Programming Languages
and Techniques
(C1S120)

Lecture 13

February 17, 2014

ASMs and Aliasing



Announcements

Homework 4 due tomorrow at midnight
Midterm 1 will be in class on Friday, February 215t

— ROOMS:
 Towne 100 (here) last names: A—L
 DRLB Al last names: M -7

— TIME: 11:00 AM sharp, 50 mins

— Covers up to Feb 12t and HW 4
* no Abstract Stack Machine!

Review session Wednesday, Feb 19th, 7-9PM in Levine 101

HW 5 will be available Friday (after the exam) and due the following
Friday

Read Ch. 15 and 16
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The Course So Far...

We started out focusing on pure expressions with no side
effects (variable mutation, etc.)

— Strictly speaking, we did use a few “impure” features, for printing and
running tests, but we omitted these from discussions of how programs
evaluate

Pure computations are all we need for a wide range of tasks

— easier to parallelize

— easier to reason about, for both humans and automatic tools such as
typecheckers (because of the lack of “side channels”)

— simple execution model, substituting expressions by their values “in
place”

However, side-effecting computations are sometimes useful

To understand their subtleties, a more sophisticated execution
model is needed...



Abstract Stack Machine

* Three “spaces”
— workspace

e contains the expression the computer is currently working with
* machine operation gradually simplifies expression to value
— stack

* temporary storage for variables, replacing substitution: used for 1let
bindings and function parameters

* maps variable names to atomic values (primitive values or references to
heap locations)

* also stores workspaces in a function call
— heap
* models your computer’s memory

» storage area for large data structures (datatypes, tuples, first-class
functions, records)

e tracks the locations of data structures



Simplification

Workspace Stack
let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4
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Simplification

Workspace Stack Heap

X |22

y | 24
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Simplification

Workspace Stack

Cons (1,Cons (2,Cons (3,Nil)))

For uniformity, we’ll
pretend lists are declared
like this:

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
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Simplification

Workspace

Stack
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Nil r‘*:

Cons 3 1/,
Cons 2

) Cons




ASM and shadowing




Simplification

Workspace

Stack

let x = 10 + 12 in
le 2 + x in
if"x > 23 then 3 else 4

Note that the second x shadows the first.
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Simplification

Workspace Stack
let x = 10 + 12 in
let x = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap




Simplification

Stack

Workspace
let x = 22 in
let x = 2 + x in

if x > 23 then 3 else 4
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Simplification

Stack

Workspace
let x = 22 in
let x = 2 + x in

if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 2 + x in X | 22
if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 2 + x in x| 22
if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 2 + 22 in X | 22
if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 2 + 22 in X | 22
if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 24 in X | 22
if x > 23 then 3 else 4
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Simplification

Workspace Stack
let x = 24 in X | 22
if x > 23 then 3 else 4
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Simplification

Workspace

Stack

if x > 23 then 3 else 4

X |22

X |24
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Simplification

Workspace Stack Heap
if x > 23 then 3 else 4 x| 22
X | 24

AN

Looking up x in the stack proceed from most recent
entries to the least recent entries — the “top” (most

recent part) of the stack is toward the bottom of the
diagram.
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Simplification

Workspace Stack

if 24 > 23 then 3 else 4 X | 22

X |24
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Simplification

Workspace Stack

if 24 > 23 then 3 else 4 X | 22

X |24

CIS120

Heap




Simplification

Workspace

Stack

if true then 3 else 4

X |22

X |24
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Simplification

Workspace

Stack

if true then 3 else 4

X |22

X |24
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Simplification

Workspace Stack Heap

X |22

X |24
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What is your current level of comfort with the Abstract Stack Machine?

got it well under control

OK but need to work with it a little more
a little puzzled

very puzzled

very very puzzled :-)

CUESE A
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Mutable Records and the ASM



What is the value of ans at the end of this program?

1. 17
[ 1

type point

let pl

{mutable x:int; mutable y:int}

point = {x=1; y=1;}

let p2 : point = pl

let ans :

int

= p2.Xx <- 17; pl.x

. £ isill typed

2
3. sometimes 17 and sometimes 1
4

CIS120

Answer: 17




Mutable Records

* The reason for introducing all this ASM stuff is to make the
model of heap locations and sharing explicit.
— Now we can say what it means to mutate a heap value in place.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point pl
let ans : int = p2.x <- 17; pl.x

* We draw a record in the heap like this:

— The doubled outlines indicate that those -

cells are mutable X
— Everything else is immutable Y L
— (field names don’t actually take up space) A point record

in the heap.



Allocate a Record

Workspace Stack

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : int =

p2.x <- 17; pl.x
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Allocate a Record

Workspace Stack

let pl : point (///

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x
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Let Expression

Workspace Stack

let pl : point (/f/

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x
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Push p1l

Workspace Stack

Heap

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x
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Look Up ‘pl’

Workspace Stack

pl

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Heap




Look Up ‘pl’

Workspace Stack Heap
pl x
let p2 : point = y

let ans : int =
p2.x <- 17; pl.x
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Let Expression

Workspace Stack Heap
,////——_~‘\\\\ Pl X
let p2 : point = . y

let ans : int =
p2.x <- 17; pl.x

CIS120



Workspace Stack Heap

let ans : int =
p2.x <- 17; pl.x

Note: pl and p2 are references to the same heap record.
They are aliases — two different names for the same thing.
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Look Up ‘p2’

Workspace

Stack

let ans : int =
p2.x <- 17; pl.x

pl
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Look Up ‘p2’

Workspace

Stack

let ans : int =
\.x <-17; pl.x

pl

p2
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Assign to x field

Workspace

Stack

let ans : int =

e .Xx <-17; pl.x

pl
p2 |«
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Assign to x field

Workspace Stack Heap

pl

A\
p2 //\/Y

let ans : int =
(); pl.x
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Sequence ;" Discards Unit

Workspace

Stack

let ans : int =

(): pl.x

pl

p2

~
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X

17

y




Look Up ‘pl’

Workspace Stack
pl
: p2
let ans : 1nt =

pl.x

I~
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Look Up ‘pl’

Workspace Stack
pl
: p2
let ans : 1nt =

'\.x
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Project the ‘X’ field

Workspace Stack Heap

pl =

17

p2 |« y

let ans : int =

J&Lg
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Project the ‘X’ field

Workspace Stack Heap

pl

A 1
p2 //\/Y

let ans : int =
17
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Let Expression

Workspace Stack Heap

pl

A 1
p2 //\/Y

let ans : int =
17
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Push ans

Workspace

Stack

pz"f\/
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What answer does the following expression produce?

let pl = {x=0; y=0} in
let p2 = pl in

pl.x <- 17;
p2.x <- 42;
pl.x
1. 17
2. 42
3. sometimes 17 and sometimes 42
4. £ isill typed

Answer: 42

CIS120



What answer does the following function produce when called?

let £ (pl:point) (p2:point) : int =
pl.x <- 17;
pP2.Xx <- 42;
pl.x
1. 17
2. 42
3. sometimes 17 and sometimes 42
4. £ isill typed

Answer: sometimes 17 and sometimes 42
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What answer does the following function produce when called?

1
2
3.
4

let £ (pl:point)
pl.x <- 17;
let z = pl.x in
p2.x <- 42;
Z

(p2:point)

int

. 17
. 42

sometimes 17 and sometimes 42
. £ isill typed

Answer: 17
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Reference and Equality

— VS. pu——




Reference Equality

* Suppose we have two counters. How do we know whether
they share the same internal state?
— type counter = { mutable count : int }
— We could increment one and see whether the other’s value changes.
— But we could also just test whether the references alias directly.

e Ocaml uses ‘==" to mean reference equality:

— two reference values are ‘=="if they point to the same thing in the
heap; so:
r1 | count 0
r2 == r3
r2
not (rl == r2) count 0
r3
rl = r2 -




Structural vs. Reference Equality

e Structural (in)equality: v1 = v2 vl <> v2

— recursively traverses over the structure of the data, comparing the two
values’ components for structural equality

— function values are never structurally equivalent to anything
— structural equality can go into an infinite loop (on cyclic structures)
— appropriate for comparing immutable datatypes

 Reference equality: vl==v2 vll=v2
— Only looks at where the two references point in the heap
— function values are only equal to themselves
— equates strictly fewer things than structural equality
— appropriate for comparing mutable datatypes



What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } in
let p2 : point = pl in

. true

. false
runtime error
compile-time error

Bwn e

Answer: true
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What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } in
let p2 : point = pl in

pl == pZ

. true

. false
runtime error
compile-time error

Bwn e

Answer: true
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What is the result of evaluating the following expression?

e

in
1in

let pl : point = { x =0; y
let p2 : point = { x =0; y
pl == p2

l. true

2. false

3. runtime error

4. compile-time error

Answer: false
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What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } in
let p2 : point = pl in

let 11 : point list = [pl] 1in

let 12 : point list = [p2] in

11 =12

. true

. false
runtime error
compile-time error

Bwn e

Answer: true
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What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } in
let p2 : point = pl in

let 11 : point list = [pl] 1in

let 12 : point list = [p2] in

11 == 12

. true

. false
runtime error
compile-time error

Bwn e

Answer: false
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