Programming Languages
and Techniques
(C1S120)

Recap Lecture
April 30, 2014

What is printed?
public class Block { o
public static int x; - ley:z
public static int y; x=3 y=4
publ;czBL%Ek(lnt x0, int y0) { 2. x=3y=4
Yy = y0: X=3y=4
1 } 3. x=2vy=2
x=4 y=4
4. NullPointerException

public static void main(String[] args) {
List<Block> 1ist = new LinkedList<Block>();
list.add(new Block(1,2));
list.add(new Block(3,4));
for (Block b : 1ist) {
System.out.println("x=
ks

n

+b.x+ "y="+b.y);
}

How is HW10 going?

not started
developing ideas
started coding
nearly there
submitted

CUE

Game Project

Due tonight at midnight

No late submissions

Schedule a demo session with your TA

See assignment webpage for grading rubric. Be prepared to
discuss your game at the demo.

TAs will continue OH until the exam where possible, but will
have to reshuffle based on their own exam schedules

FINAL EXAM

Wednesday May 7, 9-11 AM

— DRLB Al, Last name A-N
DRLB A8, Last name P-Z

Comprehensive exam covering all course content:
— both OCaml and Java
— Concepts from homework assignments and lectures

Closed book
— One letter-sized, handwritten sheet of notes allowed

TA-led Review
— 6-9PM Saturday, Levine 101 (pizza!)

Mock Exam:
— 6-9PM Sunday, Levine 101 (6-8 proctored Spring 2012 final, 8-9 review)

Review material posted on course web page

What did you think of the use of clickers this semester?

1. worked well — definitely keep using them
2. no strong opinion
3. didn’tlike it

How often did you watch the lecture screencasts?

Frequently, to review concepts
Sometimes, to replay tricky concepts
Sometimes, to make up missed lectures
Rarely

There are screencasts available?

CUE

CIS 120 Recap

13 concepts in 37 lectures

Concept: Design Recipe

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

Did you find writing unit tests useful?

1.

yes, it helped me to understand the problem before |
started coding

yes, it helped me to help me debug while coding

yes, it helped me to be sure my homework was correct
before | submitted it

no, | wrote tests only because | wanted to get full credit
on the assignments

no, | never wrote tests

Test Driven Development

 Concept: Write tests before coding
— "test first" methodology

* Examples:
— Simple assertions for declarative programs (or subprograms)
— Longer (and more) tests for stateful programs / subprograms
— Informal tests for GUIs (can be automated through tools)

e Why?
— Tests clarify the specification of the problem
— Thinking about tests informs the implementation
— Tests help with extending and refactoring code later

* automatic check that things are not getting broken

Persistent data structures

1_1

Concept: Store datain persiste?/' ' T \
implement computation as trg Recursion is the natural way of

structures

computing a function f(t) when t
belongs to an inductive data type:

Examples: immutable lists anc 1. Determine the value of f for

Pictures and Strings in Java (H\ the base case(s).

2. Compute f for larger cases by
combining the results of
recursively calling f on smaller

i Cases. /
ave to re

ween various parts of the program, all interfaces

Why?
— Simple model of co

— Simple interface:
communicatio
are explicit

— Recursion amenable to mathematical analysis (CIS 160/121)
— Plays well with parallelism

Mutable data structures

Concept: Some data structures are ephemeral: computations
mutate them over time

Examples: queues, deques (HW5), GUI state (HW®6, 8), arrays (HW
7), dynamic arrays, dictionaries (HW9), hashtables, game state (HW
10)

head || | v 1 J v 2

tail ~ next = 8 4 next '

A queue with two elements

Why?
— Common in OO programming, which simulates the transformations that
objects undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

Concept: Trees

Lists (i.e. “unary” trees)
Simple binary trees

Trees with invariants: e.g.
binary search trees

Quad trees: spatial search

Widget trees: screen layout
+ event routing

Swing components

let rec length (l:int list)
begin match 1 with
| 11 ->0

| ::¢1 -=> 1 + length(tl)

: int

lot:
ernad Isots Apes
of time |

border | .handle e ‘

Both persistent and mutable
trees are ubiquitous!

bcrd-er

label

hP,. .handle e

hpair Tvhandle e

bdrde .handle e

label | .handle e

First-class computation

Concept: code is a form of data that can be defined by
functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

Examples: map, filter, fold (HW4), dynamic dispatch, event
listeners (HW®6, 8, 10)

cell.addMouseListener (new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
selectCell(cell);

}
})s

Why?
— Powerful tool for abstraction: can factor out design patterns that differ
only in certain computations

— Heavily used for reactive programming, where data structures store
"reactions" to various events

Event-Driven programming

Concept: Structure a program by associating "handlers" that
run in reaction to program events. Handlers typically interact
with the rest of the program by modifying shared state.

Examples: GUI programming in OCaml and Java

Why?

Practice with reasoning about
shared state

Practice with first-class functions
Necessary for programming with
Swing

Fun!

X/ Caml graphics

@

l\N\I\ EXTRA DINOSAURS = EXTRA AWESOME

IO Point| IO Linel |O Ellipsel ||:|Thick linesl |O Dopul |O Paste|
W @ E @ O E E Text buffer:[EXTRA DINOSAURS = EXTRA AUESONE

Types, Generics, and Subtyping

e Concept: Static type systems prevent errors. Every expression
has a static type, and OCaml/Java use the types to rule out
buggy programs. Generics and subtyping make types more
flexible and allow for better code reuse.

 Examples: entire course

let rec contains (x:'a) (l:'a list) : bool =
begin match 1 with
| [1 -> false
| h::tl -> x = a || (contains x tl)
end

e Why?
— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants
about the program are maintained

Abstract types and encapsulation

* Concept: Type abstraction hides the actual implementation of
a data structure, describes a data structure by its interface,
and supports reasoning with invariants

 Examples: Set/Map interface (HW3), queues in OCaml| (HW 5)
and Java. encapsulation and access control

Invariants are a crucial tool for
reasoning about data structures:
mentation without modifying clients
1. Establish the invariants when
you create the structure.
2. Preserve the invariants when
you modify the structure.

ants about the implementation

Sequences, Sets and Finite Maps

Concept: semantics of three key abstract data structures

Examples: HW3, Java Collections, Iterators, HWQ09

e Why?

— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language you
are programming in

— Need to be able to choose the data structure with the right semantics

Dictionary
_ kudos only
is a type of
Corrector ~ «--+ YL GEEEND Vi
makes use of provided
FileCorrector JJ
SwapCorrector
Levenshtein SpellChecker SpellCheckerRunner
Token T
You run the
TokenScanner

spell checker
with this

Lists, Trees, BSTs, Queues, and Arrays

* Concept: key implementations for sequences, sets and finite maps
 Examples: HW2-5, Java Collections, DynamicArrays, Hashtables

e Why?
— Need some concrete implementation of the abstract types

— Different implementations have different trade-offs. Need to understand
these trade-offs to use them well.

— For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.
interface Set {boolean isEmpty(); ...}

’ head ' 1
‘ tail next

A queue with two elements

YR
ERER P
L BT
|
:ww
| i,

=

LLNREINE

re———

=

—
T
]
_wa)
-
Fout]
"
e
Cme

W

Rl
-
-
-
. e———

-

r———

re——
re————
re———

—
-——
—
i
ome |1]|]
Cme | 3| e

1

-4

re———
re———
e —
re———

-——
—
Cme | 3| e

_wa
ome |1]| <]

o~

1

r——
re————
e —
re————

A
_wa)
-
[]
owe | 1|
Cwme | 3|

1

.-

r——
r——
re———

Did you find the Abstract Stack Machine useful?

1.
2.
3.

yes, | never write code without drawing pictures first
yes, stepping through the ASM helps me debug

yes, it helped me to understand how various features in
OCaml and Java work, but | don’t use it for
implementation

no, | don’t really understand it

no, | don’t see the point

Abstract Stack Machine

* Concept: The Abstract Stack Machine is a detailed model of
the execution of OCaml/Java

 Example: throughout the semester!

e Why?
— To know what your program does without running it

— To understand tricky features of Java/OCaml language (first-class
functions, exceptions, static members, dynamic dispatch, overriding)

— To help understand the programming models of other languages:
Javascript, Python, C++, CH, ...

Abstraction

Concept: Don't Repeat Yourself!
— Find ways to generalize code so it can be reused in multiple situations
— Simplify interactions between components by hiding details

Examples: Functions/methods, generics, higher-order
functions, interfaces, subtyping, abstract classes

Why?
— Duplicated functionality =
duplicated bugs

— Duplicated functionality =
more bugs waiting to happen

— Good abstractions make
code easier to read, modify,
maintain and reuse

What Next?

e (Classes:

* Undergraduate research ‘\
/

CIS 121, 262, 320 — data structures, performance, computational
complexity

CIS 19x — programming languages and technologies
e C++, CH#, Python, Haskell, Ruby on Rails, iPhone programming
CIS 240 — lower-level: hardware, gates, assembly, C programming
CIS 341 — compilers (projects in OCaml!)
CIS 371, 380 — hardware and OS’s
CIS 552 — advanced programming

women in computer science

&
o
S
pennapps dining philosopher‘s

NN

And much more!

The Craft of Programming

* The Pragmatic Programmer: he

: _
Praomatic
From Journeyman to Master Proorammer

by Andrew Hunt and David Thomas

it covers style, effective use of tools, and

— Not about a particular programming language, ;
good practices for developing programs.

\ndrew Huont
David Thomas

Joshua Bloch oo %

== * Effective Java
Effective Java by Joshua Bloch

Second Edition

— Technical advice and wisdom about using Java for

building software. The views we have espoused in
this course share much of the same design
philosophy.

> ' 7
SoN NPT <
Y Sun Java

Parting Thoughts

* Improve CIS 120:

— End-of-term survey (will be posted soon on Piazza)
— Penn Course evaluations also provide useful feedback
— We take them seriously: please complete them!

r N
|£] Image Processing . [= | [|-

RotateCW

RotateCCW

Mirror vertical

Mirror horizontal

Simple transform

Contrast

Reduce palette

Blur

Flood

Thanks!

let rec length (l:int list) : int =
begin match 1 with
| 11 >0
| _::t1l -> 1 + length(tl)
end 2
000 X/ Caml graphics
® OO0 Widget P
G i///s . @
i \ § (z; \ V) ‘\‘
AAAA _ ANACS \ N
ACAT | AAGA 7 @ PN"\ \ N
AN ‘ % \
|_|_| 8 g + beg\b \)
GCAT - - TAGA GAGA - — \ EXTRA DINDSAURS = EXTRA ALESOME
— | [— I \ \
8 00 Pennstagram .
| Load newimage | | Saveimage | [Undo] | Quit | — .
L4 7 L \ N
RotateCW ‘ Yo Xy ¢ .
RotateCCW »
a -F—-———
Border = : _— kudos only
Simple transform : _________
: makes use of provided
Color scale : P:aste D
I
Contrast : EESDME
I
Reduce palette L e < - SpellCheckerRunner
alpha-Blend T
You run the
spell checker
with this

