Programming Languages
and Techniques
(C1S120)

Lecture 29
April 7, 2014

Exceptions

Announcements

 Read Chapter 28

 Homework 9 available later today, due Tuesday April 15t at
midnight

— Focus: working with Java’s Collection and 10 libraries

Midterm 2

Grades available online
Stats:

— median: 75
— stddev: 14.31

— max: 99

n
T

Grade breakdown
— >80 A

— 62-79B :
— 46-61C : P AN " —
— <45 D

Make-up exam tomorrow, will be able to view exams with
Ms. Laura Fox in Levine 308 starting Wed.

Interfaces* of the Collections Library

Iterable<E> Map<K, V>
Collection<E> SortedMap<K, V>
List<E> Deque<E> Set<E>
SortedSet<E>

*not all of them!

Sequences

Iterab1e<E>

Collection<E>

Implements

- ~
~

Lis£<E> Deque<E>

LinkedList<E>

ArraylList<E> ArrayDeque<E>

lterator and lterable

interface Iterable<E> {
public Iterator<E> iterator();
ks

interface Iterator<E> {
public boolean hasNext();
public E next();
public void delete(); // optional

}

lterator example

List<Integer> nums = new LinkedList<Integer>();
nums.add(1);
nums.add(2);
nums.add(7);

int numElts = 0;
int sumElts = 0;
Iterator<Integer> iter = nums.1iterator();
while (i1ter.hasNext()) {
Integer v = iter.next();
sumkElts = sumElts + v;

numelts = numelts + 1; What happens at end of loop?

1. suméElts and numéElts are both O
sumElts is 3 and numéElts is 2
sumElts is 10 and numElts is 3
NullPointerException
Something else

CL S

For-each version

List<Integer>
nums.add(1);
nums.add(2);
nums.add(7);

1nt numElts
int sumElts

nums = new LinkedList<Integer>();

)

0
0,

for (Integer v : nums) {

sumElts =
numkElts =

sumklts + v;
numElts + 1;

Subtyping and Generics

Subtyping and Generics

Iterab1e<E>

Collection<E>

Implements

- ~
~

Lis£<E> Deque<E>

LinkedList<E>

ArraylList<E> ArrayDeque<E>

Subtyping and Generics

Queue<String> gs = new QueueImpl<String>Q); 0k? Sure!

Queue<Object> qo = @gs; Ok? Let’s see..
qgo.eng(new Object()); 0k? guess
String s = gs.deq(); Ok? NOOOO'

* Java generics are invariant:

— Subtyping of arguments to generic types does not imply subtyping
between the instantiations:

Object Queue<Object>

: Hardest part to
: but... learn about
: generics and

I subtyping...
String Queue<String>

Dealing with the unexpected

Why do methods “fail”?

Some methods make requirements of their arguments

— Input to max is a nonempty list, Item is non-null, more elements for
next

Interfaces may be imprecise
— Some Iterators don't support the "remove" operation

External components of a system might fail

— Try to open a file that doesn't exist

Resources might be exhausted

— Program uses all of the computer's disk space

These are all exceptional circumstances...

— how do we deal with them?

Ways to handle failure

 Return an error value (or default value)
— e.g. Math.sqgrt returns NaN ("not a number") if given input <0
— e.g. Many Java libraries return nul L
— e.g. file reading method returns -1 if no more input available
— Caller must check return value

— Use with caution — easy to introduce nasty bugs!

e Use an informative result
— e.g. in OCaml we used options to signal potential failure
— e.g. in Java, we can create a special class like option
— Passes responsibility to caller, but caller forced to do the proper check

* Use exceptions
— Available both in OCaml and Java
— Any caller (not just the immediate one) can handle the situation
— If an exception is not caught, the program terminates

Exceptions

An exception is an object representing an abnormal condition
— Its internal state describes what went wrong

— e.g. NullPointerException, lllegalArgumentException, IOException
— Can define your own exception classes

Throwing an exception is an emergency exit from the current
context

— The exception propagates up the invocation stack until it either
reaches the top of the stack, in which case the program aborts with
the error, or the exception is caught

Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances

Example from HW 7

void loadImage (String fileName) {

try {
Picture p = new Picture(fileName); // could fail
// ... code to display the new picture in the window

// executes only if the picture 1is successfully created.

} catch (I0Exception ex) {
// Use the GUI to send an error message to the user
// using a dialog window
JOptionPane.showMessageDialog(
frame, // parent of dialog window
// error message to display
"Cannot load file\n" + ex.getMessage(),

"Alert", // title of dialog
JOptionPane.ERROR_MESSAGE // type of dialog
)s

Simplified Example

class C {
public void foo() {
this.bar();
System.out.println(“here in foo”);
ks
public void bar() {
this.baz();
System.out.println(“here in bar”);
ks
public void baz() {
throw new Exception();
ks

What happens if we do (hnew C()).foo() ?

1. Program stops without printing anything

2 Program prints “here in bar”, then stops

3. Program prints “here in bar”, then “here in foo”, then stops
4

Something else

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

W Stack N Heap

('FOO(),

Allocate a new instance of C in the heap. (Skipping
details of trivial constructor for C.)

Abstract Stack Machine

W Stack \(Heap

@ .foo();

Abstract Stack Machine

Workspace

this.bar();
System.out.println(
“here in fo00”);

Stack

this

Heap

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the th1is pointer,

followed by arguments (in this case none) onto the stack.

Use the dynamic class to lookup the method body from the

class table.

Abstract Stack Machine

Workspace Stack

this.bar(Q);

System.out.println(— /////—_——~

“here in foo0”); this /

Heap

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); _ ////"___“
System.out.println(e
“here in bar”); this / //f

gystem.out.pr ntln(
“here in f00”);

this /

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); _ ////"___“
System.out.println(e
“here in bar”); this / //f

gystem.out.pr ntln(
“here in f00”);

this /

Abstract Stack Machine

Workspace Stack Heap

throw new Exception(); _: /?-
C

this « //’)f

gystem.out.pr nt¥n(
“here in f00”);

this / /

gystem.out. intln(
“here in bar”);

this /

Abstract Stack Machine

Workspace Stack Heap

throw new Exception(); K /?-
’ C

this « //’)f

gystem.out.pr nt¥n(
“here in f00”);

this / /

gystem.out. intln(
“here in bar”);

this /

Abstract Stack Machine

>

Workspac / Stack \

throw Gaf//,

-

this /

gystem.out.pr nt¥n(
“here in f00”);

this / /

gystem.out. intln(
“here in bar”);

this 1

Exception

Heap
[Fesen

Abstract Stack Machine

WorkspaC,G/ Stack \

throw G?f//,

-

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catchis found,
abort the program with an error.

this J/

System out.printkn(
“here 1n f60”);

//\

»

this / /
gystem.out. intln(
“here 1n bar”);

this /

Exceptlon

Abstract Stack Machine

Workspace/ Stack

/

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

\

-

this J/

System out.printkn(
“here 1n f60”);

//\

»

this / /
gystem.out. intln(
“here 1in bar”);

this /

Exceptlon

Abstract Stack Machine

Workspace

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

Stack Heap
VA e
this / /

-5
System.out.println(/’

“here 1n f060”); //

this /

gystem.out.println(

“here in bar”):
Try/€atch

Abstract Stack Machine

Workspace Stack

this

gystem.out.println(

Discard the current workspace. :
“here 1n foo0”);

_; [T
//—\

Heap

—

recently pushed one that contains

Then, pop saved workspace frames
off the stack, looking for the most Try/Catch
for)?
No! ‘

atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Abstract Stack Machine

Workspace Stack Heap

-
Try/Catch |
for ¢)? No! \

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Abstract Stack Machine

Workspace Stack Heap
Program terminated with

uncaught exception (;)!

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

L/

Catching the Exception

class C {
public void foo() {
this.bar();
System.out.println(“here in fo00”);
¥
public void bar() {
try {
this.baz(Q);
}+ catch (Exception e) { System.out.println(“caught”); }
System.out.println(“here in bar”);
¥

public void baz() {
throw new Exception();
}

}

* Now what happens if we do (hew C()).foo();?

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

W Stack \Heag
.foo();
@ 1000

Allocate a new instance of C in the heap.

Abstract Stack Machine

W Stack \(Heap

@ .foo();

Abstract Stack Machine

Workspace Stack Heap
this.bar(); _; /_\'\)
System.out.println(

“here 1in foo”); this /

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the th1is pointer,
followed by arguments (in this case none) onto the stack.

Abstract Stack Machine

Workspace Stack

this.bar(Q);

System.out.println(- /////—_——~

“here in foo0”); this /

Heap

Abstract Stack Machine

Workspace Stack

try {

{ System.out.Println
(“caught”); }

Heap

this.baz(Q); - /////’—i:::
‘I /7

} catch (Exception e) this

System.out.println(System.out.pr, ntln(
“here in bar”); “here in f00”);

this /

Abstract Stack Machine

Workspace

try 4
this.baz();
1 catch (Exception e)
{ System.out.Println
(“caught”); }
System.out.println(
“here in bar”);

Stack

Heap

-3 >
T/

this

gystem.out.pr ntln(
“here 1n f060”);

When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { ... } code.

Replace the current workspace
with the body of the try.

this /

Abstract Stack Machine

Workspace Stack

Heap

this.baz(); -
N this / /S

Body of the try.

gystem.out.pr ntln(
“here 1n f060”);

Everything else.
\\\\\\\ this /
When executing a try/catch block,
push onto the stack a new —)

workspace that contains all of the catch (Exception e)

current workspace except for the 1 SXStem . Oﬂt .Println
try { ... } code. (“caught”); }
System.out.println(

(14 : 13 .
Replace the current workspace here in bar”);

with the body of the try.

Abstract Stack Machine

Workspace Stack

Heap

this

this.baz(); _3 ////"___§'
s
A4

gystem.out.pr ntln(
“here 1n f060”);

this /

Continue executing as normal. .

-

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here 1n bar”);

Abstract Stack Machine

Workspace Stack

Heap

throw new Exception(); s ////’—_:;;

this « A//7r

gystem.out.pr ntln(
“here 1n f00”)

this / [

Eatch (Exceptipn e)
{ System.out.Println

The top of the stack is off the System.out.println(
bottom of the page... ©

Abstract Stack Machine

Heap

Workspace Stack
throw new Exception(); _; /////’_j;;
this / 7/
g);/stem .out %}/(
“here in f00”
this / [

Eatch (Exceptipn e)
{ System.out.Println

Abstract Stack Machine

>

Workspac / Stack \

throw Gaf//, 3

this ’

gystem.out .println(

“here 1in f00”)

this / /

Eatch (Exceptipn e)
{ System.out.Println

Abstract Stack Machine

Workspacﬁ/ Stack \

throw Gaf//,

-

Heap

~ I

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

this

/

/]

—
System.out.println(
“here 1in f00”)

this

{

/

catch (Exceptipn e)

{ System.out.
(“caught”);/ }

rintln

System.out.prnintln(
“here 1n bar”);

Abstract Stack Machine

Workspace

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Stack Heap
VA e
this / //r

—5
System.out.println(/

“here 1n f060”);
/
this / (

catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here 1n bar”);

Abstract Stack Machine

Workspace

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

Stack

Heap

this

. P ad <
17

gystem.out.pr ntln(
“here 1n f060”);

this /

Eatch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here 1n bar”);

N | VYes!

Abstract Stack Machine

Workspace

{ System.out.Println
(“caught”); }

System.out.println(
“here 1n bar”);

Stack

-

P ad <

this

/

/

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

gystem.out.pr

—
el
“here 1n f00”);

this

{

e

Abstract Stack Machine

Workspace

{ System.out.Println

Stack

(“caught”); }
System.out.println(
“here in bar”);

-

>

this

/

/

Continue executing as usual.

gystem.out.pr

ntln
“here 1n f00”);

p——

this

{

e

Abstract Stack Machine

Workspace

153
System.out.println(
“here 1in bar”);

Stack

-

>

this

/

/

Continue executing as usual.

Console
caught

gystem.out.pr

ntln
“here 1n f00”);

p——

this

{

e

Abstract Stack Machine

Workspace

15t ‘
System.out.println(
“here 1in bar”);

Stack

-

>

this

/

/

We're sweeping a few details about
lexical scoping of variables under
the rug — the scope of e is just the
body of the catch, so when that is
done, e must be popped from the
stack.

Console
caught

gystem.out.pr

ntln
“here 1n f00”);

this

{

e

Abstract Stack Machine

Workspace

System.out.println(
“here in bar”);

Stack

Heap

—

Continue executing as usual.

Console
caught

this

- >
T 7

gystem.out.pr ntln(
“here in f00”);

this /

Abstract Stack Machine

Workspace

System.out.println(

Stack

“here in bar”);

Heap

—

Continue executing as usual.

Console
caught

this

- >
17

gystem.out.pr ntln(
“here in f00”);

this /

Abstract Stack Machine

Workspace

Stack

Heap

—

Pop the stack when the workspace
is done, returning to the saved
workspace just after the _ mark.

Console

caught
here in bar

-3 >
T

this

gystem.out.pr ntln(
“here in f00”);

this /

Abstract Stack Machine

Workspace Stack Heap
System.out.printin(3 ////"__“"->
“here 1n fo00”);
this 7

Continue executing as usual.

Console

caught
here in bar

Abstract Stack Machine

Workspace Stack Heap
System.out.printin(_: /////’—‘—--~,
“here in foo0”); -
this 7

Continue executing as usual.

Console

caught
here in bar

Abstract Stack Machine

Workspace Stack Heap
. . N
this 7

Continue executing as usual.

Console
caught
here in bar
here in foo

Abstract Stack Machine

Workspace Stack

Program terminated normally.

Console
caught
here in bar
here in foo

Heap
[Fesen

Exception

When No Exception is Thrown

* If no exception is thrown while executing the body of a try {...}
block, evaluation skips the corresponding catch block.

— i.e. if you ever reach a workspace where “catch” is the statement to
run, just skip it:

Workspace Workspace
catch (Exception e) System.out.println(
{ System.out.Println “here in bar”);

(*caught”); }
System.out.println(
“here 1n bar”);

Catching Exceptions

* There can be more than one “catch” clause associated with each “try”
— Matched in order, according to the dynamic class of the exception thrown
— Helps refine error handling

try {

- // do something with the IO library
} catch (FileNotFoundException e) {

. // handle an absent file
} catch (IOException e) {

. // handle other kinds of IO errors.
Iy

* Good style: be as specific as possible about the exceptions you’re
handling.

— Avoid catch (Exception e) {..} it’susually too generic!

Exception Class Hierarchy

Object
Type of all i
2 1
throwable objects. :
1
Throwable
P~~~ Fatal Errors: should
1 Sseeo
Subtypes of i e never be caught.
Exception must be Exception Error
declared. i
T |
_____ I
—— 1
————— [
|OException RuntimeException Subtypes of
: : RuntimeException
i ' do not have to be
i NullPointerException declared.

FileNotFoundException

Checked (Declared) Exceptions

Exceptions that are subtypes of Exception but not RuntimeException
are called checked or declared.

A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

public void maybeDolIt (String file) throws AnException {
1f (..) throw new AnException(); // directly throw

Even if it doesn’t throw the exception directly

public void doSomeIO (String file) throws IOException {
Reader r = new FileReader(file); // might throw

Unchecked (Undeclared) Exceptions

* Subclasses of RuntimeException do not need to be declared via “throws”
— even if the method does not explicitly handle them.

 Many “pervasive” types of errors cause RuntimeExceptions
— NullPointerException
— IndexOutOfBoundsException
— lllegalArgumentException

public void mightFail (String file) {
1f (file.equals(“dictionary.txt”) {
// file could be null!

* The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover...

Declared vs. Undeclared?

Tradeoffs in the software design process:

Declared = better documentation

— forces callers to acknowledge that the exception exists

Undeclared = fewer static guarantees
— but, much easier to refactor code

In practice: “undeclared” exceptions are prevalent

A reasonable compromise:

— Use declared exceptions for libraries, where the documentation and usage
enforcement are critical

— Use undeclared exceptions in client code to facilitate more flexible
development

Style Points

In Java, exceptions should be used to capture exceptional circumstances
— Try/catch/throw incur performance costs and complicate reasoning about the
program, so don’t use them when better solutions exist
Re-use existing exception types when they are meaningful to the situation
— e.g. use NoSuchElementException when implementing a container

Define your own subclasses of Exception if doing so can convey useful
information to possible callers that can handle the exception.

It is often sensible to catch one exception and re-throw a different (more
meaningful) kind of exception.
— e.g. when implementing file base iterator (in upcoming lectures), we catch
|OException and throw NoSuchElementException in the next() method.
Catch exceptions as near to the source of failure as makes sense
— i.e. where you have the information to deal with the exception
— Don’t put your only try {...} block in main

Catch exceptions with as much precision as you can

— i.e. Don’t do: try{...} catch (Exception e) {...}
instead do: try {...} catch (IOException e) {...}

Finally

A “finally” clause of a try/catch/finally statement always gets run,
regardless of whether there is no exception, a propagated exception, or a
caught exception — or even if the method returns from inside the try.

“Finally” is often used for releasing resources that might have been held/
created by the “try” block:

public void doSomeIO (String file) {

FileReader r = null;

try {
r = new FileReader(file);
.. // do some IO

} catch (FileNotFoundException e) {
.. // handle the absent file

} catch (I0Exception e) {
.. // handle other I0 problems

} finally {
1t (r '= null) { // don’t forget null check!

try { r.close(); } catch (IOException e) {..}

ks

ks

/O Streams

 The stream abstraction represents a communication channel
with the outside world.

— can be used to read or write a potentially unbounded number of data
items (unlike a list)

— data items are read from or written to a stream one at a time

* The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...

Low-level Streams

At the lowest level, a stream is a sequence of binary numbers

197 46 182 170

The simplest IO classes break up the sequence into 8-bit
chunks, called bytes. Each byte corresponds to an integer in
the range 0 — 255.

InputStreamand OutputStream

Abstract classes* that provide basic operations for the Stream class hierarchy:

abstract int read (); // Reads the next byte of data
abstract void write (int b); // Writes the byte b to the output

These operations read and write int values that represent bytes
— range 0-255 represents a byte value
— =1 represents “no more data” (when returned from read)

e java.io provides many subclasses for various sources/sinks of data:

— files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:
— encoding, buffering, formatting, filtering

*Abstract classes are classes that cannot be directly instantiated (via new). Instead, they provide partial,
concrete implementations of some operations. In this way, abstract classes are a bit like interfaces (they

provide a partial specification) but also a bit like classes (they provide some implementation). They are most
useful in building big libraries, which is why we aren’t focusing on them in this course.

Binary input demo

Binary 10 example

InputStream fin = new FileInputStream(filename);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.readQ);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early™);
ks
data[j][1] = ch;
ks
ks

fin.close();

Binary 10 example

public Image() throws IOException {
InputStream fin = new FilelnputStream(“mandrill.pgm”);

data = new int[width][height];
for (int 1=0; 1 < width; 1++) {
for (int j=0; j < height; j++) {
int ch = fin.read(Q);
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended too early");
}
data[j][1] = ch;
¥
by

fin.close();

BufferedinputStream

 Reading one byte at a time can be slow!

 Each time a stream is read there is a fixed overhead, plus time
proportional to the number of bytes read.

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

* ABufferedInputstream presents the same interface to
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program

Buffering Example

FileInputStream finl = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(finl);

int[] data = new int[width][height];
for (int 1=0; i < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
ks
data[j][1] = ch;
ks
¥

fin.close();

Buffering example

public Image() throws IOException {
FileInputStream finl = new FilelnputStream("mandrill.pgm");

InputStream fin = new BufferedInputStream(finl);

data = new int[width][height];
for (int 1=0; 1 < width; i++) {
for (int j=0; j < height; j++) {
int ch = fin.read(Q);
if (ch == -1) {
throw new IOException("File ended too early");
}
data[j][1] = ch;
¥
ks

fin.close();

PrintStream Methods

PrintStream adds buffering and binary-conversion
methods to OutputStream

void println(boolean b); // write b followed by a new line
void println(String s); // writes followed by a newline

void println(); // write a newline to the stream
void print(String s); // write s without terminating the line

(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

* Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments, and/
or the static type of the argument you pass in at the method’s call site.

— Thejava 1/0 library uses overloading of constructors pervasively to make it easy to “glue
together” the right stream processing routines

The Standard Java Streams

java.lang.System provides an InputStream and two standard
PrintStream objects for doing console I/O.

System.out

Sys tem.1in standard output (display)

standard input (keyboard)

| > Application

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.
Methods can also be static — the most common being “main”, but see also the Math class.

Character based IO

A character stream is a sequence of 16-bit binary numbers

593 46,762
\u0251 \UB6AA
‘3’ cCC
—
=1L

The character-based |0 classes break up the sequence into 16-bit
chunks, of type char. Each character corresponds to a letter
(specified by a character encoding).

Reader and Writer

Similar to the InputStream and OutputStream classes, including:

abstract int read (); // Reads the next character
abstract void write (int b); // Writes the char to the output

These operations read and write int values that represent unicode characters
— read returns an integer in the range 0 to 65535 (i.e. 16 bits)

— value =1 represents “no more data” (when returned from read)
— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.
— use these for portable text I/O

Gotcha: System.in, System.out, System.err are byte streams
— So wrap in an InputStreamReader / PrintWriter if you need unicode console 1/0

How do you read from a file into a String?

FileReadingTest.java

Java |/O Design Strategy

1. Understand the concepts and how they relate:
— What kind of stream data are you working with?
— Is it byte-oriented or text-oriented?
* InputStream vs. InputReader
— What is the source of the data?

* e.g. file, console, network, internal buffer or array

— Does the data have any particular format?
* e.g. comma-separated values, line-oriented, numeric
e Consider using Scanner or another parser

2. Design the interface:
— Browse through java.io libraries (to remind yourself what’s there!)
— Determine how to compose the functionality your need from the library

— Some data formats require more complex parsing to convert the data stream
into a useable structure in memory

