languages?

Pedagogic progression
Disparity of background
Confidence in learning new tools

Perspective

“IThe OCaml part of the class] was very essential to

getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.”

---Anonymous CIS 120 Student

“IOCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer."
--- Anonymous CIS 120 Student

Administrative Matters

http://www.seas.upenn.edu/~cis120/

Registration

If you are not currently registered, add your name to
the wait list linked from the course web page

If you need to switch recitations and the recitation
you would like is closed, fill out the online change
request form linked from the course web page

Recitations start next week: Go to first meeting of
the recitation section you want to join

New recitation, Weds 1-2 PM!

Course Components

Lectures (2% of final grade)

— Presentation of ideas and concepts

— Interactive demos

— Grade based on participation using “clickers”

— Lecture notes available on course website. Read Chapter 1!

Recitations (6% of final grade)
— Practice and discussion in small group setting
— Grade based on participation

Homeworks (50% of final grade)

— Practice, experience with tools

— Exposure to broad ideas of computer science
— Grade based on automated tests + style

Exams (42% of final grade)

— In class, pencil and paper

— Do you understand the terminology? Can you reason about programs?
Can you synthesize solutions?

Clickers

We will use TurningPoint ResponseCards (clickers) for
interactive exercises during lectures.

— wrong answers will not count against your grade

Please buy one at the bookstore (textbook section)
— You can sell it back at the end of the semester

Bring it to lecture every day, beginning Friday
— Participation grades start 1/27

Lecture Policy

* Laptops closed... minds open

— Although this is a computer science class, the use of
electronic devices -- laptops, cell phones, mobile devices,
iPads, etc., in lecture is prohibited.

e Why?
— Laptop users tend to surf/chat/e-mail/game/etc.
— They also distract those around them

— You will get plenty of time in front of your computers while
working on the course projects :-)

Some of the homework assignments...

and lots X! Caml graphics

of time

lots Apes
|

Lesser Apes

Greater Apes

@
ot N

ez &

EXTRA DINOSAURS = EXTRA AWESOME

lar gibbon

siamang

chimpanzee ;pflea;t‘ed gibbon

[OPoint] [OLine] [OEllipse] [Othick lines| [O copy] [O Paste]

E
|£ | Image Processing

e E e |

RotateCW
RotateCCW
Mirror vertical
Mirror horizontal
Simple transform
Contrast

Reduce palette

Load new image

Save image

Undo

Quit

w M E O

10 homework assignments total,

weighted equally

Text buffer:[EXTRA DINOSAURS = EXTRA AWESOME

Final projects

8006

Pong

CIS120

Instructions (Restart Level) Quit Objectives) Reset

Planet Game

0 coins 0 coins
3 bombs

e o Othello

File Edit Help Pass) White: 2 Black: 5

Orbit Cruiser

0 asteraids Polfected

energy

10 Mg effective mass

(_PLAY/RESET) (_ HELP)

Academic Integrity

e Submitted homework must be your individual work

Not OK:
- Copying someone else’s code
OK / encouraged:
- “High level” discussions of concepts

* Course staff will check for copying.
Violations will be treated seriously!

* [fin doubt, ask.

Penn’s code of academic integrity:

http://www.vpul.upenn.edu/osl/acadint.html

CIS120

Academic Integrity

* Not OK
A: | still can’t figure out this problem on HWO06. How do you write
checkboxes?

B: Oh, I'm done already. Yea, that problem took forever.
A: Wait, you’re done? Can | look at your code?
B: Sure (shows code)

e OK

A: | still can’t figure out this problem on HWO06. How do you write
checkboxes?

B: Oh, I'm done already. Yea, that problem took forever.

A: Wait, you’re done? Can | look at your code?

B: Well, what are you stuck on?

A: (points to own code) | don’t get this thing about listeners...
B: Oh! Those things are weird. So think of it this way...

A: Ok, | understand now. Thanks!

* Bottomline: your homework should come from your brain, as well
as your fingers.

Program Design

Fundamental Design Process

Design is the process of translating informal
specifications (“word problems”) into running code.

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120

5. Revise / Refactor / Edit

A design problem

Imagine the owner of a movie theater who has complete
freedom in setting ticket prices. The more he charges, the fewer
people can afford tickets. In a recent experiment the owner
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime (5.10)
increases attendance by 15. Unfortunately, the increased
attendance also comes at an increased cost. Every performance
costs the owner $180. Each attendee costs another four cents
(50.04). The owner would like to know the exact relationship
between profit and ticket price so that he can determine the
price at which he can make the highest profit.

Step 1: Understand the problem

 What are the relevant concepts?
— (ticket) price
— attendees
— revenue
— cost
— profit

* What are the relationships among them?
— profit = revenue — cost

So profit, revenue, and cost
— revenue = price * attendees also depend on price.

— cost = 5180 + attendees * $S0.04
— attendees = some function of the ticket price

* Goal is to determine profit, given the ticket price

Step 2: Formalize the Interface

Idea: we’ll represent money in cents, using integers*

type annotations
declare the input
and output types™*

comment documents
the design decision

™~

(* Money 1s represented a1 ce . *)
let profit (price : int) : int = ..

n

* Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language...

**OCaml will let you omit these type annotations, but including them is mandatory for CIS120. Using type annotations is good
documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the first thing you should do is check that your type annotations are there and that they are what you expect.

CIS120

Step 3: Write test cases

* By looking at the design problem, we can calculate
specific test cases

let profit_500 : int =
let price 500 1in
let attendees = 120 1in
let revenue price * attendees 1in
let cost 18000 + 4 * attendees 1in
revenue - cost

CIS120

Writing the Test Cases in OCaml

* Record the test cases as assertions in the program:

— the command run_test executes a test

a test is just a function that takes no input and returns true if the test succeeds

let test () : bool =
(profit 500) = profit_500

5 run_test "profit at $5.00" test

the string identifies

the test in printed output
(if it fails)

note the use of double semicolons
before commands

Step 4: Implement the Behavior

Profit is easy to define:

let attendees (price : int) = ...

let profit (price : int) =
let revenue = price * (attendees price) in
let cost = 18000 + 4 * (attendees price) in
revenue - cost

CIS120

Apply the Design Pattern Recursively

attendees™ requires a bit of thought: “stub out”
/
unimplemented
&« :
functions

let attendees (price : int) : 1int =

failwith “unimplemented”

let test () : bool =

(attendees 500) = 120
;7 run test "attendees at $5.00" testN

let test () : bool =
(attendees 490) = 135
;7 run test "attendees at $4.90" test$\\\

generate the tests

*Note that the definition of attendees must go before the definition of profit because f h bl
it makes use of the attendees function. rom the probiem
statement first.

CIS120

Attendees vs. Ticket Price

160
140
120
100 Assume a linear relationship between ticket price
%0 and number of attendees.
Equation foraline: y=mx+b
€0 m = (diff in attendance / diff in price) =- 15/ 10
b =attendees —m * price = 870
40
let attendees (price:int) : int =
20 -15/10 * price + 870
0

$4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

CIS120

CIS120

Run the program!

e One of our test cases for attendees failed...
 Debugging reveals that integer division is tricky*

e Hereis the fixed version:

let attendees (price:int) :int =
(-15 * price) / 10 + 870

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 rounds to -1. Multiplying -15 * price before dividing by 10
increases the precision because rounding errors don’t creep in.

CIS120

Using Tests

Modern approaches to software engineering advocate
test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we may provide one or
more tests for each of the problems. They will often
not be sufficient. You should start each problem by
making up more tests.

How not to Solve this Problem

let profit price =
price * (-15 * price / 10 + 870) -
(18000 + 4 * (-15 * price / 10 + 870))

This program is bad because it

— hides the structure and abstractions of the problem
— duplicates code that could be shared
— doesn’t document the interface via types and comments

Note that this program still passes all the tests!

CIS120

Summary

 Toread: Chapter 1 of the lecture notes and course
syllabus. Both available on the course website

* To buy: Turning Point clicker. Bring to every class,
and register your ID number on the course website

e To do: Try to install OCaml and Eclipse on your
laptops, following the setup instructions on the
course website. TAs will hold office hours this week

to help.

