Programming Languages
and Techniques
(C1S120)

Lecture 12
Feb 14, 2014

Mutable State
Abstract Stack Machine

Announcements

“Make up” office hours for Thursday recitation

— Probably Sunday afternoon, watch Piazza for details

Homework 4 due Tuesday
Read Chapters 14 & 15 in the lecture notes

Midterm 1

— Scheduled in class on Friday, Feb 21st

— Review material posted on course website

— Review session Wednesday, Feb 19t, 7-9PM in Levine 101

HW 03 feedback

* Comments
— FUN but challanging
— loved it

— This was quite interesting and after working with lists and trees, felt easier
than the last assignment.

— Interesting but time-consuming.

— This homework took much longer than the previous ones.

— | need to stop underestimating how long these assignments will take.
— This homework was very difficult.

— | choked on a banana in the middle of the assignment. College life is
rough.

- UvuvuvuvuvuuvuccGGGGHHHHHHHHGGGHHGHGHHGGGGHHHH

— (Also, difficulties with project configuration, compiler error messages, long
lines at OH)

* Timespent
— min: 1, avg:12, max:100, n=117

Mutable state

CIS120

Why Use Declarative Programming?

Simple

— small language: arithmetic, local variables, recursive functions,
datatypes, pattern matching, polymorphism and modules

— simple substitution model of computation

Persistent data structures
— Nothing changes, so can remember all intermediate results
— Good for version control, fault tolerance, etc.

Typecheckers give more helpful errors

— Once your program compiles, it needs less testing
— failwith vs. NullPointerException

Easier to parallelize and distribute

— No implicit interactions between parts of the program. All of the
behavior of a function is specified by its arguments

Why Use Mutable State?

Action at a distance

— allow remote parts of a program to communicate / share information
without threading the information through all the points in between

Direct manipulation of hardware (device drivers, etc.)

Data structures with explicit sharing

— e.g. graphs

— without mutation, it is only possible to build trees — no cycles
Efficiency/Performance

— a few data structures have imperative versions with better asymptotic
efficiency than the best declarative version

Re-using space (in-place update)

Random-access data (arrays)

A new view of imperative programming

Java (and C, C++, C#) OCaml (and Haskell, etc.)

* Nullis contained in (almost) ¢ No null. Partiality must be
every type. Partial functions made explicit with options.
can return null.

* Code is a sequence of * Code is an expression that
statemgnts that d? has a value. Sometimes
something, sometimes computing that value has
using expressions to other effects.

compute values. :
* References are immutable

* References are mutable by by default, must be

default, must be explicitly explicitly declared to be
declared to be constant mutable

Immutable Records

* Records are like tuples with named fields:

(* a type for representing colors *) Curly braces
type rgb

(* some example

let
let
let
let
let

red
blue
green

black :

white

rgb

rgb =

rgb
rgb
rgb

{r:int; g:int; b:int;} €

rgb values *)

{r=255; g=0;
g
{r=0; =0;

g
{r=0; g=255;
{r=0; =0;

g
{r=255; g=255;

around record.
Semicolons after
record components.
b=0;}

b=255;}

b=0;}

b=0;}

b=255;}

 The type rgb is a record with three fields: r, g, and b
— fields can have any types; they don’t all have to be the same

* Record values are created using this notation:

CIS120

{fieldl=vall;

field2=val2;..}

Field Projection

 The value in a record field can be obtained by using “dot”
notation: record.field

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)

let average rgb (cl:rgb) (c2:rgb) : rgb =

{r

g_

b

(cl.r + c2.r) / 2;
(cl.g + c2.9) / 2;
(cl.b + c2.b) / 2;}

CIS120

Mutable Record Fields

* By default, all record fields are immutable—once initialized,
they can never be modified.

 OCaml supports mutable fields that can be imperatively
updated by the “set” command: record.field <- val

note the ‘mutable’ keyword

_—

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
77 pO0.x <= 17

;7 Print_ghdlisi\("pO.x = " ”~ (string of int p0.x))

™SS

“in-place” update of p0.x

CIS120

Defining new Commands

* Functions can assign to mutable record fields

* Note that the return type of ‘<=’ is unit

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.x + dx;
p.y <- p.y t dy

CIS120

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit
p.X <- p.x + dx;
p.y <- p.y t dy

What answer does the following function produce when called?

let £ (pl:point) : int =
pl.x <- 17;
pl.x

1. 17
2. 34
3. sometimes 17 and sometimes 34

4. £ isill typed

CIS120

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit

p.X <- p.x + dx;
p.y <- p.y + dy

What answer does the following function produce when called?

let £ (pl:point) (p2:point) : int
pl.x <- 17;
p2.x <- 34;
pl.x

1. 17
2. 34
3. sometimes 17 and sometimes 34

4. £ isill typed

CIS120

Issue with Mutable State: Aliasing

e What does this function return?

let £ (pl:point) (p2:point) : int =
pl.x <- 17;
p2.x <- 42;
pl.x

(* Consider this call to f *)
let ans = £ p0 pO0

Two identifiers are said to be aliases if they both name the
same mutable record. Inside £, p1, and p2 might be aliased,
depending on which arguments are passed to f.

CIS120

Modeling Computation
with Mutable State

Have you used the substitution model to reason about how
functions evaluate?

total_secs (2 + 3) 12 17
— total_secs 5 12 17
— (5 * 60 + 12) * 60 + 17 subst. the args

— (300 + 12) * 60 + 17

— 312 * 60 + 17

— 18720 + 17 let total_secs (hours:int)
—> 18737 (minutes:int)
(seconds:int)
: int =

Chours * 60 + minutes) * 60 + seconds

yes, every single step

yes, but skipping some steps
no, it seems useless to me
what is the substitution model?

e e

CIS120

Mutable Records

* Mutable (updateable) state means that the locations of values
becomes important.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : int = p2.x <- 17; pl.x

 The simple substitution model of program evaluation breaks
down — it doesn’t account for locations and can’t explain
aliasing.

* We need to refine our model of how to understand programs.

Abstract Stack Machine

A new model of computation

Abstract Machines

The job of a programming language is to provide some
abstraction of the underlying hardware

An abstract machine hides the details of the real machine
— model doesn’t depend on the hardware
— easier to reason about the behavior of programs

There are lots of ways of visualizing machine evaluation

— e.g. the substitution model we’ve been using until now

An Abstract Stack Machine
— is a good way of understanding how recursive functions work

— gives an accurate picture of how OCaml data structures are shared
internally (which helps predict how fast programs will run), and

— extends smoothly to include imperative features (assignment, pointer
manipulation) and objects (for Java)

Stack Machine

* Three “spaces”

— workspace
* the expression the computer is currently working with

— stack
* temporary storage for 1let bindings and partially simplified expressions

— heap
» storage area for large data structures
* Initial state:
— workspace contains whole program
— stack and heap are empty

 Machine operation:
— In each step, choose next part of the workspace expression and
simplify it
— Stop when there are no more simplifications

Abstract Stack Machine

The abstract stack machine operates by simplifying the expression in
the workspace...

... but instead of substitution, it records the values of variables on the stack

... values themselves are divided into primitive values (also on the stack) and
reference values (on the heap).

For immutable structures, this model is just a complicated way of
doing substitution

... but we need the extra complexity to understand mutable state.

We'll start with examples first, and then define general rules

Values and References

A value is either:
* aprimitive value like an integer or,
e areference (or pointer) into the heap

A reference is the address (or location of) a piece of data in the
heap. We draw a reference as an “arrow”:

— The start of the arrow is the reference itself (i.e. the address).

— The arrow “points” to the value located at the reference’s address.

This is a reference 4 o

Cons 3 Nil
value. .
It points to This reference value
this location points to the location

containing a Cons cell of a Nil cell

References as an Abstraction

* |n areal computer, the memory consists of an array of 32-bit
words, numbered 0 ... 232-1 (for a 32-bit machine)
— A reference is just an address that tells you where to look up a value
— Data structures are usually laid out in contiguous blocks of memory

— Constructor tags are just numbers chosen by the compiler
e.g. Nil =42 and Cons =120120120

1
Addresses 32-bit Values :
1
0 I
1
1 !
The “real” 2 4294967291 | How we
heap. 3 : picture it.
1
1
1
4294967290 !
4294967291 120120120 Cons 3
4294967292 3
4294967293 4294967295 :
4294967294 i r
4294967295 42 Nil

Simplifying
let, variables, operators,
and if expressions

Simplification

Workspace Stack
let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Stack

Workspace
let x = 22 in
let y = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Stack

Workspace
let x = 22 in
let y = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace

Stack

let y = 2 + x in
if x > 23 then 3 else 4

X |22

CIS120

Heap

Simplification

Workspace Stack Heap

X |22

let y = 2 + x in
if x > 23 then 3 else 4

X is not a value: so look it up in the stack

CIS120

Simplification

Workspace Stack
let y = 2 + 22 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let y = 2 + 22 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let vy = 24 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let y = 24 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace

Stack

if x > 23 then 3 else 4

X |22

y | 24

CIS120

Heap

Simplification

Workspace

Stack

if x > 23 then 3 else 4

X |22

y | 24

CIS120

Heap

Simplification

Workspace Stack

if 22 > 23 then 3 else 4 X | 22

y | 24

CIS120

Heap

Simplification

Workspace Stack

if 22 > 23 then 3 else 4 X | 22

y | 24

CIS120

Heap

Simplification

Workspace

Stack

if false then 3 else 4

X |22

y | 24

CIS120

Heap

Simplification

Workspace

Stack

if false then 3 else 4

X |22

y | 24

CIS120

Heap

Simplification

Workspace Stack Heap

X |22

y | 24

CIS120

Simplification Rules

A let-expression “1let x = e in body” is ready if the
expression e is a value
— itis simplified by adding a binding of x to e at the end of the stack and
leaving body in the workspace
A variable is always ready
— it is simplified by replacing it with its value from the stack, where
binding lookup goes in order from most recent to least recent
A primitive operator (like +) is ready if both of its arguments
are values
— itis simplified by replacing it with the result of the operation

An “if” expression is ready if the test is true or false
— ifitis true, it is simplified by replacing it with the then branch
— ifitis false, it is simplified by replacing it with the else branch

Simplifying
lists and datatypes using the heap

Simplification

Workspace Stack

l::2::3::[]

For uniformity, we’ll
pretend lists are declared
like this:

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

CIS120

Heap

Simplification

Workspace Stack

Cons (1,Cons (2,Cons (3,Nil)))

For uniformity, we’ll
pretend lists are declared
like this:

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

CIS120

Heap

Simplification

Workspace Stack

Cons (1,Cons (2,Cons (3,Nil)))

CIS120

Heap

Simplification

Workspace

Cons (1l,Cons (2,Cons (3,

Stack Heap
i P

CIS120

Simplification

Workspace

Cons (1l,Cons (2,Cons (3,

Stack Heap
/))/\ﬂ

CIS120

Simplification

Workspace Stack

Cons (1,Cons (2, '17//”— -\\\\\"\\\\\\\\\\\\\5__—’)1

CIS120

Heap
Nil

Cons

Simplification

Workspace Stack

Cons (1,Cons (2, '))/ \\/

CIS120

Heap
Nil

Cons

Simplification

Workspace

Stack

Cons (1,

CIS120

C

Heap

Nil

Cons 3
Cons 2

Simplification

Workspace

Stack

Cons (1,

CIS120

C

Heap

Nil

Cons 3
Cons 2

Simplification

Workspace

Stack

CIS120

Heap

Nil r**:

Cons 3 d//
Cons 2

) Cons

Simplifying Datatypes

* A datatype constructor (like Ni1 or Cons) is ready if all its
arguments are values
— ltis simplified by:

* creating a new heap cell labeled with the constructor and containing the
argument values*

* replacing the constructor expression in the workspace by a reference to
this heap cell

*Note: in OCaml, using a datatype constructor causes some space to be automatically allocated on the heap.
Other languages have different mechanisms for accomplishing this: for example, the keyword ‘new’ in Java
works similarly (as we’ll see in a few weeks).

Simplifying
functions

CCCCCC

Function Simplification

Workspace Stack Heap

let addl (x : int) : int =
x + 1 in
addl (addl 0)

CIS120

Function Simplification

Workspace Stack Heap

let addl (x : int) : int =
X + 1 in
addl (addl 0)

CIS120

Function Simplification

Workspace Stack

let addl : int -> int =
fun (x:int) -> x + 1 in
addl (addl 0)

CIS120

Heap

Function Simplification

Workspace Stack

let addl : int -> int =
fun (x:int) -> x + 1 in
addl (addl 0)

CIS120

Heap

Function Simplification

Workspace Stack Heap

let addl = "f////r h\\\\\‘—— 5 fun (x:int) -> x + 1

addl (addl 0)

CIS120

Function Simplification

Workspace Stack Heap

let addl = -1/ \ 5 fun (x:int) -> x + 1

addl (addl 0)

CIS120

Function Simplification

Workspace

addl (addl 0)

Stack

add1

rd

Heap

CIS120

qfun (x:int) -> x + 1

Function Simplification

Workspace

addl (addl 0)

Stack

add1

rd

Heap

CIS120

qfun (x:int) -> x + 1

Function Simplification

Workspace Stack

Heap

fun (x:int) -> x + 1

- .0)\ - 9

CIS120

Function Simplification

Workspace Stack

Heap

fun (x:int) -> x + 1

aadt (0)\ - 9

CIS120

Do the Call, Saving the Workspace

Workspace

x+1

Stack Heap

add1

.//—\‘ fun (x:int) -> x + 1

addl ()

Note the saved workspace and pushed function argument.
* compare with the workspace on the previous slide.
e the name X’ comes from the name in the heap

The new workspace is the body of the function

CIS120

Function Simplification

Workspace Stack Heap
x+1 add1 /q fun (x:int) -> x + 1
addl () |
x| 0

CIS120

Function Simplification

Workspace Stack Heap
0+1 add1 /q fun (x:int) -> x + 1
addl () |
x| 0

CIS120

Function Simplification

Workspace Stack Heap
0+1 add1 /q fun (x:int) -> x + 1
addl () |
x| 0

CIS120

Function Simplification

Workspace Stack Heap
1 add1 /d fun (x:int) -> x + 1
0]

O addl () |

CIS120

Function Simplification

Workspace

addl 1

Stack

Heap

add1

rd

See how the ASM restored the saved workspace,
replacing its "hole’ with the value computed into

the old workspace. (Compare with previous slide.)

CIS120

/_Tfun (x:int) -> x + 1

Function Simplification

Workspace Stack Heap

addl 1 add1 /q fun (x:int) -> x + 1

CIS120

Function Simplification

Workspace Stack

Heap

*\i\\ add1

'

CIS120

\

fun (x:int) -> x + 1

Function Simplification

Workspace Stack

Heap

_:\<% addl

'

CIS120

\

fun (x:int) -> x + 1

Function Simplification

Workspace Stack Heap

x+1 add1 /d fun (x:int) -> x + 1

CIS120

Function Simplification

Workspace Stack

add1

'

Heap

/qun (x:int) -> x + 1

CIS120

Function Simplification

Workspace Stack

1+1

add1

'

Heap

/qun (x:int) -> x + 1

CIS120

Function Simplification

Workspace Stack

[

1+1 add1

'

Heap

/qun (x:int) -> x + 1

CIS120

Function Simplification

Workspace

N

Stack

add1

'

Heap

dfun (x:int) -> x + 1

CIS120

O

O

Function Simplification

Workspace Stack Heap

2 add1 mfun (x:int) -> x + 1

CIS120

Simplifying Functions

A function definition “let rec f (x,:t,)...(x,:t,) = e in body” is
always ready.
— Itis simplified by replacing it with “let f = fun (x:t,)...(x:t,) = e in body”

A function “fun (x;:t))...(x,:t,) = €” is always ready.

— Itis simplified by moving the function to the heap and replacing the
function expression with a pointer to that heap data.

A function call is ready if the function and its arguments are
all values
— itis simplified by
* saving the current workspace contents on the stack

* adding bindings for the function’s parameter variables (to the actual
argument values) to the end of the stack

* copying the function’s body to the workspace

Function Completion

When the workspace contains just a single value, we pop the
stack by removing everything back to (and including) the last
saved workspace contents.

The value currently in the workspace is substituted for the
function application expression in the saved workspace
contents, which are put back into the workspace.

If there aren’t any saved workspace contents in the stack, the
whole computation is finished and the value in the workspace
is its final result.

