Programming Languages
and Techniques
(C1S120)

Lecture 8
Feb 5, 2014

Abstract Types: Sets

Modules and Interfaces



Announcements

Homework 3 is available
— Due TUESDAY, February 11t at 11:59:59pm
— Practice with BSTs, generic functions, and abstract types

If you added CIS 120 recently, make sure that you can see
your scores online.

— If you get feedback about your scores, you are in our database.

— If not, please send mail to tas120@lists.seas.upenn.edu

— If you see unsubmitted “quizzes”, you may need to register your clicker

Read chapter 9 of the lecture notes



Do these two declarations produce the same BST?

let t1
let t2

insert Empty 2
insert (insert Empty 2) 2

1. yes
2. no

Answer: yes

CIS120



Do these two declarations produce the same BST?

let t1 = insert (insert (insert Empty 2) 1) 3
let t2 = insert (insert (insert Empty 2) 3) 1
1. yes
2. o

Answer: yes

CIS120



Are you familiar with the idea of a set from
mathematics?

1. yes
2. no

Answer: about 70% reported yes

CIS120



Abstract Collections




A set is an abstraction

e Asetis a collection of data

— In math, we typically write sets like this: @ {1,2,3} {true,false}
with operations like: SUT or ST for union and intersection;
we write x €S to mean that “x is a member of the set §”

 Asetis alot like a list, except:
— Order doesn't matter

— Duplicates don't matter
— It isn't built into OCaml

e Sets show up frequently in applications

— Examples: set of students in a class, set of coordinates in a
graph, set of answers to a survey, set of data samples from
an experiment, ...



Abstract type: set

A binary search tree is an implementation of a set
— there is an empty set

— there is a way to list all elements contained in the set (inorder)
— there is a way to test membership (lookup)
— could define union/intersection with insert and delete

Order doesn't matter

— We create BSTs by adding elements to an empty BST

— The BST data structure doesn’t remember what order we added the
elements

Duplicates don't matter

— Our implementation doesn’t keep track of how many times an element
is added

BSTs are not the only way to implement sets, let’s generalize



Abstract type: set

An abstract type is defined by its interface and its
properties

The interface defines how sets can be created and used
— There is an empty set
— There is a way to add elements to a set to make a bigger set
— There is a way to list all elements in a set
— There is a way to remove elements from the set to make a smaller set
— There is a way to test membership

The properties define how these operations interact with
eachother
— Elements that were added can be found in the set

— Adding a twice doesn’t change the elements of a set
— Adding in a different order doesn’t change the elements of a set

Any type that can implement this interface while
satisfying the properties can be a set






A design problem

As a high-school student, Stephanie had the job of reading
books and finding which words, out of a list of the 1000-most
common SAT vocabulary words, appeared in a particular book.
She enjoyed being paid to read, but she would have enjoyed

being paid to program more. How could she have automated
this task?

What are the important concepts or abstractions for this
problem?

* The list of words that appear in a book
* The set of 1000-most common SAT words

* The set of words from the list that are contained in the set




2. Formalize the Interface

* Suppose we had a generic type of sets:
'a set
(WEe’'ll get to the details of that in a moment.)

* We can formalize the interface for our problem:

let countVocab (text : string list)
(vocab : string set)

. 1nt =

failwith “write me”



3. Write Test Cases

let wvocgh - string set =
@ ["induce"; "crouching"; "reprieve";

"indigent"; "arrogate"; "coalesce";
"temerity"]

let textl = ["i"; "looked"; "up"; "again"; "at";
"the"; "crouching"; "white"; "shape"; "and";
llthell; ll_Fu'I-'I-ll; "temer'-i_ty"; "O_F"; "my"; "Voyage"]

let test () : bool =
countVocab textl vocab = 2
;35 run_test "countVocab" test

Test cases specify the interface and the properties of the necessary abstractions.



4. Implement the Required Behavior

let countVocab (text : string list)
(vocab : string set)

: 1nt =

failwith “write me”

* Easy recursive programming task
— (weé’ll leave the details to you)

* Requires set membership test

let member (x:'a) (s:'a set) : bool =
failwith "unimplemented”



The set interface in OCaml (a signature)

mod

end

ule type Set = sig Keyword ‘val’ names values
that must be defined and
their t .

type 'a set Sl Hypes

val empty : 'a set

val add : 'a -> 'a set -> 'a set

val remove : 'a -> 'a set -> 'a set

val list_to_set : 'a list -> 'a set

val member :

a -> 'a set -> bool

val elements : 'a set -> 'a list




Aside: Function Types

In OCaml, the type of functions from input t to output u is

written:

t -=> u

Functions with multiple arguments are written with multiple

dlrrfows

Examples:

size : tree -> int

hamming distance
acids of helix

length : ‘a list
zZip : ‘a list
lookup : tree ->
insert : ‘a tree

helix -> helix -> int
helix -> acids 1list
-> int
-> ‘b list -> (‘a*’'b) list
int -> bool
-> 'a =-> ’'a tree



A module of sets

 An implementation of the set interface will look like this:

Name of the module

Signature that it implements

/

“ —
module Myset : Set = struct
E* implementations of all the operations *)

ena




Testing (and using) sets

To use the values defined in the set module use the “dot”
syntax:
Myset .<member>

Note: Module names are always capitalized in OCaml

let s1 = Myset.add 3 Myset.empty
let s2 = Myset.add 4 Myset.empty
let s3 = Myset.add 4 sl

let test (O : bool = (Myset.member 3 sl) = true
;5 run_test "Myset.member 3 sl1" test

let test O : bool = (Myset.member 4 s3) = true
;5 run_test "Myset.member 4 s3" test




Testing (and using) sets

* Alternatively, use “open” to bring all of the names defined in
the interface into scope.

;3 open Myset

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test () : bool = (member 3 sl1) = true
;5 run_test "Myset.member 3 sl1" test

let test () : bool = (member 4 s3) = true
;5 run_test "Myset.member 4 s3" test




Implementing sets

There are many ways to implement sets.

— lists, trees, arrays, etc.

How do we choose which implementation?

Many such implementations are of the flavor
“a setis a ... with some invariants”
— Asset is a list with no repeated elements.
— A setis a tree with no repeated elements
— A setis a binary search tree
— Asetis an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants of the implementation?



Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants.

* The interface restricts how other parts of the program can
interact with the data.

 Benefits:

— Safety: The other parts of the program can’t break any invariants

— Modularity: It is possible to change the implementation without
changing the rest of the program



Set sighature

module type Set = sig

end

Type declaration has no
“body” — its representation

type 'a set < is abstract!
val empty 'a set
val add 'a -> 'a set -> 'a set

val remove :

a-> 'a set -> 'a set

val list_to_set : 'a list -> 'a set

val member :

val elements :

a -> 'a set -> bool
'a set -> "a list




Implement the set Module

module MySet : Set =
struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * "a tree

Module must define the
type declared in the
signature

type 'a set = 'a tree <

let empty : "a set = Empty

ena

The implementation has to include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary functions) but
those cannot be used outside the module

— The types of the provided implementations must match the interface




Another Implementation

module MySet2 : Set =
struct

. A different definition for
type 'a set = 'a list < the type set

let empty : "a set = []

end




Does this code type check?

;5 open MySet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data constructor is not
available outside the module

CIS120



Does this code type check?

;3 open MySet
let s1 : int set

add 1 empty

1. yes
2. no

Answer: yes

CIS120




Does this code type check?

;5 open MySet
let s1 : int tree = add 1 empty

1. yes
2. no

Answer: no, add constructs a set, not a tree

CIS120



If a module works and starts with:

;5 open MySet

will it continue to work if we change that line to:

;5 open MySetZ2

1. yes
2. no

Answer: yes (caveat: times may be different)

CIS120



