Programming Languages
and Techniques
(C1S120)

Lecture 3
January 24, 2014

Lists and Recursion

Announcements

Homework 1: OCaml Finger Exercises

— Due: Tuesday, January 28 at midnight
— Labs Extended office hours sta#t this week!

Reading: Please read Chapter 3 of the course notes,
available from the course web pages

— And chapters 1 and 2, if you haven’t yet!

Questions?
— Post to Piazza (privately if you need to include code!)

TA office hours: on course Calendar webpage

A Design Problem / Situation

Suppose we are asked by Penn to design a new email
system for notifying students of emergencies such as
Snowpocalpses.

We should be able to subscribe students to the list, query
the size of the list, check if a particular email is enrolled,
compose messages for all the lists, filter the list to just
enrolled instructors, etc.

CIS120 / Spring 2014

Design Pattern

1. Understand the problem

What are the relevant concepts and how do they relate?

2. Formalize the interface

How should the program interact with its environment?

3. Write test cases

How does the program behave on typical inputs? On
unusual ones? On erroneous ones?

4. Implement the behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120 / Spring 2014

1. Understand the problem

How do we store and query information about emails?

Important concepts are:

. An email list (collection of emails)

. A fixed collection of instructor emails

Being able to subscribe students to the list

Counting the number of emails in a list

Determining whether a list contains a particular email
Given a message to send, compose messages for all the
emails in the list

7. filter instructors, leaving an email list just containing
the list of enrolled instructors

O U AWwN R

CIS120 / Spring 2014

2. Formalize the interface

Represent an email by a string (the email itself)

Represent an email list using an immutable list of strings

Represent the collection of instructor emails using a toplevel
definition

Define the interface to the functions:

let
let
let
let

let

subscribe (email : string)

(1 : string
number of emails (1

list) : string 1li

st =

string list) : int =

contains (1 : string list) (email : str

compose (msg : string)

(1L : string list) : string list

filter instructors (1

string list)

ing) : bool

string list

3. Write test cases

M~ M e e L |

let 11 : string list

let 12
let 13

string list =
string list =

let test () : bool =
(number of emails 11) = 3
;7 run test "number of emails 12" test

let test () : bool =
(number of emails 12) =1
;7 run_test "number of emails 12" test

let test () : bool =
(number of emails 13) = 0
;7 run test "number of emails p3" test

"poseral@cis.upenn.edu”
"tgarsys@seas.upenn.edu”
“harmoli@seas.upenn.edu]
"tgarsys@seas.upenn.edu”]

Define email lists for testing.
Include a variety of lists of

different sizes and incl. some
instructor and non-instructor
emails as well.

CIS120 / Spring 2014

Interactive Interlude

email.ml

What is a list?

e Alistis either:

[] the empty list, sometimes called nil

or
veetail aheadvaluev, followed by a list of the
remaining elements, the tail

* Here, the ‘: :’ operator constructs a new list from a head
element and a shorter list.
— This operator is pronounced “cons” (for “construct”)

* Importantly, there are no other kinds of lists.

Example Lists

To build a list, cons together elements, ending with the

empty list:

CIS120 / Spring 2014

l::2::3::4::[] a list of four numbers
“abc”::"xyz"1:[] a list of two strings
true::[] a list of one boolean
[] the empty list

Convenient List Syntax

Much simpler notation: enclose a list of elements in
[and] separated by ;

CIS120 / Spring 2014

[1;2;3;4]

[llabcll ; IIXYZ n]

[true]

[]

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Explicitly parenthesized

(

: " is an ordinary operator like + or *, except it takes

an element and a /ist of elements as inputs:

le:(2::(32:(4::[1)))

“abc”::("xyz"::[])

true::[]

[]

CIS120 / Spring 2014

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Calculating With Lists

e Calculating with lists is just as easy as calculating with
arithmetic expressions:

(2+3)::(12 / 5)::[]
— 5::(12 / 5)::[] because 243 = 5

— 5::2::] because 12/5 = 2 are values.

A list is a value whenever all of its elements are values.

List Types*

The type of lists of integers is written
int list

The type of lists of strings is written
string list

The type of lists of booleans is written
bool list

The type of lists of lists of strings is written
(string list) list

etc.

*Note that lists in OCaml are homogeneous — all of the list elements must be of the
same type. If you try to create a list like [1; “hello”; 3; true] you will get a type error.

CIS120 / Spring 2014

Pattern Matching

OCaml provides a single expression for inspecting
lists, called pattern matching.

let mylist : int list = [1; 2; 3; 5] match expression

syntax is:
let y =
begin match mylist with begin match ... with
case | [1 -> 42 | o>
branches | first::rest -> first+10 eL(‘j" i
end

This case analysis is justified because there are only two shapes that a list
can have.

Note that £irst and rest are identifiers that are bound in the body of
the branch.

Calculating with Matches

* Consider how to run a match expression:
begin match [1;2;3] with
| 11 —> 42
| first::rest -> first + 10

end
—
Note: [1;2;3] equalsl::(2::(3::[]))
1+10
It doesn’t match the pattern [] so the first branch is
— skipped, but it does match the pattern
11 first::restwhen first is1 and

rest is(2::(3::[1)) -
So, substitute 1 for £first in the second branch

Using Recursion Over Lists

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.
marked with rec.

let rec number of emails (pl : string list) : int =
begin match 1 with

| 11 -> 0
| (email :: rest) -> 1 + number of emails rest
end

Patterns specify the structure of
the value and (optionally) give
names to parts of it.

If the lists is non-empty, then “email”
is the first email of the list and “rest”
is the remainder of the list.

Calculating with Recursion

number of emails [“poseral@cis.upenn.edu”;”harmoli@seas.upenn.edu”]
— (substitute the list for | in the function body)
begin match “poseral@cis.upenn.edu”::
(“harmoli@seas.upenn.edu”::[]) with
| 11 >0
| (email :: rest) -> 1 + (number of emails rest)
end
— (second case matches with rest = “harmoli@seas.upenn.edu”::[])
1 + (number of songs “harmoli@seas.upenn.edu”::[])
— (substitute the list for | in the function body)
1 + (begin match “harmoli@seas.upenn.edu”::[] with
| 11 ->0
| (email :: rest) -> 1 + (number of emails rest)
end
— (second case matches again, with rest = [])
1 + (1 + number of emails [])

—> (substitute [] for | in the function body) let rec number of emails (1 : string list) : int =
begin match 1 with
| 11 >0
| (email :: rest) -> 1 + number of emails rest

end

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec number of emails (1 : string list) : int =
begin match 1 with
| 11 ->0
| (email :: rest) -> 1 + number of emails rest
end
let rec contains (l:string list) (s:string) : bool =

begin match 1 with

| [1 -> false

| (email :: rest) -> s = email || contains rest s
end

Structural Recursion Over Lists

Structural recursion builds an answer from smaller
components:

let rec £ (1 : .. list) .. ¢ .. =
begin match 1 with

| 11 > .
| (hd :: rest) -> .. f rest ..

end

The branch for [] calculates the value (£ []) directly.
The branch for hd: : rest calculates
(f (hd::rest))given hdand (f rest).

Design Pattern for Recursion

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
 |If the main input to the program is an immutable list, make
sure the tests cover both empty and non-empty cases

4. Implement the required behavior
* If the main input to the program is an immutable list, look for

a recursive solution...

 Suppose someone has given us a partial solution that
works for lists up to a certain size. Can we use it to build
a better solution that works for lists that are one
element larger?

* Isthere a direct solution for the empty list?

CIS120 / Spring 2014

