Programming Languages
and Techniques
(C1S120)

Lecture /
Feb 3, 2014

BSTs
Generic Types

Announcements

* Homework 2 due Tuesday

 Read Chapters 7 & 8 in the lecture notes

Trees as containers

Big idea: find things faster by searching less

A Binary Search Tree

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

« Emptyis a BST

Searching a BST

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
if x = n then true
else if n < x then (lookup 1t n)
else (lookup rt n)
end

 The BST invariants guide the search.

* Note that lookup may return an incorrect answer if the input
is not a BST!

CIS120

Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs v e
- allnodes of 1t are < x o’ (v

- allnodesof rt are > x
« Empt¥4% a BST Answer: no, 5 to the left of 4

Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs v e
- allnodes of 1t are < x o’ (v

- allnodesof rt are > x
« Empty7is a BST Answer: no, two 4s

Is this a BST??

1. ves
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x

- allnodesof rt are > x
- Empy’% a BST Answer: yes

Is this a BST??

1. ves
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x

- allnodesof rt are > x
- Empy’% a BST Answer: yes

How do we construct a BST?

* Option 1:
— Build a tree
— Check that the BST invariants hold

* QOption 2:
— Write functions for building BSTs from other BSTs
* e.g. “insert an element”, “delete an element”, ...

— Starting from some trivial BST (e.g. Empty), apply these functions to
get the BST we want

— |If each of these functions preserves the BST invariants, then any tree
we get from them will be a BST by construction

* No need to check!

Inserting a new node: (1nsert t 4)

CIS120

Inserting a new node: (1nsert t 4)

CIS120 R T

Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if x = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)

end

* Note the similarity to searching the tree.

* Note that the result is a new tree with one more Node; the
original tree is unchanged

 Assuming that t is a BST, the result is also a BST. (Why?)

CIS120

Deletion — No Children: (delete t 3)

CIS120

Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.

CIS120

Deletion — One Child: (delete t 7)

CIS120

Deletion — One Child: (delete t 7)

If the node to be delete has one

child, replace the deleted node
by its child.

CIS120

Deletion — Two Children: (delete t 5)

CIS120

Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.

CIS120

Would it also work to move the smallest
label from the right-hand subtree?

1. yes
2. no

CIS120 Answer: yes

Subtleties of the Two-Child Case

e Suppose Node(lt,x,rt) is to be deleted and It and rt
are both themselves nonempty trees.

e Then:

1. There exists a maximum element, m, of It (Why?)
2. Every element of rtis greater than m (Why?)

 To promote m we replace the deleted node by:
Node(delete It m, m, rt)

— |.e. we recursively delete m from It and relabel the root
node m

— The resulting tree satisfies the BST invariants

How to Find the Maximum Element?

What is the max
element of this
subtree?

CIS120

How to Find the Maximum Element?

Just for fun, how
do we find the
max element of
the whole tree?

CIS120

let rec tree max (t:tree) : int =
begin match t with
| Node(_ ,x,Empty) -> X
| Node(, ,rt) -> tree max rt
| -> failwith “tree max called on Empty”
end

Note:

* We never call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis
done by the delete function

e BST invariant guarantees that the maximum-value node
is farthest to the right

CIS120

Deleting From a BST

(* return a binary search tree that has the same set of
nodes as t except with n removed (if it's there) *)
let rec delete (t:tree) (n:int) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->
if x = n then
begin match (lt,rt) with
(Empty, Empty) -> Empty
(Node , Empty) -> 1t
(Empty, Node) =-> rt
_ -> let m = tree max 1t in
Node (delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end

CIS120

If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

15190 Answer: no, what if the node is in the tree

If we insert a label n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

CIS120 Answer: yes

If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

CIS120 Answer: no, what if we delete the root?

Generic Functions and Data

Wow, that took quite a bit of typing... Do we have
to repeat it all again if we want to use BSTs
containing strings, or characters, or floats?

Structurally Identical Functions

* Observe: many functions on lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

* Compare: lengthfor “int list”vs.“string list”

CIS120

let rec length (1: int list)
begin match 1 with
| [] -> 0
| _::tl -> 1 + length tl
end

: int =

let rec length (l: string list)
begin match 1 with
| [] -> 0
| _::tl -> 1 + length tl
end

&

: int =

| The functions are

identical, except
for the type
annotation.

Notation for Generic Types

OCaml provides syntax for functions with generic types

let rec length (1:'a list) : int =
begin match 1 with
| [] -> 0
| _::tl -> 1 + (length tl1)
end

Notation: ‘a isa type variable; the function 1ength can
be used onat list for any type t.

Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list

Generic List Append

Note that the two input
lists must have the same
type of elements.

The return type is the
same as the inputs.

b

"
let rec append (11:'a list) (lé?Taﬁiist) - 'a list =
begin match 11 with
| [] -> 12

| h::tl -> h::Cappend tl 12)

end/r

/

Pattern matching works over generic types!

In the body of the branch:
h has type ‘a
tl hastype ‘a list

CIS120

Generic Zip

Functions can operate
over multiple generic

types.

r\

¥ i
let rec zip (11:"a list) (12:'b list) : ("a*'b) list =
begin match (11,12) with
| Chl::t1, h2::t2) -> (hl1,h2)::(zip t1 t2)
| _ > []

end

* Distinct type variables can be instantiated differently:
Zip [1;2;3] [llall;llbll;llcll]

* Here, ‘aisinstantiated to int, ‘bto string
* Result is
[(1,7a");(2,"b");(3,"c")]
of type (int * string) list

CIS120

User-Defined Generic Datatypes

* Recall our integer tree type:

type tree =
| Empty
| Node of tree * int * tree

 We can define a generic version by adding a type parameter,

like this: Parameter ‘a
I

—— used here
type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
~ e

\ /

Note that the recursive
C1S120 uses also mention ‘a

User-Defined Generic Datatypes

 BST operations can be generic too; only change is to type
annotation

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : ’a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f X = n then t
else n < x then Node(insert 1t n, x, rt)

else Nodé %\\é;\fnsert rt n)

end

N

Equality and comparison
work for any type of data

CIS120

