Programming Languages
and Techniques
(C1S120)

Lecture 27/
March 31, 2014

Dynamic Dispatch and the Java ASM

Announcements

Read Ch. 25

HW 08 due tomorrow at midnight

Midterm 2 is this Friday

Review sessions:

— Wednesday 7:00 — 9:00, Levine 101
— Lab this week is review (bring questions!)

The .equals method in Java is roughly similar to OCaml’s = operator.

1. True
2. False
3. It’s complicated

The == operator in both OCaml and Java tests whether two compound
values have identical structure.

1. True
2. False
3. It’s complicated

In Java, there is a class that is a subtype of any other class.

1. True
2. False
3. It’s complicated

In Java, an interface can extend zero, one, or several other interfaces.

1. True
2. False
3. It’s complicated

In Java, a class can extend zero, one, or several other classes.

1. True
2. False
3. It’s complicated

In the Java ASM, large data structures such as object values are stored in
the stack, not the heap

1. True
2. False
3. It’s complicated

In the OCaml ASM, bindings of variables to values in the stack are
immutable, while in Java they are mutable.

1. True
2. False
3. It’s complicated

A Java variable of type String behaves like an OCaml variable of type string
option ref.

1. True
2. False
3. It’s complicated

A Java array can be resized by assigning a new value to its length field.

1. True
2. False
3. It’s complicated

Recursive functions cannot be defined in Java.

1. True
2. False
3. It’s complicated

The Java Abstract Stack Machine
and the Class Table

1. When do constructors execute?
2. How are fields accessed?
3. What code runs in a method call?

How do method calls work?

What code gets run in a method invocation?
o.move(3,4);

When that code is running, how does it access the fields of
the object that invoked it?

X = X + dx;
When does the code in a constructor get executed?

What if the method was inherited from a superclass?

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter (O { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

ks

X +d; }

The class table contains:
* The code for each method,
* Back pointers to each class’s parent, and
* The class’s static members.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void decO){incBy(-y);}

this

* Inside a non-static method, the variable th1is is a reference
to the object on which the method was invoked.

* References to local fields and methods have an implicit
“th1s.” in front of them.

class C { Stack Heap
private int f; this

public int copyF(C other) {
this.f = other.f;
}

}

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

ks

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

X +d; }

..with Explicit th1s and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0;
public void incBy(int d) { this.x = thi
public int get() { return this.x; }

hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

ks

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

Constructing an Object

Workspace Stack

Decr d = new Decr(2);
d.dec();
int x = d.get(Q);

Invoking a constructor:

* allocates space for a new object
in the heap

* includes slots for all fields of all
ancestors in the class tree
(here: x andy)

* creates a pointer to the class —
this is the object’s dynamic type

* runs the constructor body after
pushing parameters and this
onto the stack

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void decO){incBy(-y);}

Allocating Space on the Heap

Workspace

Stack

Heap

super();
this.y = initY;

Decr d = _;
d.decQ);
int x = d.getQ);

Invoking a constructor:

this

|

initY

L 2]

* allocates space for a new object

in the heap

* includes slots for all fields of all

ancestors in the class tree

(here: x andy)

* creates a pointer to the class —

this is the object’s dynamic type
* runs the constructor body after
pushing parameters and this

onto the stack

Reminder: fields start

with a “sensible” default
- 0 for numeric values
-null for references

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Calling super

Workspace Stack Heap
super(); ey
this.y = initY; int x = d.getO;
inity | 2|
Call to super:

* The constructor (implicitly) calls
the super constructor

* Invoking a
method/constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Abstract Stack Machine

Workspace Stack
. d=_;
super(); e
this.x = 0; int x = d.getO;

(Running Object’s default
constructor omitted.)

this

[SN

initY

L 2]

-5
this.y = initY;

this

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Assigning to a Field

Workspace Stack Heap
. . Decr d = _;
this.x = 0; d.decOs
int x = d.getQ);
this "~ I 2 I
initY | z|

-5
this.y = initY;

this P

Assignment into the this.Xx field
goes in two steps:
- look up the value of this in the

stack
- write to the “X” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

__Assigning to a Field

Stack

Decr d = _;
d.decQ);

int x = d.getQ);

this

initY

-5
this.y = initY;

this

Assignment into the this.Xx field
goes in two steps:
- look up the value of this in the
stack
- write to the “x” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Done with the call

Workspace Stack Heap

. Decr d = _;
’ d.decQ);

-5
this.y = initY;

this P

Done with the call to “super”, so
pop the stack to the previous
workspace.

int x = d.getQ);
this o I 2 I
initY | z|

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Continuing

Workspace

Stack

this.y = 1nitY;

Decr d = _;
d.decQ);
int x = d.getQ);

this O] I

initY | 2|

Continue in the Decr class’s

constructor.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Abstract Stack Machine

Workspace Stack Class Table
this.y = 2; ey Object

int x = d.getQ);

String toString(){..

this ~—
I 0 I boolean equals..

initY | z|

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Assigning to a field

Workspace Stack Heap

Decr d = _;

this.y = 2; d.decO);

int x = d.getQ);

Assignment into the this.y
field.

(This really takes two steps as we
saw earlier, but we’re skipping
some for the sake of brevity...)

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { .. }

void decO){incBy(-y);}

Done with the call

Workspace Stack Heap
. Decr d = _;
’ d.decQ);
int x = d.getQ);
this "~
[2]
initY | z|

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the th1is pointer).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Returning the Newly Constructed Object

VVorkspasg//’/”"y Stack

Decr d =/;
d.dec(Q);
int x = d.get(Q);

Continue executing the program.

‘\\\\NHeag

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Allocating a local variable

Workspace Stack

d |¢'

d.decQ);

int x = d.get(Q);

Allocate a stack slot for the local
variable d. Note that it’s mutable...
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable, we
often omit the bold boxes and just
assume the contents can be
modified.

1,.\\sH§§Q
X ‘ 0'.
y | 2]

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Dynamic Dispatch: Finding the Code

“dec();

int x = d.get(Q);

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This process is called dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

Search through the
methods of the Decr,
class trying to find one
called dec.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

voidTdecO){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace

Stack

this.incBy(-this.y);

d

L]

int x = d.get();

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments

(none in this case).

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Reading A Field’s Contents

Workspace Stack
this.incBy(-#£y); d I{'
Tht x = d.getQ;
this "

Heap

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Dynamic Dispatch, Again

ThcBy(-2);

{nt x = d.get(Q);

this

Invoke the 1NCBY method on the
object via dynamic dispatch.

In this case, the 1nCBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr,
class trying to find one
called 1nCBYy.

If the search fails,
recursively search the
parent classes.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends
Counter
void incBy(int d){..}

int get() {return x;}

Decr

extends Counte
Decr(int 1

decO{incBy(-y);}

Running the body of 1hcBYy

Workspace Stack

this.x = this.x + d; d [«

int x = d.get();

this

this.x

I
1
N

It takes a few steps...
Body of 1ncBy::
-reads this.x
- looks up d
- computes result this.x + d
- stores the answer (-2) in this.Xx

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

After a few more steps...

Workspace Stack

int x = d.get(Q); d

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again...

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

After yet a few more steps...

Workspace

Stack

[

Done! (Phew!)

| -2

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO){incBy(-y);}

Summary: this and dynamic dispatch

¢ When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, represented as a pointer into the class table, is included in
the object structure in the heap

— If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table

— This process of dynamic dispatch is the heart of OOP!

* Once the code for m has been determined, a binding for th1is is pushed
onto the stack.

— The this pointer is used to resolve field accesses and method invocations
inside the code.

Static members & Java ASM

Static Members

 C(Classes in Java can also act as containers for code and data.

 The modifier static means that the field or method is
associated with the class and not instances of the class.

You can do a static assignment

to initialize a static field.
public class C { é,//””’

public static int x = 23;
public static int someMethod(int y) { return C.x + y; }
public static void main(String args[]) {

}
}
C.x = C.x + 1;
C.someMethod(17);

™~

Access to the static member uses the class name

C.xorC.foo()

Class Table Associated with C

The class table entry for C

h field slot for X. :
C has a field slot for extends Object

Updates to C. X modify ctatic x I 23|
the contents of this static int someMethod(int y)
slot: C.x = 17; 0 Y

{ return x + y; }
static void main(String args[])

{-}

A static field is a global variable
— There is only one heap location for it (in the class table)
— Modifications to such a field are globally visible (if the field is public)
— Generally not a good idea!

Static Methods (Details)

 Static methods do not have access to the this pointer
— Why? There isn’t an instance to dispatch through.
— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course a static method can create instance of objects (via new) and
then invoke methods on those objects.

* Gotcha: Itis possible (but confusing) to invoke a static method
as though it belongs to an object instance.

— e.g. o0.someMethod(17) where someMethod is static
— Eclipse will issue a warning if you try to do this.

