Programming Languages
and Techniques
(C1S120)

Lecture 18
March 3, 2014

GUI Design |l: Layout

Are you going somewhere warm for Spring Break?

1. Yes!
2. No, the cold never bothered me anyway
3. Philly will be 70 degrees next week, right?!

4. Spring break?

CIS120

Announcements

HW 6 due FRIDAY at midnight
Read Chapter 18 of the lecture notes

Read over the provided code before getting started

First Java assignment will be available after Spring Break
Due Tuesday, March 25

Designing a GUI library

CIS 120

|O Point| |O Line| |® Ellipse| |O Text| Thick lines| O Copy| |O Paste| |Undo| [Ouit]
(m] (] (m] [=] WO (] [=] [m] Text buffers] |

/.
T —

Project Architecture

Application PSSR U R C R S TR O SR T ST T R TOS T TG ST VT ST TCOreren: :
\ Paint

Eventloop Widget
Gcetx
Native . OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

CIS 120

GUI terminology — Widget*

 Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position on the screen and know how to display
themselves

 May be composed of other widgets (for layout)

* Widgets are often modeled by objects

— They often have hidden state (string on the button, whether the
checkbox is checked)

— They need functions that can modify that state

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

Container Widgets for layout

(1N

= hlist

let color toolbar
[color button
color button
color button
color button
color button
color button
color button
color button

: widget
black;
white;
red;
green;
blue;
yellow;
cyan;
magenta]

spacer;
spacer;
spacer;
spacer;
spacer;
spacer;
spacer;

hlist is a container widget.

It takes a list of widgets and
turns them into a single one
by laying them out
horizontally.

paint.ml

* Challenge: How can we make it so that the functions that
draw widgets (buttons, check boxes, text, etc.) in different
places on the window are location independent?

Challenge: Widget Layout

* Widgets are “things drawn on the screen”. How to make them
location independent?

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Paint.ml

Application \ --- :

GUI
Library

Native |
graphics

gu—

|

library

CIS 120

Eventloop.m Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)

The graphics
context
isolates the
widgets from
the Graphics
module.

GUI terminology — Graphics Context

* Wrapper for OCaml Graphics library, putting operations “in
context”

* Aggregates information about the way things are drawn, such
as the foreground color or line width

* Translates coordinates of drawing commands
— Flips between OCaml and
“Standard coordinates” so origin

is top-left
— Translates coordinates so all

widgets can pretend that
they are at the origin

CIS 120

Building blocks of GUI applications

Simple Widgets

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;

size : Getx.gectx -> (int * int)

* You can ask a simple widget to repaint itself.

* You can ask a simple widget to tell you its size.

* Both operations use a graphics context

Simple widget examples

* Leaf widgets --- parts of the screen
— label: piece of text on the screen
— canvas: part of the screen that can be drawn on
— space: blank part of the screen

* Container widgets — arrange other widgets
— border: draw a border around another widget
— hpair: put two widgets side-by-side

Widget Hierarchy Pictorially

(* Create some simple label widgets *)

let 11 = label "Hello"
let 12 = label "World"

swdemo.ml

(* Compose them horizontally, adding some borders *)

let h = Dborder (hpair (border 11)
(hpair (space (10,10)) (border 12)))
border
!
hpair
e”’;;=—<::\\\s Hello World
border hpair
label space border On the screen

!

Widget tree label

The Widget Hierarchy

 Widget instances form a tree*:

— Leaf widgets — don’t contain any children
* label, space, and canvas widgets are leaves

— Container widgets — are “wrappers” for their children
* border and hpair widgets are containers

* Build container widgets by passing in their children as
arguments to their “constructor” functions

— e.g. let b = border w in..
let h = hpair bl b2 in..

 The repaint method of the root widget initiates all the
drawing and layout for the whole window

*If you draw the state of the abstract machine for a widget program, the tree will be visible in the
heap — the saved stack of the “repaint” function for a container widget will contain references to
its children.

Drawing: Containers

Container widgets propagate repaint commands to their children:

|
borlzler .repaint g
|

Hello World

hp .repaint g1
border hpair Mepaint g2
label space borden | .repaint g3

{

label ‘l. .repaint g4

Widget tree On the screen

Building blocks of GUI applications

swdemo ml|

CIS 120

. Caml graphics

|Hello lWorld

17

Simple Widgets: implementation

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;

size : Getx.gectx -> (int * int)

* All widgets have a “constructor function” that returns a value
of this type

Widget Examples

simpleWidget.ml

{

size

repaint =

(* Display a string on the screen. *)
let label (s:string) : widget =

(fun (g:gctx) -> Gectx.draw string g s);
(fun (g:gctx) -> Gectx.text size g s)

simpleWidget.ml

repaint
size

(* A region of empty space. *)
let space ((w,h):int*int) : widget =

(fun (_:gctx) -> ());
(fun (_:gctx) -> (w,h))

The canvas Widget

* Region of the screen that can be drawn upon
* Has a fixed width and height

* Parameterized by a repaint function
— Use the Gctx drawing routines to draw on the canvas

simpleWidget.ml

(* expose the graphics context as a widget *)
let canvas ((w,h):int*int) (repaint:gctx -> unit): widget =
{
repaint = repaint;
size (fun (_:gctx) -> (w,h))

Graphics Contexts

CIS 120

Why do we need a layer between the Graphics
library and the Widget library?

21

Challenge: Widget Layout

* Widgets are “things drawn on the screen”. How to make them
location independent?

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Paint.ml

Application \ --- :

GUI
Library

Native |
graphics

gu—

|

library

CIS 120

Eventloop.m Widget.ml

Gcetx.ml

OCaml’s Graphics Module (graphics.cma)

The graphics
context
isolates the
widgets from
the Graphics
module.

22

OCaml vs.

Standard Coordinates

Standard (0,0) .
\< size_x ()
7 3
. (%) N
D
<
v
OCaml (0,0) Standard (x,y) = OCaml (x,size_y() - y)

CIS 120

23

Graphics Contexts

Absolute (Flipped OCaml)
(0,0)

widget-local
0,0)
(X,y T
widget h
o W)

A graphics context gctx represents a position within the window, relative to which

the widget-local coordinates should be interpreted. We can add additional context

information that should be “inherited” by children widgets (e.g. current pen color).
CIS120 24

Drawing: Containers

Container widgets propagate repaint commands to their children:

|
borljer .repaint g
|

hpair |.repaint g1 Hello World
border hpair Mepaint g2
label space borden | .repaint g3
label ‘l. .repaint g4
Widget tree gl = Getx.translate g (2,2) On the screen

g2 = Gcetx.translate g1 (hello_width,0)
g3 = Gcetx.translate g2 (space_width,0)
g4 = Gcetx.translate g3 (2,2)

The hpair Widget Container

translate gctx
to repaint w2

wl
w2 h's

Pheight

v

h’s width

* let h = hpair wl w2
* Creates a horizontally adjacent pair of widgets

* Aligns them by their top edges
— Must translate the gctx when repainting the right widget

* Size is the sum of their widths and max of their heights

The Border Widget

simpleWidget.ml
let hpair (wl:widget) (w2:widget) : widget =
{
repaint = (fun (g:Gctx.gctx) ->
let (x1,_) = wl.size g 1n begin
wl.repaint g;
wZ.repaint (Gctx.translate g (x1,0))
end);

size = (fun (g:Gctx.gctx) —>
let (x1,yl) = wl.size g 1in
let (x2,y2) = w2.size g 1in
(x1 + x2, max yl y2))

The Border Widget Container

0 (w’s width +4) -1

123 .
IIIIIIIIIIIIIIIIIIIIIIIII=

0
translate. 1%
the Getx | 2

3

W'S

o
o
-
B height
o
o
u
u

EREEEEEED
=

(ws height +4) - 1 S NN

w’s width

let b = border w

* Draws a one-pixel wide border around contained widget w

* Db’s sizeis slightly larger than w’s (+4 pixels in each dimension)
* b’s repaint method must call w’s repaint method

* When b asks w to repaint, b must translate the gctx to (2,2) to account for the
displacement of w from b’s origin

The Border Widget

simpleWidget.ml
let border (w:widget):widget =
{
repaint = (fun (g:gctx) ->
let (width,height) = w.size g in
let x = width + 3 in
let y = height + 3 in
Getx.draw_line g (0,0) (x,0); Draw the border
Gectx.draw line g (0,0) (0,y);
Getx.draw line g (%x,0) (X,Y);
Gectx.draw line g (0,y) (X,Y);
let g = Gectx.translate g (2,2) in
w.repaint g); Display the interior
size = (fun (g:gctx) ->
let (width,height) = w.size g in
(width+4, height+4))

