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BSTs
Generic Types



Announcements

* Homework 2 due Tuesday

 Read Chapters 7 & 8 in the lecture notes



Trees as containers

Big idea: find things faster by searching less




A Binary Search Tree

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

« Emptyis a BST




Searching a BST

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
if x = n then true
else if n < x then (lookup 1t n)
else (lookup rt n)
end

 The BST invariants guide the search.

* Note that lookup may return an incorrect answer if the input
is not a BST!

CIS120




Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs v e
- allnodes of 1t are < x o’ (v

- allnodesof rt are > x
« Empt¥4% a BST Answer: no, 5 to the left of 4
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How do we construct a BST?

* Option 1:
— Build a tree
— Check that the BST invariants hold

* QOption 2:
— Write functions for building BSTs from other BSTs
* e.g. “insert an element”, “delete an element”, ...

— Starting from some trivial BST (e.g. Empty), apply these functions to
get the BST we want

— |If each of these functions preserves the BST invariants, then any tree
we get from them will be a BST by construction

* No need to check!



Inserting a new node: (1nsert t 4)
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Inserting a new node: (1nsert t 4)
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Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if x = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)

end

* Note the similarity to searching the tree.

* Note that the result is a new tree with one more Node; the
original tree is unchanged

 Assuming that t is a BST, the result is also a BST. (Why?)
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Deletion — No Children: (delete t 3)
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Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.
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Deletion — One Child: (delete t 7)
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Deletion — One Child: (delete t 7)

If the node to be delete has one

child, replace the deleted node
by its child.
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Deletion — Two Children: (delete t 5)
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Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.
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Would it also work to move the smallest
label from the right-hand subtree?

1. yes
2. no

CIS120 Answer: yes



Subtleties of the Two-Child Case

e Suppose Node(lt,x,rt) is to be deleted and It and rt
are both themselves nonempty trees.

e Then:

1. There exists a maximum element, m, of It (Why?)
2. Every element of rtis greater than m (Why?)

 To promote m we replace the deleted node by:
Node(delete It m, m, rt)

— |.e. we recursively delete m from It and relabel the root
node m

— The resulting tree satisfies the BST invariants



How to Find the Maximum Element?

What is the max
element of this
subtree?
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How to Find the Maximum Element?

Just for fun, how
do we find the
max element of
the whole tree?
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let rec tree max (t:tree) : int =
begin match t with
| Node(_ ,x,Empty) -> X
| Node( , ,rt) -> tree max rt
|  -> failwith “tree max called on Empty”
end

Note:

* We never call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis
done by the delete function

e BST invariant guarantees that the maximum-value node
is farthest to the right
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Deleting From a BST

(* return a binary search tree that has the same set of
nodes as t except with n removed (if it's there) *)
let rec delete (t:tree) (n:int) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->
if x = n then
begin match (lt,rt) with
(Empty, Empty) -> Empty
(Node , Empty) -> 1t
(Empty, Node ) =-> rt
_ -> let m = tree max 1t in
Node (delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end
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If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

15190 Answer: no, what if the node is in the tree



If we insert a label n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

CIS120 Answer: yes



If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

CIS120 Answer: no, what if we delete the root?



Generic Functions and Data

Wow, that took quite a bit of typing... Do we have
to repeat it all again if we want to use BSTs
containing strings, or characters, or floats?




Structurally Identical Functions

* Observe: many functions on lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

* Compare: lengthfor “int list”vs.“string list”
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let rec length (1: int list)
begin match 1 with
| [] -> 0
| _::tl -> 1 + length tl
end

: int =

let rec length (l: string list)
begin match 1 with
| [] -> 0
| _::tl -> 1 + length tl
end

&

: int =

| The functions are

identical, except
for the type
annotation.




Notation for Generic Types

OCaml provides syntax for functions with generic types

let rec length (1:'a list) : int =
begin match 1 with
| [] -> 0
| _::tl -> 1 + (length tl1)
end

Notation: ‘a isa type variable; the function 1ength can
be used onat list for any type t.

Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list



Generic List Append

Note that the two input
lists must have the same
type of elements.

The return type is the
same as the inputs.

b

"
let rec append (11:'a list) (lé?Taﬁiist) - 'a list =
begin match 11 with
| [] -> 12

| h::tl -> h::Cappend tl 12)

end/r

/

Pattern matching works over generic types!

In the body of the branch:
h has type ‘a
tl hastype ‘a list
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Generic Zip

Functions can operate
over multiple generic

types.

r\

¥ i
let rec zip (11:"a list) (12:'b list) : ("a*'b) list =
begin match (11,12) with
| Chl::t1, h2::t2) -> (hl1,h2)::(zip t1 t2)
| _ > []

end

* Distinct type variables can be instantiated differently:
Zip [1;2;3] [llall;llbll;llcll]

* Here, ‘aisinstantiated to int, ‘bto string
* Result is
[(1,7a");(2,"b");(3,"c")]
of type (int * string) list
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User-Defined Generic Datatypes

* Recall our integer tree type:

type tree =
| Empty
| Node of tree * int * tree

 We can define a generic version by adding a type parameter,

like this: Parameter ‘a
I

—— used here
type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
~ e

\ /

Note that the recursive
C1S120 uses also mention ‘a




User-Defined Generic Datatypes

 BST operations can be generic too; only change is to type
annotation

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : ’a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f X = n then t
else n < x then Node(insert 1t n, x, rt)

else Nodé %\\é;\fnsert rt n)

end

N

Equality and comparison
work for any type of data
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