
CIS 120 Final Exam 19 December 2014

SOLUTIONS

1

1. Java Concepts: True or False (10 points)

All of the following questions pertain to Java.

a. T F If s and t are variables of type String such that s == t, then s.equals(t) is
guaranteed to return true.

b. T F The call m(new Object()) may throw a NullPointerException when m is declared
with the type signature shown below:
public void m(Object o)

c. T F The call m(new Object()) may throw an IOException when m is declared with the
type signature shown below:
public void m(Object o)

d. T F The keyword synchronized, when applied to a method, ensures that at most one
thread at a time is executing in method’s body.

e. T F Whenever you override the equals method of a class, you should be sure to override
the hashCode method compatibly.

f. T F The Circle class below demonstrates how inheritance can be used to avoid code
duplication:
public class Circle {
Point center;
public Circle(int x, int y) {
center = new Point(x,y);

}
}

g. T F The variables p and q are aliases when the following program’s execution reaches
the line marked “HERE”. (Assume that ColoredPoint is a subclass of Point.)
Point p = new Point(1, 2);
Point q = new ColoredPoint(1, 2, Red);
p = q;
// HERE

h. T F A recommended way to improve the performance of Java programs that use file I/O
is to use a buffered stream, like this:
InputStream f = new new FileInputStream("filename.dat");
InputStream fin = new BufferedInputStream(f);

i. T F The this reference is always guaranteed to be non-null.

Grading Scheme: 1 pt each.

2

2. Binary Search Trees (18 points)

Recall the type definitions for binary trees from Homework 3:
type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

Also recall that binary search trees (BST) are trees with an additional invariant (which hopefully
you remember).

a. Draw all of the possible binary search trees that contain exactly the integers 1, 2, and 3.

3 3 2 1 1
/ / / \ \ \
2 2 1 3 3 2
/ \ / \
1 1 2 3

b. Recall that the height of a binary tree is the maximum number of nodes from the root to
any leaf, while the size of binary tree is the total number of nodes in the tree. Note that
(height Empty) = 0. Below is the standard lookup function for binary search trees:
let rec lookup (x: ’a) (t: ’a tree) : bool =
begin match t with
| Empty -> false
| Node(lt, y, rt) ->

if x < y then lookup x lt
else if x > y then lookup x rt
else true

i. Does the lookup function take time proportional to the height or the size of the tree?
height size

Answer: height
ii. Is it possible to construct a tree t such that the size of t is equal to its height? In one

sentence, explain why or why not.
Answer: Yes: a linear tree

iii. Is it possible to construct a tree t such that the size of t is 1000 but the height of t is
10? In one sentence, explain why or why not.
Answer: Yes: a nearly balanced tree

3

3. OCaml Programming: Abstraction, Lists, Higher-order Functions (24 points)

This problem refers to the OCaml code in Appendix A, which gives a signature Encoding that
provides operations for representing compressed representations of lists.

The module RLE implements this signature. It compresses a list using run-length encoding: se-
quences of identical consecutive elements of the list are represented by a pair of the element and
the length of the sequence. The encoding of a whole list is a list of such pairs. For example,
the list consisting of four "a"s followed by three "b"s and one "c" has the (module-internal)
representation computed by the encode function as shown below:
(encode ["a"; "a"; "a"; "a"; "b"; "b"; "b"; "c"]) = [("a", 4); ("b", 3); ("c", 1)]

For each of the following multiple choice questions, circle all correct answers; there may be more
than one.

a. The type ’a encoding is abstract. Circle all of the code snippets that illustrate a legal way
in which a client of the RLE module may use its interface.

i. ;; open RLE
let l : int list = decode (encode [1;2;3])

ii. ;; open RLE
let l : int list = decode [(1,2)]

iii. ;; open RLE
let l : (int * int) list = encode [1]

iv. ;; open RLE
let l : int encoding = encode(decode(encode []))

Answer: i and iv are correct

b. Suppose that the RLE representation of a compressed list is:

[(v_1, cnt_1); (v_2, cnt_2); (v_3, cnt_3); ... ; (v_N, cnt_N)]

Circle the statements that are invariants that the RLE module enforces about the compressed
representation:

i. N is greater than 0, that is, the representation is a non-empty list.

ii. None of cnt_1, cnt_2, . . . , cnt_N is 0.

iii. Adjacent values v_i and v_(i+1) are not equal, i.e. v_1 <> v_2 and v_2 <> v_3 and
v_3 <> v_4, etc.

iv. Adjacent counts cnt_i and cnt_(i+1) are not equal, i.e. cnt_1 <> cnt_2 and
cnt_2 <> cnt_3 and cnt_3 <> cnt_4, etc.

Answer: ii and iii are invariants

4

c. Circle the programs that implement the same function as RLE module’s decode? The defini-
tions of the higher-order functions transform and fold are given in Appendix A.

i. let decode (l:(’a * int) list) : ’a list =
fold (fun (x,cnt) r -> (replicate x cnt)@r) [] l

ii. let decode (l:(’a * int) list) : ’a list =
transform (fun (x,cnt) -> replicate x cnt)) l

iii. let decode (l:(’a * int) list) : ’a list =
fold (fun xs r -> xs @ r) []

(transform (fun (x,cnt) -> replicate x cnt) l)

iv. let decode (l:(’a * int) list) : ’a list =
fold (fun (x,cnt) r -> transform

(fun l -> replicate x cnt) r)
[] l

Answer: i. and iii.

d. Suppose that you wanted to add an operation that transforms an encoded list analogously to
the way that transform works on ordinary lists. Which function signature should you add
to the Encoding signature?

i. val transform : (’a encoding -> ’b encoding) -> ’a -> ’b

ii. val transform : (’a -> ’b) -> ’a encoding -> ’b encoding

iii. val transform : ’a encoding -> ’b encoding

iv. val transform : (’a -> ’b) -> ’b encoding -> ’a encoding

Answer: ii.

5

4. Java Collections (12 points)

(a) The flow chart below is designed to help programmers determine which of Java’s collections
to use. There are nine blanks labeled (a) through (i). Fill in the blanks using the names of the
appropriate interfaces or classes drawn from those given below. Hint: only nine of the names
below will be used.
Set Map List
ArraySet LinkedMap ArrayList
HashSet HashMap LinkedList
TreeSet TreeMap TreeList

associate(
keys(to((
values?(

duplicate(
entries(
allowed?(

NO(NO(

Interface:(
(a)_____Map________(

YES(

YES(

Class:(
(g)____Hashmap_________(

Class:(
(d)__TreeMap_____(

element(
order(

needed?(

Interface:(
(b)__List___________(

YES(

Class:(
(h)_ArrayList_____________(

Class:(
(e)_LinkedList______(

Interface:(
(c)__Set____________(

YES(

Class:(
(i)_HashSet______________(

Class:(
(f)_TreeSet________(

element(
order(

needed?(

YES(

Which(Java(CollecHon(
should(I(use?(

NO(NO(NO(
entries(

oCen(added/
removed(at(
head/tail(

(b) (multiple choice) Suppose that you were going to use Java Collections to implement a pro-
gram that simulates a simplified version of the Java Abstract Stack Machine that does not need to
push workspaces on to the stack. Assuming that you have classes Identifier and Value, which
type below would be the best fit for representing the stack part of the Abstract Stack Machine?
(a) Set<Identifier> (d) ArrayList<Value>
(b) LinkedList<Identifier> (e) Map<Identifier, Set<Value>>
(c) LinkedList<Map<Identifier, Value>> (f) Map<Value,Identifier>

Answer: (c)

6

5. Java Types (16 points)

Consider the classes and interfaces Iterable, Collection, List, Iterator, ArrayList and
LinkedList from the Java Collections Framework. (More information about these interfaces and
classes is shown in Appendix B.)

Write down a type for each of the following Java variable definitions. Due to subtyping, there may
be more than one type that would work—you should put the most specific type permissible in that
case. (For example, if C implements I then you should put C instead of I). Write static error if
the compiler would flag an error anywhere in the code snippet for any reason.

Hint: read through the Appendix carefully. Even though you may have used these methods before,
you may not have given much thought to their types.

The first two have been done for you as a sample and are used in the remaining definitions.

_______ArrayList<String>__________ x = new ArrayList<String>();

____ArrayList<List<String>>_______ y = new ArrayList<List<String>>();

a. _________String________ a = y.get(0).get(0);

b. _______boolean_________ b = x.add("CIS120");

c. _______boolean_________ c = x.contains(y);

d. _______static error_______ d = y.add(x.get(0))

e. Iterator<List<String>>_ e = y.iterator();

f. ___String______________ f = ((ArrayList<String>)null).get(0);

g. ___static error__________ g = new Collection<String>();

Note: This last code snippet is larger than a single expression: it assigns to h twice.

h. ___List<String>_____________ h = x;
g = new LinkedList<String>();

Grading Scheme: 2pts each

7

6. Java Data Structures Programming (28 points total)

Appendix C shows (part of) the implementation of a new Java Collection class called Deque<E>,
which implements the List<E> interface. The code provided is a Java version of the doubly-linked
queues (a.k.a. deques) mutable data structure that you implemented for HW05 in OCaml. There is
a type DQNode, which stores an element, along with references to the next and previous elements
of the deque. A deque object has references to the head and tail of the deque.

Your task in this problem is to implement some missing functionality of the Deque<E> class.

a. (8 points) First, implement the contains method, the JavaDoc for which is given below:
boolean contains(Object o)
Returns true if this list contains the specified element. More formally, returns true if and
only if this list contains at least one element e such that either o and e are both null or o is
non-null and o.equals(e).

@Override
public boolean contains(Object o) {

for(E e : this) {
if ((e == null && o == null) || o != null && o.equals(e)) {
return true;

}
}
return false;

}

public boolean containsAlt(Object o) {
DQNode n = head;
while (n != null) {
if (n.v == null && o == null) return true;
if (o != null && o.equals(n.v)) return true;
n = n.next;

}
return false;

}

8

b. (8 points) Because it implements the List<E> interface, the Deque<E> class must be able
to provide an Iterator<E> object via the interator() method. (See Appendix B for the
relevant interfaces.) Appendix D contains the code for a class called DequeIterator, which
is an inner class of Deque<E>. We have given you the hasNext() and the next() methods.
Your next task is to implement some a test case for the remove() method of the iterator, the
JavaDoc for which is given below:
void remove()
Removes from the underlying collection the last element returned by this iterator. This
method can be called only once per call to next(). The behavior of an iterator is unspecified
if the underlying collection is modified while the iteration is in progress in any way other than
by calling this method.
Throws: IllegalStateException - if the next method has not yet been called, or the re-
move method has already been called after the last call to the next method

The test case below checks one desired behavior:
@Test public void removeOnlyElement() {
List<Integer> l = new Deque<Integer>();
l.add(3);
Iterator<Integer> i = l.iterator();
i.next();
i.remove();
assertTrue(l.isEmpty());

}

Complete the following test which should check that the remove() method properly raises
an IllegalStateException when called before next.
Hint: You may want to use the fail() method, which causes a test to fail.

@Test public void removeFailsWhenCalledBeforeNext() {
List<Integer> l = new Deque<Integer>();
Iterator<Integer> i = l.iterator();
try {
i.remove();

} catch (IllegalStateException e) {
return;

}
fail();

}

9

c. (12 points) Lastly, complete the remove() method to match the description given above.
Recall the invariants for the Deque datatype (suitably translated to Java):

• The deque is empty, and the head and tail are both null,
• or, the deque is non-empty, and:

– head != null and tail != null and
· tail is reachable from head by following next pointers
· tail.next == null (there is no element after the tail)
· head is reachable from tail by following prev pointers
· head.prev == null (there is no element before the head)

– for every DQNode n in the deque: if n.next != null then n.next.prev == n

– for every DQNode n in the deque: if n.prev != null then n.prev.next == n

Your implementation of remove should maintain these invariants.
Hint: the field lastReturned is set by the next() method. If it is non-null, then it refers to
the node to be removed. We have started implementing this method for you.

@Override
public void remove() {
if (lastReturned == null) {
throw new IllegalStateException();

}
if (lastReturned.prev == null) {
head = lastReturned.next;

}
if (lastReturned.next == null) {
tail = lastReturned.prev;

}
if (lastReturned.prev != null) {
lastReturned.prev.next = lastReturned.next;

}
if (lastReturned.next != null) {
lastReturned.next.prev = lastReturned.prev;

}
lastReturned = null;
}

10

7. Java Swing Programming and Debugging (12 points)

The code in Appendix E implements a simple Java GUI program in which a 50x50 black box
follows the mouse cursor around the window. It looks like this (the mouse cursor is not shown):

a. Write down the line number(s) on which the keyword new is used to create an instance of an
anonymous inner class, or “none” if there are none (there may be zero or more than one).
5 and 27

b. During the development of this program, you encountered several buggy behaviors, caused
by bugs in your use of the Swing library.
For each of the following coding errors, indicate what buggy behavior the program might
exhibit. The buggy behaviors are numbered (1) through (3), and they are described on the
next page. Each coding error leads to exactly one buggy behavior

Behavior Coding Error

(2) Omitted the call to f.pack() on line 16.

(3) Accidentally used addMouseListener instead of
addMouseMotionListener on line 27.

(3) Omitted the call to repaint() on line 31.

(2) Forgot to override the method getPreferredSize (lines 36–39 were omitted)

(1) Omitted the call to super.paintComponent(g) on line 43.

11

Buggy behaviors:
Behavior (1): The mouse movement causes the screen to look like this, which is cool, but
not what you wanted. The square should follow the mouse, not “draw” on the screen.

Behavior (2): The window was tiny like this, which isn’t even cool:

Behavior (3): The window looked like this, and no matter how you moved the mouse, the
square didn’t do anything:

12

A OCaml Compressed List

(∗ A signature for list encodings ∗)
module type Encoding = sig
type ’a encoding
val encode : ’a list -> ’a encoding
val decode : ’a encoding -> ’a list

end

(∗ run−length encoding for compressing lists ∗)
module RLE : Encoding = struct
type ’a encoding = (’a * int) list

(∗ run−length encodes a list ∗)
let rec encode (l:’a list) : (’a * int) list =
begin match l with
| [] -> []
| x::xs ->
begin match encode xs with
| [] -> [(x, 1)]
| ((y,cnt)::ys) ->
if x = y then (y,cnt+1)::ys else
(x,1)::(y,cnt)::ys

end
end

(∗ produces a list containing cnt copies of the element x ∗)
let rec replicate (x:’a) (cnt:int) : ’a list =
if cnt = 0 then [] else x::(replicate x (cnt-1))

(∗ decodes a run−length encoded list ∗)
let rec decode (l:(’a * int) list) : ’a list =
begin match l with
| [] -> []
| (x,cnt)::xs -> (replicate x cnt)@(decode xs)

end
end

(∗ Higher−order functions ∗)

let rec transform (f:’a -> ’b) (l:’a list) : ’b list =
begin match l with
| [] -> []
| h::tl -> (f h) :: (transform f tl)

end

let rec fold (combine:’a -> ’b -> ’b) (base:’b) (l:’a list) : ’b =
begin match l with
| [] -> base
| h::tl -> combine h (fold combine base tl)

end

13

B Excerpt from the Collections Framework

interface Iterator<E> {
public boolean hasNext();
// Returns true if the iteration has more elements .
public E next();
// Returns the next element in the iteration .
public void remove();
// Removes from the underlying collection the last element
// returned by this iterator

}

interface Iterable<E> {
public Iterator<E> iterator();
// Returns an iterator over a set of elements of type E.

}

interface Collection<E> extends Iterable<E> {
public boolean add(E o);
// Ensures that this collection contains the specified element
// Returns true if this collection changed as a result of the call .
// (Returns false if this collection does not permit duplicates
// and already contains the specified element .)
public boolean contains(Object o);
// Returns true if this collection contains the specified element .

}

interface List<E> extends Collection<E> {
public E get(int i);
// Returns the element at the specified position in this list

}

class ArrayList<E> implements List<E> {
public ArrayList();
// Constructs an empty list with an initial capacity of ten

// ... methods specified by interface
}

class LinkedList<E> implements List<E> {
public LinkedList();
// Constructs an empty list

// ... methods specified by interface
}

14

C Deque<E> class (partial implementation)

import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

public class Deque<E> implements List<E> {

// The type of doubly−linked nodes in the queue
private final class DQNode {
public final E v;
public DQNode next;
public DQNode prev;
public DQNode(E v, DQNode next, DQNode prev) {
this.v = v;
this.next = next;
this.prev = prev;

}
}

private DQNode head;
private DQNode tail;

@Override
public boolean isEmpty() {
return (head == null);

}

// Insert an element at the tail of the deque
@Override
public boolean add(E e) {
DQNode newNode = new DQNode(e, null, tail);
if (tail == null) {
head = newNode;
tail = newNode;

} else {
tail.next = newNode;
tail = newNode;

}
return false;

}

@Override
public Iterator<E> iterator() {
return new DequeIterator();

}

@Override
public boolean contains() {

// see exam problem 6 (a)
}
// ... code for DequeIterator ...

}

15

D DequeIterator (inner class of Deque<E>)

// An inner class of Deque<E>, it appears at the location
// marked ... code for DequeIterator ... on the previous page
private final class DequeIterator implements Iterator<E> {
private DQNode curr;
private DQNode lastReturned;

DequeIterator() {
this.curr = head;

}

@Override
public boolean hasNext() {
return (curr != null);

}

@Override
public E next() {
if (curr == null) {
throw new NoSuchElementException();

}
lastReturned = curr;
curr = curr.next;
return lastReturned.v;

}

@Override
public void remove() {

// see exam problem 6 (c)
}

}

16

E An Example Java GUI Program

1 // library imports omitted to save space (this code compiles)
2
3 public class GUI {
4 public static void main(String[] args) {
5 SwingUtilities.invokeLater(new Runnable() {
6 public void run() {
7 createAndShowGUI();
8 }
9 });

10 }
11
12 static void createAndShowGUI() {
13 JFrame f = new JFrame("Swing Paint Demo");
14 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15 f.add(new MyPanel());
16 f.pack();
17 f.setVisible(true);
18 }
19 }
20
21 @SuppressWarnings("serial")
22 class MyPanel extends JPanel {
23 private int x;
24 private int y;
25
26 public MyPanel() {
27 addMouseMotionListener(new MouseAdapter() {
28 public void mouseMoved(MouseEvent e) {
29 x = e.getX();
30 y = e.getY();
31 repaint();
32 }
33 });
34 }
35
36 @Override
37 public Dimension getPreferredSize() {
38 return new Dimension(250, 250);
39 }
40
41 @Override
42 public void paintComponent(Graphics g) {
43 super.paintComponent(g);
44 g.setColor(Color.BLACK);
45 g.fillRect(x, y, 50, 50);
46 }
47 }

17

