Programming Languages
and Techniques
(C1S120)

Lecture 4
January 27, 2014

Tuples and Lists

Announcements

Please bring your clickers to class every day

Read Chapter 4 of the lecture notes, if you haven’t
already

HW#1 due Tuesday (Jan 28t)
— No late penalty if submitted Wed/Thurs

HW#2 will be available on Wednesday, will be due
following Tuesday (Feb 4th)

We will have labs this week!

Tuples and Tuple Patterns

Forms of Structured Data

OCaml provides two ways of packaging multiple values
together into a single compound value:

e Lists:

— arbitrary-length sequence of values of a single, fixed type

— example: a list of email addresses

* Tuples:

— fixed-length sequence of values of arbitrary types

— example: tuple of name, phone #, and email

Tuples

* In OCaml, tuples are created by writing the values,
separated by commas, in parentheses:

let my pair = (3, true)
let my triple = (“Hello”, 5, false)
let my quaduple = (1,2,"three”, false)

* Tuple types are written using ‘*’
—e.g.my triple has type:

string * int * bool

Pattern Matching Tuples

* Tuples can be inspected by pattern matching:

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
—
llbll

* As with lists, the pattern follows the syntax or the
corresponding values

Mixing Tuples and Lists

* Tuples and lists can mix freely:

[(1,llall); (2,llbll); (3,llcll)]
(int * string) list

([1;2;3], [llall; llbll; llCII])
(int list) * (string list)

CIS120

Clickers, please...

CIS120

What is the type of this expression?

[1]
1. int
2. intlist
3. intlist list
4. (int * int list) list
5. int * (int list)
6. (int *int) list
7. none (expression is ill typed)

Answer: 2

Clickers, please...

CIS120

What is the type of this expression?

(1, [1])
1. int
2. intlist
3. intlist list
4. (int * int list) list
5. int * (int list)
6. (int *int) list
7. none (expression is ill typed)

Answer: 5

What is the type of this expression?

(1, [11, [[111)

1. int

2. intlist

3. intlist list

4. (int * int list) list
5. int * (int list) * (int list list)

6. (int *int * int) list

7. none (expression is ill typed)

Answer: 5
CIS120

What is the type of this expression?

[(1,true); (0, false)]

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

Sl BY e =

Answer: 3

CIS120

CIS120

What is the type of this expression?

(1 22 [1, 2 22 [1, 3 22 [1)

1. int

2. intlist

3. intlist list

4. intlist * int list * int list

5. int *int list * int list list

6. (int *int * int) list

7. none (expression is ill typed)

Answer: 4

Nested Patterns

* So far, we've seen simple patterns:

[] matches empty list
X::tl matches nonempty list
(a,b) matches pairs
(a,b,c) matches triples

* Like expressions, patterns can nest:

X 22 [] matches lists with 1 element
[X] matches lists with 1 element
X::(ysetl) matches lists of length at least 2

(Xx::xXs, y::ys) matches pairs of non-empty lists

Wildcard Pattern

* Another handy pattern is the wildcard pattern: _
s:tl matches a non-empty list, but only names tail

(_sX) matches a pair, but only names the 2" part

What is the value of this expression?

let 1 = [1; 2] in

begin match 1 with

| x sy 22t ->x

| x =2 [] -> x

| x :: ¢t -> x

| 1] -> 3
end

Answer: 1

CIS120

let 1 = [1; 2] in
begin match 1 with
| x 2y 12 £ ->x
| x [] -> x
| x :: t -> x
| 1] -> 3
end
let 1 =1 :: 2 [1] in
begin match 1 with
| x y :: t > x
| x [] -> x
| x t -> x
| 1] —> 3

end

=

begin match

| x 2y 22 t

| x []
| x :: t
| 11

end

W X X X e

[] with

CIS120

CIS120

What is the value of this expression?

let 1 = [(1,true);

begin match 1 with

(2,false)] in

| (x,false) :: tl -> 1

| w 2 (x,y) :: z -> x

| x -> 3
end

Answer: 2

CIS120

What is the value of this expression?

let 1 = [(1,true); (2,false)] in

begin match 1 with

| (_,false) :: _ -> 1

| e (x,) 1 -> X

| _ -> 3
end

Answer: 2

Unused Branches

 The branches in a match expression are considered in
order from top to bottom.

* |f you have “redundant” matches, then some later
branches might not be reachable.

— OCaml will give you a warning

let bad cases (1 : int list) : int =
begin match 1 with

[] > 0 This case matches more lists

than that one does.
X [J [

X::§::tl -> X + vy (* unreachable *)
end

-> X

Exhaustive Matches

e Pattern matching is exhaustive if there is a pattern for
every possible value

 Example of a non-exhaustive match:

let sum two (1 : int list) : int =
begin match 1 with
| x::y:: => x+y
| -> failwith “1 must have >= 2 elts”
end
 OCaml will give you a warning and show an example of
what isn’t covered by your cases

* The wildcard pattern and failwith are useful tools for
ensuring match coverage

More List Examples

see lists.ml

