Programming Languages
and Techniques
(C1S120)

Lecture 20
March 7, 2014

Transition to Java

CIS120

How would you rate your familiarity with Java

1) Never used anything like it

2) I've used a typed 00 language before
(C#, C++, Objective C) but not Java

3) Really rusty, not sure I remember it

4) Have written ~100 line programs
(CIS 110 / AP CS level)

5) Have written larger programs, using
the standard libraries

6) I could teach a course on Java

Smoothing the transition

DON’T PANIC

Ask questions, but don’t worry about the details until you
need them.

Java resources:
— Lecture notes
— CIS 110 website, textbook

— Online Java textbook (http://math.hws.edu/javanotes/) linked from
“CIS 120 Resources” on course website

— Penn Library: Electronic access to “Java in a Nutshell” (and all other
O’Reilly books)

— Piazza!

Java and OCaml together

Guy Steele, one of the
principal designers of Java

Xavier Leroy, one of the principal
designers of OCaml

CIS120 4

Looking Back...

Course Overview

* Declarative (Functional) programming
— persistent data structures
— recursion is main control structure
— frequent use of functions as data

* Imperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

* Object-oriented (and reactive) programming
— mutable data structures / iteration
— heavy use of functions (objects) as data
— pervasive “abstraction by default”

CIS120 6

Recap: The Functional Style

* Coreideas:
— immutable (persistent / declarative) data structures
— recursion (and iteration) over tree structured data
— functions as data
— generic types for flexibility (i.e. ‘a list)
— abstract types to preserve invariants (i.e. BSTs)
— simple model of computation (substitution)

* Good for:
— elegant descriptions of complex algorithms and/or data
— “symbol processing” programs (compilers, theorem provers, etc.)
— parallelism, concurrency, and distribution

OCaml

Functional programming

Immutable lists primitive, .
tail recursion

Datatypes and pattern
matching for tree structured
data

First-class functions .

Generic types .

Abstract types through
module signatures

*until Java 8, coming March 18th

Java (and C, C++, C#)

No primitive data structures,
no tail recursion

Trees must be encoded by
objects, mutable by default

No first-class functions.* Must
encode first-class computation
with objects

Generic types

Abstract types through public/
private modifiers

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

OCaml vs. Java for FP

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is _empty (t:'a tree) =
begin match t with
| Empty -> true
| Node(_, ,) -> false
end

let t : int tree = Node(Empty,3,Empty)
let ans : bool = is empty t

CIS120

interface Tree<A> {
public boolean isEmpty();
}
class Empty<A> implements Tree<A> {
public boolean isEmpty() {
return true;
}
}

class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> 1lt;
private final Tree<A> rt;

Node (Tree<A> 1lt, A v, Tree<A> rt) {
this.lt = 1lt; this.rt = rt; this.v = v;
}

public boolean isEmpty() {
return false;

}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty();

Moar FP

OB Visual F#
mocaml ERLANG

Most similar to OCaml, Scalable concurrency
Shares libraries with C# Powers WhatsApp

= Type inference

= Modules and support for
large scale programming

= Objects (real, but different)

= Many other extensions

= Growing ecosystem

= Real World OCaml, OPAM

Haskell (CIS 552) Clojure
Purity and laziness Runs on JVM

CIS120 10

Recap: Imperative programming

e Coreideas:

computation as change of state over time

distinction between primitive and reference values
aliasing

linked data-structures and iteration control structure
generic types for flexibility (i.e. ‘a queue)

abstract types to preserve invariants (i.e. queue invariant)
Abstract Stack Machine model of computation

e Good for:

numerical simulations (nbody)
implicit coordination between components (queues, GUI)

Imperative programming

OCaml

No null. Partiality must be

made explicit with options.

Code is an expression that
has a value. Sometimes
computing that value has
other effects.

References are immutable
by default, must be
explicitly declared to be
mutable

Java (and C, C++, C#)

Null is contained in (almost)
every type. Partial functions
can return null.

Code is a sequence of
statements that do
something, sometimes
using expressions to
compute values.

References are mutable by
default, must be explicitly
declared to be constant

Explicit vs. Implicit Partiality

OCaml variables

Cannot be changed once created,
must use mutable record

type 'a ref = { mutable contents:
let x = { contents = counter () }

va}

;; X.contents <- counter ()

Cannot be null, must use options

let y = { contents = Some (counter (O)}

;3 y.contents <- None

Accessing the value requires
pattern matching

;3 match y.contents with
| None -> failwith "NPE"

| Some ¢ -> c.inc)

Java variables

Can be assigned to after initialization

Counter x = new Counter (;

x = new Counter ();

Can always be null

Counter y = new Counter ();

y = null;

Check for null is implicit whenever a
variable is used

y.incQ);

If null is used as an object
(i.e. with a method call) then a
NullPointerException occurs

13

The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention —
of the null reference in 1965. At that time, | was
designing the first comprehensive type system for
references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage
in the last forty years. "

Sir Tony Hoare, QCon, London 2009

CIS120 14

Recap (and coming): The OO Style

* Coreideas:
— objects (state encapsulated with operations)
— dynamic dispatch (“receiver” of method call determines behavior)
— classes (“templates” for object creation)
— subtyping (grouping object types by common functionality)
— inheritance (creating new classes from existing ones)

e Good for:

— GUIs!

* complex software systems that include many different implementations of
the same “interface” (set of operations) with different behaviors

— Simulations

* designs with an explicit correspondence between “objects” in the
computer and things in the real world

"Objects" in

OCaml

(* The type of counter objects *)
type counter = {

inc : unit -> 1int;

dec : unit -> 1int;

}

(* Create a counter “object” *)
let counter () : counter =
let r = {contents = 0} 1in
{
inc = (fun O ->
r.contents <- r.contents + 1;
r.contents);
dec = (fun O ->
r.contents <- r.contents - 1;
r.contents)

Why is this an object?

" FEncapsulated local state
only visible to the methods
of the object

= QObjectis defined by what it
can do—Ilocal state does not
appear in the interface

= There is a way to construct
new object values that
behave similarly

CIS120

16

OO programming

OCaml Java (and C, C++, C#)

e Explicitly create objects * Primitive notion of object
using a record of higher creation (classes, with
order functions and hidden fields, methods and
state constructors)

* Flexibility through * Flexibility through
composition: objects can extension:
only implement one Subtyping allows related
interface objects to share a common

(i.e. button = widget * interface
label _controller * (i.e. button <: widget)

notifier_controller).

OO terminology

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies...
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— onhe or more constructors: code that is executed when the
object is created (optional)

Every Java object is an instance of some class

Objects in Java

) class declaration
public class Counter { (|3ss name Af///’

private int r; instance variable

public Counter O { onstructor

r=0;
ks
— . object creation and use
public int inc O { methods / |
r=r + 1;
, return r; public class Main {

.. ublic static void
public int dec () { P main (String[] args) { constructor

r=r - 1; invocation
return r; Counter c = new Counter();

¥
¥ System.out.printin(c.inc());

1 method call

CIS120 =

Constructors with Parameters

Constructor methods can take

public class Counter {
parameters

private int r;
Constructor must have the same

public g?unter (int ro) { name as the class
, r = ro;
puelicriztl?nc O { object creation and use
! return r;’ public class Main {
public it dec O { P ain (Stringl] args) { invocation.
! return r; Counter c = new Counter(3);
¥ System.out.printin(c.inc());

CIS120 20

Creating Objects

e Declare a variable to hold a Counter object
— Type of the object is the name of the class that creates it

* |nvoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c¢ = new Counter();

CIS120 21

Creating objects

* Every Java variable is mutable

Counter ¢ = new Counter(2);
c = new Counter(4);

* A Java variable of reference type can also contains the special
value “null”

Counter ¢ = null;

45 Note:

Single = for assighnment
Double == for reference equality testing

Encapsulating local state

public class Coun

}

private int r;

public Counter () {
r = 0;
ks

public int inc OO {
r=r + 1;
return r;

}

public int dec () {
r=r -1,
return r;

}

ter {

// ris private

constructor and
methods can
refertor

th ts of th
public class Main { OHner parts orthe

public static void public members

main (String[] args) {

Counter c new Counter();

System.out.printin(c.inc());

CIS120

} method call

program can only access

23

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— public : accessible from anywhere in the program
— private : only accessible inside the class
e Design pattern — first cut:
— Make all fields private
— Make constructors and non-helper methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

Did you attend class today?

1. Yes

CIS120

Critique of Hand-Rolled Objects

* “Roll your own objects” made from records, functions, and
references are good for understanding...

type counter = {
inc : unit -> 1int;
dec : unit -> 1int;

h

e ...but not that great for programming
— minor: syntax is a bit clunky (too many parens, etc.)
— major: OCaml’s record types are too rigid, cannot reuse functionality

type reset_counter = {
inc : unit -> int;
dec : unit -> int;
reset : unit -> unit;

