Programming Languages
and Techniques
(C1S120)

Lecture 5
January 29, 2014

Datatypes and Trees

Announcements

Submit HW1 by Thursday midnight (hard deadline)

Homework 2 now available

— On-time due date: Tuesday, Feb 4% at 11:59:59pm
— Warning: It is a bit more challenging than HW1
— Get started early, and seek assistance if you get stuck!

Recitations today and tomorrow
— 208 and 209 have the most space

Read Chapters 5 and 6 of the course notes

Register your clicker ID number on course website
— You should start seeing “Quizzes” on the submission page
— Name of quiz is lecture date: TP140127 was Monday

— If you have “Not submitted” then we don’t have an ID number
for your data (that’s 35 of you)

Datatypes and Trees

Case Study: Evolutionary Trees

* Problem: reconstruct evolutionary trees from biological data.
— What are the relevant abstractions?

— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated List for
Type for Double
Nucleotides Helix lots Apes

and lots

G G of time
(13_ Greater Apes Lesser Apes
G I
A —T
A
T
A
T —G
T orangutan
2 white-cheeked gibbon
G G
T
A
C c |
C gorilla
T siamang
A ‘4 (o
chimpanzee pileated gibbon
Suggested reading:

c15120 Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions

Nucleotide

— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)
Codon

— three nucleotides : e.g. (A,A,T) or (T,G,C)

— codons map to amino acids and other markers

Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...

Phylogenetic tree
AAAA

— Binary (2-child) tree ACAT l AAGA
with helices (species)

at the nodes and leaves | I | l
GCAT TCGT TAGA GAGA

Building Datatypes

* Programming languages provide a variety of ways of
creating and manipulating structured data

* We have already seen
— primitive datatypes (int, string, bool, ...)
— lists (int list, string list, string list list, ...)
— tuples (int * int, int * string, ...)

Simple User-Defined Datatypes

 OCaml lets programmers define new datatypes

‘type’ keyword type name

type dCly = // }t/be lowercase)

>unday type nucleotide =

Monday A

Tuesday C

Wednesday G

Thursday T “\\\\\\\\

Friday S~

~atu rlday construcmumes (tags)

(must be capitalized)

* The constructors are the values of the datatype
— e.g. Aisanucleotide and [A; G; (] isanucleotide list

CIS120

Pattern Matching Simple Datatypes

* Datatype values can be analyzed by pattern matching:

let string_of_n (n:nucleotide) : string =
begin match n with

A -> “adenine”

C -> “cytosine”

G -> “guanine”

T -> “thymine”

end

* There is one case per constructor
— you will get a warning if you leave out a case or list one twice

* As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

A Point About Abstraction

* We could represent data like this by using integers:
— Sunday = 0, Monday = 1, Tuesday = 2, etc.

e But:

— Integers support different operations than days do
i.e. it doesn’t make sense to do arithmetic like:

Wednesday - Monday = Tuesday

— There are more integers than days, i.e. “17” isn’t a valid
day under the representation above, so you must be
careful never to pass such invalid “days” to functions that
expect days.

* Conflating integers with days can lead to many bugs.

All modern languages (Java, C#, C++, OCaml,...) provide
user-defined types for this reason.

Type Abbreviations

OCaml also lets us name types without make new
abstractions:

type helix = nucleotide list
type codon = nucleotide * nucleotide
* nucleotide

type
type keyword
yp Y name definition in terms of existing types

no constructors!

* j.e.a codon isthe same thing a triple of hucleotides
let x : codon = (A,C,C)
 Makes code easier to read & write

Data-Carrying Constructors

» Datatype constructors can also carry values

type measurement =

Missing

NucCount of nucleotide * int
CodonCount of codon * 1int

/ \ J

|
keyword ‘of Constructors may take a

tuple of arguments

e Values of type ‘measurement’ include:
Missing
NucCount(A, 3)
CodonCount(CA,G, T, 17

CIS120

Pattern Matching Datatypes

e Pattern matching notation combines syntax of tuples
and simple datatype constructors:

let get_count (m:measurement) : int =
begin match m with

Missing -> 0

NucCount(_, n) -> N

CodonCount(_, n) -> n
end

e Datatype patterns bind variables (e.g. ‘n’) just like
lists and tuples

CIS120

Recursive User-defined Datatypes

* Datatypes can mention themselves!

type tree
| Leaf of helix
| Mode of tree * helix * tree

base constructor Node carries a recursive
(nonrecursive) tuple of values definition

* Recursive datatypes can be taken apart by pattern
matching (and recursive functions).

Syntax for User-defined Types

type tree =
| Leaf of helix
| Node of tree * helix * tree

 Example values of type tree

let t1 = Leaf [A;G]
let t2 = Node (Leaf [G], [A;T], Leaf [A])
let t3 =

Node (Leaf [T], Constructors

[T ; T:I , (note capitalization)
Node (Leaf [G;C], [G], Leaf [1))

CIS120

type nucleotide = | A | C | G | T
type helix = nucleotide list

Clickers, please...

What is the type of this expression?

[A;C]

nucleotide

helix

nucleotide list

string * string

nucleotide * nucleotide
none (expression is ill typed)

O BT g B0 e

Answer: both 2 and 3

CIS120

type nucleotide = | A | C | G | T
type helix = nucleotide list

Clickers, please...

What is the type of this expression?

(A, IIAII)

nucleotide

nucleotide list

helix

nucleotide * string

string * string

none (expression is ill typed)

O BT g B0 e

Answer: 4

CIS120

type tree =
| Leaf of helix
| Node of tree * helix * tree

Clickers, please...

How would you construct this tree in OCaml?

[A;T]
N\
[A] [G]

. Leaf [A;T]
. Node (Leaf [G], ;T], Leaf [A])
. Node (Leaf [A], , Leaf [G])

. Node (Leaf [T],
Node (Leaf
. None of the above

)

A;
A;
A;
G;

A==

, [G], Leaf [I))

)

92 A WN PR

c15120 Answer: 3

Clickers, please...

Have you ever programmed with trees before? \

1. yes
2. no
3. not sure

Class answer: about 60% said yes

CIS120

Trees are everywhere

Family trees

CIS120

™ B
i Cunline G/l TR
,/l:.',»,rr:,, e |

O avie Hoson iz Phitiyen

o Hiiky € ok fopin| |
& hamihbuage "

Organizational charts

CIS120

CoRPORATE HIERARLHY

r o o o =
Lyl m?é TLLELL L8 LLS
&

Game trees

s

\ 5

/T
_P
HEN

1O

L

Expression trees

CIS120

Natural-Language Parse Trees

CIS120

S
NP VP
PN /\
D N \% NP

| |
the chef cocl)ks D/\N

| |
the soup

Filesystem Directory Structure

CIS120

v [classes
v [cis110
v [12fa
» [trunk
» [12su
v [cis120
» [11fa
» [11sp
v [12fa
» [doc
» [] exams
v [hw
~ assert.ml
© assert.mli
" CommonExportMakefile
- CommonjavaMakefile
CommonMakefile
" CommonOcam|Makefile

Domain Name Hierarchy

/N

com net
cornell ... upenn cisco..yahoo nasa... nsf arpa ..

,//\AAAAAA

seas Wwharton ..

AN A

Binary Trees

root node
root’s root’s
left child right child
left subtree
\ & |eaf node

[} & empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

C15120 A leaf is a node whose children are both empty.

Binary Trees in OCaml|

type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
3 =

Node (Empty, 2,
Node (Empty, 4, Empty)))

CIS120

