Programming Languages and Techniques (CIS120)

Lecture 7

Feb 3, 2014

BSTs Generic Types

Announcements

Homework 2 due Tuesday

Read Chapters 7 & 8 in the lecture notes

Trees as containers

Big idea: find things faster by searching less

A Binary Search Tree

Searching a BST

```
(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) ->
     if x = n then true
     else if n < x then (lookup lt n)
     else (lookup rt n)
end</pre>
```

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is not a BST!

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 5 to the left of 4

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: no, two 4s

Is this a BST??

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

Is this a BST??

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

How do we construct a BST?

Option 1:

- Build a tree
- Check that the BST invariants hold

Option 2:

- Write functions for building BSTs from other BSTs
 - e.g. "insert an element", "delete an element", ...
- Starting from some trivial BST (e.g. Empty), apply these functions to get the BST we want
- If each of these functions preserves the BST invariants, then any tree we get from them will be a BST by construction
 - No need to check!

Inserting a new node: (insert t 4)

Inserting a new node: (insert t 4)

CIS120

Inserting Into a BST

```
(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) ->
      if x = n then t
      else if n < x then Node(insert lt n, x, rt)
      else Node(lt, x, insert rt n)
end</pre>
```

- Note the similarity to searching the tree.
- Note that the result is a new tree with one more Node; the original tree is unchanged
- Assuming that t is a BST, the result is also a BST. (Why?)

Deletion - No Children: (delete t 3)

Deletion - No Children: (delete t 3)

Deletion - One Child: (delete t 7)

Deletion - One Child: (delete t 7)

Deletion - Two Children: (delete t 5)

Deletion - Two Children: (delete t 5)

Would it also work to move the *smallest* label from the *right-hand* subtree?

- 1. yes
- 2. no

Subtleties of the Two-Child Case

- Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.
- Then:
 - 1. There exists a maximum element, m, of It (Why?)
 - 2. Every element of rt is greater than m (Why?)
- To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
 - I.e. we recursively delete m from lt and relabel the root node m
 - The resulting tree satisfies the BST invariants

How to Find the Maximum Element?

How to Find the Maximum Element?

Note:

- We never call tree_max on an empty tree
 - This is a consequence of the BST invariants and the case analysis done by the delete function
- BST invariant guarantees that the maximum-value node is farthest to the right

Deleting From a BST

```
(* return a binary search tree that has the same set of
  nodes as t except with n removed (if it's there) *)
let rec delete (t:tree) (n:int) : tree =
 begin match t with
     Empty -> Empty
     Node(lt,x,rt) ->
     if x = n then
     begin match (lt,rt) with
        (Empty, Empty) -> Empty
       (Node _, Empty) -> lt
       (Empty, Node _) -> rt
        -> let m = tree_max lt in
        Node (delete lt m, m, rt)
     end
    else if n < x then Node(delete lt n, x, rt)
    else Node(lt, x, delete rt n)
  end
```

If we insert a label n into a BST and then immediately delete n, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

Answer: no, what if the node is in the tree

If we insert a label n into a BST that does not already contain n and then immediately delete n, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

If we delete n from a BST (containing n) and then immediately insert n again, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

Generic Functions and Data

Wow, that took quite a bit of typing... Do we have to repeat it all again if we want to use BSTs containing strings, or characters, or floats?

Structurally Identical Functions

- Observe: many functions on lists, trees, and other datatypes don't depend on the contents, only on the structure.
- Compare: length for "int list" vs. "string list"

```
let rec length (l: int list) : int =
  begin match l with
  | [] -> 0
  | _::tl -> 1 + length tl
  end
```

let rec length (l: string list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length tl
 end

The functions are *identical*, except for the type annotation.

Notation for Generic Types

OCaml provides syntax for functions with generic types

```
let rec length (l:'a list) : int =
  begin match l with
  | [] -> 0
  | _::tl -> 1 + (length tl)
  end
```

- Notation: 'a is a type variable; the function length can be used on a t list for any type t.
- Examples:

```
    length [1;2;3] use length on an int list
    length ["a";"b";"c"] use length on a string list
```

Generic List Append

Note that the two input lists must have the *same* type of elements.

The return type is the same as the inputs.

```
let rec append (l1:'a list) (l2:'a list) : 'a list =
  begin match l1 with
  | [] -> l2
  | h::tl -> h::(append tl l2)
  end
```

Pattern matching works over generic types!

In the body of the branch:

h has type 'a

tl has type 'a list

Generic Zip

Functions can operate over *multiple* generic types.

```
let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
  begin match (l1,l2) with
  | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
  | _ -> []
  end
```

- Distinct type variables can be instantiated differently:
 zip [1;2;3] ["a";"b";"c"]
- Here, 'a is instantiated to int, 'b to string
- Result is

```
[(1,"a");(2,"b");(3,"c")]
of type (int * string) list
```

User-Defined Generic Datatypes

Recall our integer tree type:

```
type tree =
| Empty
| Node of tree * int * tree
```

We can define a generic version by adding a type parameter,
 like this:

```
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
```

Note that the recursive uses also mention 'a

User-Defined Generic Datatypes

 BST operations can be generic too; only change is to type annotation

```
(* Insert n into the BST t *)
let rec insert (t:'a tree) (n:'a) : 'a tree =
  begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
    if x = n then t
    else if n < x then Node(insert lt n, x, rt)
    else Node(lt, x, insert rt n)
end</pre>
```

Equality and comparison work for any type of data