Programming Languages
and Techniques
(C1S120)

Lecture 13

February 17, 2014

ASMs and Aliasing

Announcements

Homework 4 due tomorrow at midnight
Midterm 1 will be in class on Friday, February 215t

— ROOMS:
 Towne 100 (here) last names: A—L
 DRLB Al last names: M -7

— TIME: 11:00 AM sharp, 50 mins

— Covers up to Feb 12t and HW 4
* no Abstract Stack Machine!

Review session Wednesday, Feb 19th, 7-9PM in Levine 101

HW 5 will be available Friday (after the exam) and due the following
Friday

Read Ch. 15 and 16

CIS120

The Course So Far...

We started out focusing on pure expressions with no side
effects (variable mutation, etc.)

— Strictly speaking, we did use a few “impure” features, for printing and
running tests, but we omitted these from discussions of how programs
evaluate

Pure computations are all we need for a wide range of tasks

— easier to parallelize

— easier to reason about, for both humans and automatic tools such as
typecheckers (because of the lack of “side channels”)

— simple execution model, substituting expressions by their values “in
place”

However, side-effecting computations are sometimes useful

To understand their subtleties, a more sophisticated execution
model is needed...

Abstract Stack Machine

* Three “spaces”
— workspace

e contains the expression the computer is currently working with
* machine operation gradually simplifies expression to value
— stack

* temporary storage for variables, replacing substitution: used for 1let
bindings and function parameters

* maps variable names to atomic values (primitive values or references to
heap locations)

* also stores workspaces in a function call
— heap
* models your computer’s memory

» storage area for large data structures (datatypes, tuples, first-class
functions, records)

e tracks the locations of data structures

Simplification

Workspace Stack
let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack Heap

X |22

y | 24

CIS120

Simplification

Workspace Stack

Cons (1,Cons (2,Cons (3,Nil)))

For uniformity, we’ll
pretend lists are declared
like this:

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

CIS120

Heap

Simplification

Workspace

Stack

CIS120

Heap

Nil r‘*:

Cons 3 1/,
Cons 2

) Cons

ASM and shadowing

Simplification

Workspace

Stack

let x = 10 + 12 in
le 2 + x in
if"x > 23 then 3 else 4

Note that the second x shadows the first.

CIS120

Heap

Simplification

Workspace Stack
let x = 10 + 12 in
let x = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Stack

Workspace
let x = 22 in
let x = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Stack

Workspace
let x = 22 in
let x = 2 + x in

if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 2 + x in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 2 + x in x| 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 2 + 22 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 2 + 22 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 24 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace Stack
let x = 24 in X | 22
if x > 23 then 3 else 4

CIS120

Heap

Simplification

Workspace

Stack

if x > 23 then 3 else 4

X |22

X |24

CIS120

Heap

Simplification

Workspace Stack Heap
if x > 23 then 3 else 4 x| 22
X | 24

AN

Looking up x in the stack proceed from most recent
entries to the least recent entries — the “top” (most

recent part) of the stack is toward the bottom of the
diagram.

CIS120

Simplification

Workspace Stack

if 24 > 23 then 3 else 4 X | 22

X |24

CIS120

Heap

Simplification

Workspace Stack

if 24 > 23 then 3 else 4 X | 22

X |24

CIS120

Heap

Simplification

Workspace

Stack

if true then 3 else 4

X |22

X |24

CIS120

Heap

Simplification

Workspace

Stack

if true then 3 else 4

X |22

X |24

CIS120

Heap

Simplification

Workspace Stack Heap

X |22

X |24

CIS120

What is your current level of comfort with the Abstract Stack Machine?

got it well under control

OK but need to work with it a little more
a little puzzled

very puzzled

very very puzzled :-)

CUESE A

CIS120

Mutable Records and the ASM

What is the value of ans at the end of this program?

1. 17
[1

type point

let pl

{mutable x:int; mutable y:int}

point = {x=1; y=1;}

let p2 : point = pl

let ans :

int

= p2.Xx <- 17; pl.x

. £ isill typed

2
3. sometimes 17 and sometimes 1
4

CIS120

Answer: 17

Mutable Records

* The reason for introducing all this ASM stuff is to make the
model of heap locations and sharing explicit.
— Now we can say what it means to mutate a heap value in place.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point pl
let ans : int = p2.x <- 17; pl.x

* We draw a record in the heap like this:

— The doubled outlines indicate that those -

cells are mutable X
— Everything else is immutable Y L
— (field names don’t actually take up space) A point record

in the heap.

Allocate a Record

Workspace Stack

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : int =

p2.x <- 17; pl.x

CIS120

Heap

Allocate a Record

Workspace Stack

let pl : point (///

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Let Expression

Workspace Stack

let pl : point (/f/

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Push p1l

Workspace Stack

Heap

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Look Up ‘pl’

Workspace Stack

pl

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Look Up ‘pl’

Workspace Stack Heap
pl x
let p2 : point = y

let ans : int =
p2.x <- 17; pl.x

CIS120

Let Expression

Workspace Stack Heap
,////——_~‘\\\\ Pl X
let p2 : point = . y

let ans : int =
p2.x <- 17; pl.x

CIS120

Workspace Stack Heap

let ans : int =
p2.x <- 17; pl.x

Note: pl and p2 are references to the same heap record.
They are aliases — two different names for the same thing.

CIS120

Look Up ‘p2’

Workspace

Stack

let ans : int =
p2.x <- 17; pl.x

pl

CIS120

Heap

A N\
p2//\/

Look Up ‘p2’

Workspace

Stack

let ans : int =
\.x <-17; pl.x

pl

p2

CIS120

Heap

Assign to x field

Workspace

Stack

let ans : int =

e .Xx <-17; pl.x

pl
p2 |«

CIS120

Heap

Assign to x field

Workspace Stack Heap

pl

A\
p2 //\/Y

let ans : int =
(); pl.x

CIS120

Sequence ;" Discards Unit

Workspace

Stack

let ans : int =

(): pl.x

pl

p2

~

CIS120

Heap

X

17

y

Look Up ‘pl’

Workspace Stack
pl
: p2
let ans : 1nt =

pl.x

I~

CIS120

Heap

17

Look Up ‘pl’

Workspace Stack
pl
: p2
let ans : 1nt =

'\.x

CIS120

Heap

17

Project the ‘X’ field

Workspace Stack Heap

pl =

17

p2 |« y

let ans : int =

J&Lg

CIS120

Project the ‘X’ field

Workspace Stack Heap

pl

A 1
p2 //\/Y

let ans : int =
17

CIS120

Let Expression

Workspace Stack Heap

pl

A 1
p2 //\/Y

let ans : int =
17

CIS120

Push ans

Workspace

Stack

pz"f\/

CIS120

ans| 17

Heap

17

What answer does the following expression produce?

let pl = {x=0; y=0} in
let p2 = pl in

pl.x <- 17;
p2.x <- 42;
pl.x
1. 17
2. 42
3. sometimes 17 and sometimes 42
4. £ isill typed

Answer: 42

CIS120

What answer does the following function produce when called?

let £ (pl:point) (p2:point) : int =
pl.x <- 17;
pP2.Xx <- 42;
pl.x
1. 17
2. 42
3. sometimes 17 and sometimes 42
4. £ isill typed

Answer: sometimes 17 and sometimes 42

CIS120

What answer does the following function produce when called?

1
2
3.
4

let £ (pl:point)
pl.x <- 17;
let z = pl.x in
p2.x <- 42;
Z

(p2:point)

int

. 17
. 42

sometimes 17 and sometimes 42
. £ isill typed

Answer: 17

CIS120

Reference and Equality

— VS. pu——

Reference Equality

* Suppose we have two counters. How do we know whether
they share the same internal state?
— type counter = { mutable count : int }
— We could increment one and see whether the other’s value changes.
— But we could also just test whether the references alias directly.

e Ocaml uses ‘==" to mean reference equality:

— two reference values are ‘=="if they point to the same thing in the
heap; so:
r1 | count 0
r2 == r3
r2
not (rl == r2) count 0
r3
rl = r2 -

Structural vs. Reference Equality

e Structural (in)equality: v1 = v2 vl <> v2

— recursively traverses over the structure of the data, comparing the two
values’ components for structural equality

— function values are never structurally equivalent to anything
— structural equality can go into an infinite loop (on cyclic structures)
— appropriate for comparing immutable datatypes

 Reference equality: vl==v2 vll=v2
— Only looks at where the two references point in the heap
— function values are only equal to themselves
— equates strictly fewer things than structural equality
— appropriate for comparing mutable datatypes

What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } in
let p2 : point = pl in

. true

. false
runtime error
compile-time error

Bwn e

Answer: true

CIS120

What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } in
let p2 : point = pl in

pl == pZ

. true

. false
runtime error
compile-time error

Bwn e

Answer: true

CIS120

What is the result of evaluating the following expression?

e

in
1in

let pl : point = { x =0; y
let p2 : point = { x =0; y
pl == p2

l. true

2. false

3. runtime error

4. compile-time error

Answer: false

CIS120

What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } in
let p2 : point = pl in

let 11 : point list = [pl] 1in

let 12 : point list = [p2] in

11 =12

. true

. false
runtime error
compile-time error

Bwn e

Answer: true

CIS120

What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } in
let p2 : point = pl in

let 11 : point list = [pl] 1in

let 12 : point list = [p2] in

11 == 12

. true

. false
runtime error
compile-time error

Bwn e

Answer: false

CIS120

